進階搜尋


下載電子全文  
系統識別號 U0026-0108201616083900
論文名稱(中文) 利用調製訊號產生極端事件的混沌雷射
論文名稱(英文) Extreme events in chaotic lasers by pump modulation
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 104
學期 2
出版年 105
研究生(中文) 楊政凱
研究生(英文) Cheng-Kai Yang
學號 L76031362
學位類別 碩士
語文別 中文
論文頁數 28頁
口試委員 指導教授-魏明達
口試委員-蔡宗祐
口試委員-曾碩彥
中文關鍵字 極端事件  混沌 
英文關鍵字 Nonlinear dynamics  Extreme events 
學科別分類
中文摘要 本論文以泵源調製雷射系統為討論主軸,在不同共振腔的腔長情況下,分別為簡併共振腔、近簡併共振腔與遠離簡併共振腔。發現簡併腔會自發性處於混沌的狀態,且滿足發生極端事件的條件。已知將共振腔外加調製訊號,導致訊號強度由週期到混沌的狀態,發現極端事件發生於分岔圖的階梯邊緣,並觀察調製深度為零的頻譜圖,推測橫模鬆弛震盪頻率具有抑制極端事件發生的機制。
英文摘要 In this thesis, we use a theoretical model to describe the solid-state lasers with modulated signals. We discuss three different kinds of cavity length, they are supposed to be degenerated resonator, nearly degenerated resonator, and away from degenerated resonator. Output power of the laser will be in chaotic with the degenerate resonator configurations, and it is satisfied the condition of the extreme events. By giving the modulated signal to the system, the route to chaos close to the degenerate configuration involves the effect of quasi-period- and period-multiplying bifurcation. We try to figure out the difference between chaos and the extreme events. The relaxation oscillation frequency can be observed by the spectrum of the output power without modulated signals, and the frequency which close to the relaxation oscillation frequency can reduce the extreme events.
論文目次 摘要 I
SUMMARY II
致謝 V
目錄 VI
插圖目錄 VII
第一章 序論 1
1.1 背景 1
1.2 研究動機與目的 2
1.3 章節概述 2
第二章 混沌與極端事件 3
2.1 混沌 3
2.1.1 混沌特性 3
2.1.2 奇異吸引子的存在 3
2.1.3 混沌時間序列的判別 4
2.2 極端事件 4
2.2.1 被動式Q開關雷射的極端事件 4
2.2.2 具調製訊號的雷射之極端事件 6
第三章 雷射非線性動力學研究 9
3.1 泵源調製雷射動力學 9
3.1.1 雷射架構 9
3.1.2 雷射特性 10
3.2 極端事件的發生 12
3.2.1 簡併共振腔 12
3.2.2 近簡併共振腔 18
3.2.3 遠離簡併共振腔 24
第四章 結論與未來展望 27
4.1 結論 27
4.2 未來展望 27
參考文獻 28
參考文獻 [1] S. Aberg and G. Lindgren, “Height distribution of stochastic Lagrange ocean waves,” Prob. Eng. Mech. 23, 359-363 (2008).
[2] S. K. El-Labany, W. M. Moslem, N. A. El-Bedwehy, R. Sabry, and H. N. A. El-Razek, “Rogue waves in Titans's atomosphere,” Astrophys. Space Sci. 338, 3-8 (2012).
[3] H. Kawamura, T. Hatano, N. Kato, S. Biswas, and B. K. Chakrabartik, “Statistical physics of fracture, friction, and earthquakes,” Rev. Mod. Phys. 84, 839-884 (2012).
[4] C. Bonatto, M. Feyereisen, S. Barland, M Giudici, C. Masoller, J. R. Rios Leite, and J. R. Tredicce, “Deterministic optical rogue waves,” Phys. Rev. Lett. 107, 053901 (2011).
[5] “Fuji seen from the sea,” colored woodblock print by Hokusai, from “One Hundred Views of Mt. Fuji,” Vol. 2 (1834)
[6] F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, Phys. Rev. Lett. 109, 044102 (2012).
[7] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054-1057 (2007)
[8] M. G. Kovalsky, A. A. Hnilo, and J. R. Tredicce, Opt. Lett. 36, 4449 (2011).
[9] T. Hegger, H. Kantz, and T. Schreiber, CHAOS 9, 413 (2000).
[10] C. Bonazzola, A. Hnilo, M. Kovalsky, and J. R. Tredicce, “Optical rogue waves in an all-solid-state laser with a saturable absorber: importance of the spatial effects,” J. Opt. 15, 064004 (2013).
[11] C. Metayer, A. Serres, E. Rosero, W. Barbosa, F. de Aguiar, J. RiosLeite, and J. Tredicce, Opt. Express 22, 19850 (2014).
[12] C.-H. Chen, M.-D. Wei, and W.-F. Hsieh, “Beam-propagation-dominant instability in an axially pumped solid-state laser near degenerate resonator configurations,” J. Opt. Soc. Am. B 18(8), 1076-1083 (2001).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw