進階搜尋


下載電子全文  
系統識別號 U0026-0108201714481500
論文名稱(中文) 簡易塗佈PVDF-HFP/FAS-13/HM-SiNPs奈米複合材料製備全疏滑溜表面
論文名稱(英文) Facile Coating for Fabrication of Slippery Surfaces with Omniphobicity by Using PVDF-HFP/FAS-13/HM-SiNPs Nanocomposites
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 韓志偉
研究生(英文) Chih-Wei Han
電子信箱 j3362226@yahoo.com.tw
學號 n36044296
學位類別 碩士
語文別 中文
論文頁數 87頁
口試委員 指導教授-楊毓民
口試委員-李玉郎
口試委員-詹正雄
口試委員-吳文海
中文關鍵字 PVDF-HFP  疏水化改質二氧化矽  奈米複合表面  全疏性  滑溜表面 
英文關鍵字 PVDF-HFP  Hydrophobically-modified silica nanoparticles  Organic-inorganic composite coating  Slippery surface  Omniphobicity 
學科別分類
中文摘要 本研究致力於發展模仿植物表面的疏液性質,製備出具備如同豬籠草唇上滑溜特性的表面。以添加氟烷基矽烷(FAS-13)的含氟共聚高分子 (Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP)以及經過矽烷疏水化後的SiO2奈米粒子(HM-SiNPs)做為主要材料,並利用刮刀塗佈方式製備奈米複合薄膜。接著將極低表面張力的Fomblin® Y引入前述製備的粗糙結構中,創造出具有穩定且全疏滑溜的表面。
研究結果顯示,利用控制PVDF-HFP及HM-SiNPs之比例可有效改變薄膜的表面型態與粗糙度,此外疏水性也會隨著HM-SiNPs的比例提升而增加,產生一疏水且具高黏著力的表面,就如同玫瑰花瓣表面的特性。接著利用Fomblin® Y注入表面之後所形成的滑溜表面在PVDF-HFP及HM-SiNPs之比值小於1的情況下,對於七種測試液體(表面張力由72.8mN/m至18.6mN/m) 都會從滑溜薄膜上滑落,皆具有全疏滑溜性質 (傾斜角, SA≤ 10o)。滑溜薄膜在時間的持久性測試具備一定程度的穩定性。由於其易於製備的優點,應用於不同基板的表面也可以具備良好的全疏滑溜特性。
英文摘要 In this work, biomimic liquid-repellent surfaces which has slippery property like nepenthes pitcher plant was demonstrate. PVDF-HFP mixed with 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS-13) and hydrophobically-modified silica nanoparticles (HM-SiNPs) were used for the main material. The nanocomposite film was fabricated by blade coating. Furthermore, stable and slippery surface can be fabricated by infusing perfluorinated lubricating liquid, Fomblin® Y, which has extremely low surface tension into the rough nanocomposite thin films. The results showed that the morphology and roughness can be control by adjusting the ratio of PVDF-HFP and hydrophobically-modified silica nanoparticles. The nanocomposite surface has the hydrophobic and high adhesive properties like rose petal. After infusing the Fomblin® Y into the rough nanocomposite thin film, the slippery surface which the ratio of PVDF-HFP and HM-SiNPs was less than 1 exhibited highly liquid repellency against seven pure liquids (water, ethylene glycol, hexadecane, pentadecane, nonane, octane, and haxane) with surface tension from 72.8 mN/m to 18.6 mN/m. In persistence test for time and resistance test for shear force, the slippery property still can be kept. Because of the advantage for facile fabrication, the nanocomposite thin film could apply in different kinds of substrates and still possess great slippery properties. In addition, we also demonstrated that the SLIPSs exhibit ice-repellent properties after freezing in refrigerator for one hour.
論文目次 摘要 I
Abstract II
延伸摘要 IV
致謝 XVII
目錄 XVIII
表目錄 XXIII
圖目錄 XXIV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與研究目的 2
第二章 文獻回顧 3
2.1 蓮花效應-超疏水自潔表面 3
2.2 表面潤濕性理論模式 7
2.2.1 楊氏 (Young) 方程式 9
2.2.2 溫佐 (Wenzel) 方程式 10
2.2.3 卡西-巴斯特 (Cassie and Baxter) 方程式 10
2.2.4 介於溫佐和卡西-巴斯特兩狀態之間的過渡狀態 12
2.3 液固黏著性 13
2.3.1 表面黏著性之改變因素---物理結構與化學組成 14
2.4 複合材料 18
2.4.1 奈米複合材料 18
2.4.2 有機/無機奈米複合材料 19
2.5 表面疏水改質 21
2.6 滑溜表面 25
2.6.1 藉由注入液體於多孔結構創造滑溜表面 27
2.6.2 液體引入粗糙結構之準則 28
2.6.3 滑溜表面的應用 29
第三章 實驗 32
3.1 實驗藥品 32
3.1.1 製備疏水改質奈米粒子之材料 32
3.1.2 製備奈米複合薄膜之材料 33
3.1.3 製備全疏滑溜表面之材料及測試液體 34
3.2 儀器設備及裝置 36
3.2.1 Milli-Q超純水系統 36
3.2.2 加熱攪拌器 (Hot plate stirrer) 36
3.2.3 旋轉塗佈機 37
3.2.4 鍍金機 (Sputter) 38
3.2.5掃瞄式電子顯微鏡 (Scanning electron microscope) 39
3.2.6 X-光能量散佈光譜儀 (X-ray energy dispersive spectrometer) 40
3.2.7表面輪廓儀 (Alpha step) 41
3.2.8接觸角分析儀 (Contact angle measure analyzer) 42
3.2.9紅外光譜儀 (Infrared Spectroscopy) 43
3.3 實驗方法 44
3.3.1 玻璃基板的前置清洗流程 44
3.3.2 疏水化改質SiO2奈米粒子(HM-SiNPs)製備 44
3.3.3 PVDF-HFP/FAS-13/HM-SiNPs複合溶液的配製 45
3.3.4 利用刮刀塗佈法製備奈奈米複合薄膜 46
3.3.5 全疏滑溜薄膜製備 47
第四章 結果與討論 48
4.1 疏水改質二氧化矽 49
4.1.1 疏水改質二氧化矽之表面形態 49
4.1.2 疏水化改質之分析 51
4.1.3 改質粒子在液體中的分散情形 54
4.2 奈米複合薄膜 56
4.2.1 奈米複合薄膜的表面型態 56
4.2.2 奈米複合薄膜表面之元素分析 58
4.2.3 不同無機粒子比例下對於薄膜粗糙度與厚度之影響 61
4.2.4 複合薄膜表面對不同測試液體的潤濕性與黏著性之分析 63
4.3 全疏滑溜表面的製備 65
4.3.1 滑溜液體之選擇 66
4.3.2 全疏滑溜薄膜表面於不同測試液體之滑溜特性 68
4.3.3 全疏滑溜薄膜對時間的耐久性測試 70
4.3.4 全疏滑溜薄膜對剪切力的穩定性測試 73
4.3.5 將滑溜表面塗佈於不同基板之表面 75
4.3.6 滑溜表面之抗冰性質測試 77
4.3.7 滑溜表面抗冰性質之原因探討 79
第五章 結論與建議 80
5.1 結論 80
5.2 建議 82
第六章 參考文獻 83
參考文獻 Barthlott, W.; Neinhuis, C., Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta, 202, 1-8, 1997.
Neinhuis, C.; Barthlott, W., Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Annals of Botany, 79, 667-677, 1997.
Marmur, A., The Lotus Effect:Superhydrophobicity and Metastability. Langmuir , 20, 3517-3519, 2004.
Ma, L.; Chung, T. S.; Good, R. J., Surface Energy of Thermotropic Liquid Crystalline Polyesters and Polyesteramide. J. polym. Sci. B, 36, 2327-2337, 1998.
Wenzel, R. N., Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem., 28, 988-994, 1936.
Cassie, A. B. D.; Baxter, S., Wettability of Porous Surfaces. Trans. Faraday Soc., 40, 546-551, 1944.
Rahmawan, Y.; Xu, L.; Yang, S., Self-assembly of Nanostructures Towards Transparent, Superhydrophobic Surfaces. J. Mater. Chem. A, 1, 2955, 2013.
Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L., Bioinspired Super-antiwetting Interfaces with Special Liquid-Solid Adhesion. Accounts Chem. Res., 43, 368-377, 2010.
Liu, X.; Liang, Y.; Zhou, F.; Liu, W., Extreme Wettability and Tunable Adhesion: Biomimicking Beyond Nature? Soft Matter , 8, 2070-2086, 2012.
Feng, X. J.; Jiang, L., Design and Creation of Superwetting/ Antiwetting Surfaces. Adv. Master., 18, 3063-3078, 2006.
Bico, J.; Thiele, U.; Quéré, D., Wetting of Textured Surfaces. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 206, 41-46, 2002.
Tuteja, A.; Choi, W.; Ma M.; Mabry, J. M.; Mazzella, S. A.; Rutledge G. C.; McKinley, G. H.;Cohen R. E., Designing Superoleophobic Surfaces. Science, 318, 1618-1622, 2007.
Sun, T.; Feng, L.; Gao, X.; Liang, L., Bioinspired Surfaces with Special Wettability. Accounts Chem. Res., 38, 644-652, 2005.
Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L., Petal Effect: A Superhydrophobic State With High Adhesive Force. Langmuir , 24, 4114-4119, 2008.
Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L., Superhydrophobic Alihned Polystyrene Nanotube Films with High Adhesive Force. Adv. Mater., 12, 1977-1981, 2005.
Xi, J.; Jiang, L., Biomimic Superhydrophobic Surfaces with High Adhesive Forces. Ind. Eng. Chem. Res., 47, 6354–6357, 2008.
Zhao, W.; Wang, L.; Xue, Q., Fabrication of Low and High Adhesion Hydrophobic Au Surfaces with Micro/Nano-Biomimetic Structures. J. Phys. Chem. C, 114, 11509-11514, 2010.
Zhao, X. D.; Fan H. M.; Liu, X. Y.; Pan, H.; Xu, H. Y., Pattern-Dependent Tunable Adhesion of Superhydrophobic MnO2 Nanostructured Film. Langmuir, 27, 3224-3228, 2011.
Yong, J.; Chen, F.; Yang, Q.; Zhang D.; Bian, H.; Du, G.; Si, J.; Meng, X.; Hou, X., Controllable Adhesive Superhydrophobic Surfaces Based on PDMS Microwell Arrays. Langmuir, 29, 3274-3279, 2013.
Tan, C.; Cai, P.; Xu, L.; Yang, N.; Xi, Z.; Li, Q., Fabrication of Superhydrophobic Surface With Controlled Adhesion By Designing Heterogeneous Chemical Composition. Appl. Surf. Sci., 349, 516-523, 2015.
徐國財;張立德, 奈米複合材料, 五南圖書出版股份有限公司, 2004.
Roy, R.; Komarneni, S.; Roy, D. M., Multiphase Ceramic Composites Made by Sol-Gel Technique. Elsevier, North Holland, 347-359, 1984.
Roy, R. A.; Roy, R., Diphasic xerogels: I. Ceramic-metal Composites. Mater. Res. Bull., 19, 169-177, 1984.
Hoffman, D. W.; Roy, R.; Komarneni, S., Diphasic Xerogels, A New Class of Materials: Phases in the System Al2O3-SiO2. J . Am. Ceram. SOC., 67, 468-4711, 1984.
Tai, H.; Jiang, Y.; Xie, G.; Yu, J.; Chen, X., Fabrication and Gas Sensitivity of Polyaniline–Titanium Dioxide Nanocomposite Thin Film. Sens. Actuators. B Chem., 125, 644-650, 2007.
Kobayashi, Y.; Tanase, T.; Tabata, T.; Miwa, T.; Konno, M., Fabrication and Dielectric Properties of the BaTiO3–polymer Nano-composite Thin Films. J. Eur. Ceram. Soc., 28, 117-122, 2008.
Zhou, H.; Wang, H.; Niu, H.; Gestos, A.; Lin, T., Robust, Self-Healing Superamphiphobic Fabrics Prepared by Two-Step Coating of Fluoro-Containing Polymer, Fluoroalkyl Silane, and Modified Silica Nanoparticles. Adv. Funct. Mater., 23, 1664-1670, 2013.
Shi, Y.; Xiao, X., Facile Spray-Coating for Fabrication of Superhydrophobic SiO2/PVDF Nanocomposite Coating on Paper Surface. J. Dispersion Sci. Technol., 37, 640-645, 2016.
Wang, N.; Xiong, D.; Lu, Y.; Pan, S.; Wang, K.; Deng, Y.; Shi, Y., Design and Fabrication of the Lyophobic Slippery Surface and Its Application in Anti-Icing. J. Phys. Chem. C, 120, 11054−11059, 2016.
Wang, Y.; Zhang, H.; Liu, X.; Zhou, Z., Slippery Liquid-infused Substrates: a Versatile Preparation, Unique Anti-wetting and Drag Reduction Effect on Water. J. Mater. Chem. A, 4, 2524-2529, 2016.
Sun, H.; Xu, Y.; Zhou Y.; Gao, W.; Zhao, H.; Wang, W., Preparation of Superhydrophobic Nanocomposite Fiber Membranes by Electrospinning Poly(vinylidene fluoride)/Silane Coupling Agent Modified SiO2 Nanoparticles. J. Appl. Polym. Sci., 134, 44501, 2017.
Vansant, E. F.; Voort, P. V. D.; Vrancken, K. C., Characterization and Chemical Modification of the Silica Surface. Elsvier: Amsterdam, 1995
Plueddeman, E. P., Silane Coupling Agents. Plenum Press: New York, 1991.
Pellerite, M. J.; Wood, E. J.; Jones, V. W., Dynamic Contact Angle Studies of Self-Assembled Thin Films from Fluorinated Alkyltrichlorosilanes. J. Phys. Chem. B, 106, 4746-4754, 2002.
張鑑祥; 楊毓民, 分子層級的薄膜表面型態控制 - 逐層組裝技術. 化工技術 12, 135-144, 2004.
Bohn, H. F.; Federle W., Insect Aquaplaning: Nepenthes Pitcher Plants Capture Prey with the Peristome, a Fully Wettable Water-lubricated Anisotropic Surface. PNAS, 101, 14138-14143, 2004.
Wong, T. S.; Kang, S. H.; Tang, S. K.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J., Bioinspired Self-repairing Slippery Surfaces with Pressure-Stable Omniphobicity. Nature, 477, 443-447, 2011.
Daniel, D.; Mankin, M. N.; Belisle, R. A.; Wong, T. S.; Aizenberg, J., Lubricant-Infused Micro/Nano-Structured Surfaces with Tunable Dynamic Omniphobicity at High Temperatures. Appl. Phys. Lett., 102, 231603 (4 pages), 2013.
Yao, X.; Hu, Y.; Grinthal, A.; Wong, T. S.; Mahadevan L.; Aizenberg J., Adaptive Fluid-infused Porous Films with Tunable Transparency and Wettability. Nature Materials, 12, 529-534, 2013.
Zhu, L.; Xue, J.; Wang, Y.; Chen, Q.; Ding, J.; Wang Q., Ice-phobic Coatings Based on Silicon-Oil-Infused Polydimethylsiloxane. ACS Appl. Mater. Interfaces, 5, 4053−4062, 2013.
Chen, J.; Dou, R.; Cui, D.; Zhang, Q.; Zhang, Y.; Xu, F.; Zhou, X.; Wang, J.; Song, Y.; Jiang L., Robust Prototypical Anti-icing Coatings with a Self-lubricating Liquid Water Layer between Ice and Substrate. ACS Appl. Mater. Interfaces, 5, 4026−4030, 2013.
Lafuma, A.; Quéré, D., Slippery Pre-suffused Surfaces. EPL, 96, 56001, 2011.
Kim, P.; Kreder, M. J.; Alvarenga, J.; Aizenberg J., Hierarchical or Not? Effect of the Length Scale and Hierarchy of the Surface Roughness on Omniphobicity of Lubricant-Infused Substrates. Nano Lett., 13, 1793−1799, 2013.
Jenner E.; D'Urso B., Wetting States on Structured Immiscible Liquid Coated Surfaces. Applied Physics Letters, 103, 251606, 2013.
Li, J.; Kleintschek, T.; Rieder, A.; Cheng, Y.; Baumbach, T.; Obst, U.; Schwartz, T.; Levkin P. A., Hydrophobic Liquid-Infused Porous Polymer Surfaces for Antibacterial Applications. ACS Appl. Mater. Interfaces, 5, 6704−6711, 2013.
Epstein, A. K.; Wong, T. S.; Belisle, R. A.; Boggs, E. M.; Aizenberg J., Liquid-infused Structured Surfaces with Exceptional Anti-biofouling Performance. PNAS, 109, 13182–13187, 2012.
Zhang, J.; Wang, A.; Seeger, S., Nepenthes Pitcher Inspired Anti-Wetting Silicone Nanofilaments Coatings: Preparation, Unique Anti-Wetting and Self-Cleaning Behaviors. Adv. Funct. Mater., 24, 1074–1080, 2014.
Yang, S.; Qiu, R.; Song, H.; Wang, P.; Shi, Z.; Wang, Y., Slippery Liquid-infused Porous Surface Based on Perfluorinated Lubricant/Iron Tetradecanoate: Preparation and Corrosion Protection Application. Appl. Surf. Sci., 328, 491-500, 2015.
St. Thomas, Spectroscopic Tools. URL: http://www.science-and-fun.de/tools/
Stober, W.; Fink, A.; Bohn, E., Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci., 26, 62-69, 1968.
曾亭瀚, 穩定全疏滑溜表面的開發. 國立成功大學, 台灣, 台南, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw