進階搜尋


下載電子全文  
系統識別號 U0026-0108201615584000
論文名稱(中文) 嘉南平原含砷土壤及地下水對部分農作物之生育影響與減低植體砷含量之改善策略
論文名稱(英文) Impact of Arsenic-Rich Soil and Groundwater Production of Selected Crops and Remediation Strategies for Reducing Arsenic Content in Crops
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 104
學期 2
出版年 105
研究生(中文) 周孟麟
研究生(英文) Mon-Lin Chou
電子信箱 L48991059@mail.ncku.edu.tw
學號 L48991059
學位類別 博士
語文別 英文
論文頁數 128頁
口試委員 指導教授-簡錦樹
口試委員-楊純明
口試委員-許正一
口試委員-郭勝豐
口試委員-王恆隆
口試委員-黃浩仁
中文關鍵字 水稻  地下水  砷汙染  灌溉控制  土壤改質  過氧化鈣  螯合鐵  砷釋放  穩定同位素  嘉南平原 
英文關鍵字 Rice plants  Groundwater  Arsenic contamination  Irrigation practice  Soil remediation  Calcium peroxide  EDTA-Fe  Arsenic release  Stable isotope  Chianan Plain 
學科別分類
中文摘要 砷是目前世界上最受注目環境中的有毒物質之一。研究證據指出,暴露於高砷環境中會導致鼻咽癌、膀胱癌、肺癌、肝癌、前列腺癌及高血壓和糖尿病的發生風險,1960年代台灣西南沿海(嘉義、台南)的當地居民因長期飲用高砷濃度地下水而導致砷中毒案例(如烏腳病)發生。1980年後自來水接管率普及,民眾雖已不再直接飲用含砷地下水或做為生活用水,但仍然汲取地下水用於農田灌溉及水產養殖,此舉可能造成砷透過食物鏈的累積與傳輸,進而對人體造成健康危害,值得我們持續關注。全球近半數人口以稻米為主食,其中包含台灣、中國、日本、韓國及其他亞洲地區國家等其他地區。然而,稻米對於砷的累積遠勝於其他穀類作物。
本研究之目的為探討和研究土壤-植物-砷的交互作用及砷含量在水稻及部分農作物中的分佈狀況,並藉由穩定同位素的分析,了解不同來源的灌溉水在土壤層中的混合及流動的情形,有助於調查含砷地下水對土壤、農作物系統造成的影響。本研究另探討嘉南平原烏腳病地區部分水稻田之土壤、灌溉用地下水、土壤水及水稻植體和部分農作物之砷含量及分布,並對比現有之水文地質,建立土壤中砷的存在與地化環境之相關性。研究中也探討農田中砷的來源及釋放於地下中可能來源與因子,最後利用不同的灌溉方式及土壤改質劑的施用,藉以減少含砷地下水的灌溉及抑制土壤中的砷被農作物吸收的機制,減低砷在農作物中的累積與轉移。本研究透過地球化學及氫氧同位素分析,有助於闡述不同水源在土壤結構、質地、滲透性影響及砷在土壤層中釋放的機制探討。
本研究中採樣農田土壤及地下水分析結果顯示,土壤中總砷含量範圍為10-20 mg kg-1及地下水砷含量為32-175.7 µg kg-1, 大部分灌溉用地下水均超過世界衛生組織管制標準(10 µg L-1)及農政單位灌溉用水管制標準(50 µg L-1),對水稻植體進行砷含量分析檢測,發現水稻根部累積了大量的砷,最後僅根部的0.8 %-1.2 %砷含量傳輸並累積在穀粒當中。
本研究為減少含砷地下水灌溉水稻,於第一、二期稻作設計了三個不同的灌溉方法,分別為:淹灌法、田間最大容水量灌溉、輪灌法,試以比較能有效減少水稻砷含量之累積,結果顯示,田間最大容水量灌溉及輪灌法,可有效減少水稻植體中砷的含量;再者,保持田間最大容水量灌溉在米粒砷的累積上獲得顯著的減少。
含砷地下水灌溉農田使得砷長期累積於土壤中,本研究使用兩種土壤改質劑分別為過氧化鈣及螯合鐵,藉由不同劑量之土壤改質劑的施用,其施用劑量為螯合鐵0 Mg/ha, 0.35 Mg/ha, 0.7 Mg/ha及1.4 Mg/ha;過氧化鈣0 Mg/ha, 0.38 Mg/ha, 0.76 Mg/ha及1.52 Mg/ha,以達到砷離子固定或共沉澱於土壤中而不被農作物吸收,並以減少砷毒累積於農作中的目的,試驗結果顯示,兩種土壤改質劑均達到固化砷毒之目的;其中,過氧化鈣在施用劑量 1.52 Mg/ha得到最佳的效果,而在螯合鐵的施用劑量則是在 0.7 Mg/ha獲得良好的成效。
不同深度土壤之總砷與游離鐵、錳、無定型鐵錳、陽離子交換容量、黏粒含量等均呈現顯著(p < 0.05)正相關。由序列萃取法可看出砷主要是被固定於無定型鐵鋁氧化物及結晶型鐵鋁氧化物。利用此地下水灌溉後,會影響土壤中之鐵鋁氧化物之氧化還原狀態,進一步導致砷的溶出。輪灌法之乾濕交替作用亦會釋放此兩型態之砷。
此外,由氫(δD)及氧(δ18O)穩定同位素研究中,其結果表明,較上層的土壤層(< 30 cm)之孔隙水其同位素濃度較深層土壤層孔隙水濃度低,顯示降雨量與蒸發量的強度,影響著土壤層中不同來源的水其混合與交互作用的關係。氫氧同位素不受環境干擾,可清楚釐清不同降雨事件帶來的降雨在未飽和帶中經由毛細現象或蒸發現象在土壤層中的流動及對於地下水的補助情形。
本研究提出研究區域的土壤-植物-砷相互作用之概念模式,有助吾人了解砷在地下環境中之釋出機制,並提出有效減少農作物吸收砷毒的方法與對策。
英文摘要 Arsenic (As), a toxic substance in the environment, is a major public health concern worldwide. High concentrations of As have also been linked to cancers of the nasal cavity, lung, liver, bladder, kidney, and prostate, and can lead to hypertension and diabetes. Peripheral vascular gangrene, also known as Blackfoot disease (BFD), was first reported in Chianan Plain of southwestern Taiwan in the 1960s. Since 1980, As-rich groundwater has no longer been consumed as drinking water in Taiwan, although it is still widely used for irrigation, aquacultural, and industrial purposes, and hence deserves our continued attention. Rice is the staple food for nearly one-half of world’s population including those living in Taiwan, China, Japan, Korea, and other Asian countries. However, rice uptakes As into grains are much more readily occurred than other cereal crops.
The present study geochemically investigates As-rich groundwater, soil, and rice plants from paddy fields in Chianan Plain of southwestern Taiwan, an area which is mainly used for rice cultivation. The stable isotopes of oxygen-18 and deuterium were used to identify different sources of water in a soil layer in rice paddy during the rice growing season in 2014. This study can help us understand that the level of As in rice plants can be affected by the groundwater used for irrigation, type and concentration of As in the soil, and soil properties of paddy fields. In addition, experimental results by means of stable isotopes technique clarified the infiltration of rainfall in the complicated process that can be affected by soil structure, texture, moist and extent of heterogeneity.
Results show that the total As concentrations in the groundwater used for irrigation of the sampled paddy fields at Hsuechia, Yichu, and Budai in the Chianan Plain are in the range of 32.9 to 175.7 μg L–1, which is higher than the permissible drink limit (10 μg L–1) recommended by the World Health Organization (WHO) and irrigation limit (50μg L–1) recommended by agricultural authorities of Taiwan. The percentages of As in different parts of the rice plants found in the current study are in the range of 88.3 to 92.8% in roots, 2.8 to 4% in shoots, 1.5 to 5.2% in leaves, 1 to 1.7% in husks, and 0.8 to 1.2% in grains.
This study investigated the impacts of various types of irrigation practices with As-contaminated groundwater on the extent of As accumulation within rice plant parts during development and rice crop production at maturity. Three types of irrigation practices were applied to As-rich paddy fields: flooded irrigation, aerobic irrigation, and alternate wetting and drying irrigation (AWDI). Results show that the arsenic concentration in different parts of rice plants varied with growth stage and irrigation practices in both cropping seasons. Lower levels of As in rice were found in AWDI and aerobic irrigation than in flooded irrigation. Different irrigation practices can change the oxidation and reduction conditions of the paddy field, which lead to As release or absorption in the soil, thus influencing the uptake of As by plants.
The chemical immobilization of As-rich soil by using ethylenediaminetetraacetic acid ferric sodium salt (EDTA-Fe) and calcium peroxide (CaO2) as stabilizing agents was investigated in Chianan Plain of southwestern Taiwan. The As-rich soil was amended with EDTA-Fe, at the rates of 0, 0.35, 0.7 and 1.4 Mg/ha, or with CaO2, at the rates of 0, 0.38, 0.76 and 1.52 Mg/ha, and grown with radish (Raphanus sativus L.), lettuce (Lactuca sativa), Chinese cabbage (Brassica rapa) and Arden lettuce (Lactuca sativa L.). Results showed that those amended with EDTA-Fe at 0.35 and 0.7 Mg ha−1 can significantly reduce As accumulation in vegetables. Moreover, the uptake of As in vegetables decreased more in soil amended with CaO2 relative to that amended with EDTA-Fe. As indicated, applications of EDTA-Fe at the rate of 0.7 Mg ha−1 and CaO2 at the rate of 1.52 Mg ha−1 can obtain optimal effect on suppressing As uptake by vegetables.
Present study aimed to assess the presence and availability of As in paddy field of the Chianan Plain. Arsenic content was determined in soils and pore water sampled at 5 sampling depths (20, 40, 60, 80, 90 cm) in paddy field. The As concentrations in the experimental field soil varied slightly with sampling depths. Total As concentration positively and significantly (p < 0.05) correlated with the soil properties including free Fe (Fed), free Mn (Mnd), amorhous Fe (Feo), amorhous Mn (Mno), cation capacity exchange, and clay content. The sequential extraction of soil As showed that As was mainly fixed by both amorphous and crystalline Fe/Mn oxides, which may be ascribable to that As has a high affinity for Fe/Mn oxides under reduction regime of groundwater. As a consequence, As probably would become soluble due to the usage of groundwater and the change of redox regime. In addition, coarse texture of study soil, the flow path of irrigation water, and the gravity impact are factors affecting As movement in the soil layers. The soil As was concentrated on the surface soil and gradually decreased with soil depth. Therefore, total As in subsoils was lower than topsoil because As was adsorbed and accumulated by abundant Fe/Mn oxides in surface soil after irrigation.
Based on the measured deuterium and oxygen-18 in soil water, rainwater and groundwater in the paddy field of the Chianan Plain of southwestern Taiwan, in the wet season, the relationship between δD and δ18O in soil water and groundwater recharge after typhoon rainfall (event water) was investigated in the present study. The soil water at different depths before and after event water varied in hydrogen and oxygen isotope ratios. The top soil layer (< 30 cm depth) had more depleted isotopic compositions as a result of the higher rate of evaporation. Similar soil water isotope composition profiles were observed in shallow soil layers. More depleted fractions of isotopes were found in groundwater as those in rainwater, suggesting that the groundwater primarily came from the rainwater. However, the isotope compositions of hydrogen and oxygen in groundwater is still slightly deviated from the local meteoric water line in southwestern Taiwan.
The proposed conceptual model for the interaction among soil, plant and arsenic in the study area can help understand the mechanism that arsenic was released in the subsurface environment. The remedial measure and strategy for reducing arsenic content in selected crops is also proposed in this research.
論文目次 Content
摘 要................................................I
Abstract.............................................IV
誌 謝...............................................VIII
List of Tables.......................................XII
List of Figures......................................XV
1. Introduction..................................1
1.1 Background....................................1
1.1.1 Arsenic in the environments...................1
1.1.2 Reduction of arsenic uptake by crops..........2
1.1.3 Environmental isotopes in rice paddy..........5
1.2 Objectives....................................6
2. Materials and Methods.........................7
2.1 Description of study area.....................7
2.2 Field investigation...........................7
2.3 Field experimental design for irrigation
practices............................ ........10
2.4 Field experimental design for soil remediation .......................................................15
2.5 Sample collection and analysis.................19
2.5.1 Water sampling and analysis....................19
2.5.2 Geochemistry of water..........................20
2.5.3 Geochemistry of soil...........................20
2.5.4 Sequential extraction of soil..................21
2.5.5 Sampling and analysis of rice plants and
vegetables....................................21
2.5.6 Stable isotopic compositions of rainwater, soil
water, and groundwater.........................23
2.5.7 Analytical quality control.....................25
2.5.8 Translocation factor of rice plants............25
3. Results and Discussion.........................26
3.1 Possible mechanism for arsenic release to
groundwater....................................26
3.1.1 Characterization of soil, groundwater and soil
water..........................................26
3.1.2 Arsenic content in soil........................28
3.1.3 Arsenic concentration in water.................37
3.1.4 Arsenic partition in solid and aqueous phases
...............................................40
3.2 Arsenic accumulation and distribution in rice
plant..........................................44
3.3 Influences of irrigation practices on rice
cultivar.......................................56
3.3.1 Arsenic concentration in rice plant parts
...............................................56
3.3.2 Impact of irrigation practices on arsenic
speciations in husks and brown rice............60
3.3.3 Impact of irrigation practices on grain yield and
1000-grain weight..............................65
3.4 The implication of CaO2 and EDTA-Fe on As
remediation in As-rich soil....................68
3.4.1 Amendments of soil with EDTA-Fe and CaO2
...............................................68
3.4.2 Amendments of soil on As uptake by vegetables
...............................................73
3.5 The implication for stable isotopic variations in
rainwater, soil water, and groundwater.........82
3.5.1 Rainwater......................................82
3.5.2 Soil water.....................................87
3.5.3 Groundwater....................................99
3.5.4 River water...................................101
3.5.5 Water sources and As in groundwater related to
stable isotopic compositions..................103
3.5.6 Effects of temperature and evaporation on stable
isotopic compositions.........................106
3.6 Impact and significance of the study..........108
4. Conclusions and Future Research Prospect......109
4.1 Conclusions...................................109
4.2 Future research prospect......................112
References............................................114

參考文獻 Abedin, M. J., M. S. Cresser, A. A. Meharg, J. Feldmann & J. Cotter-Howells, 2002a. Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environm. Sci. Technol. 36(5): 962-968. doi:10.1021/es0107678.

Abedin, M. J., J. Feldmann & A. A. Meharg, 2002b. Uptake kinetics of arsenic species in rice plants. Plant Physiol. 128(3): 1120-1128. doi:10.1104/pp.010733.

Acharyya, S. K., P. Chakraborty, S. Lahiri, B. C. Raymahashay, S. Guha & A. Bhowmik, 1999. Arsenic poisoning in the Ganges delta. Nature 401(6753): 545-545.

Ascher, J., Ceccherini, M. T., Landi, L., Mench, M., Pietramellara, G., Nannipieri, P., & Renella, G., 2009. Composition, biomass and activity of microflora, and leaf yields and foliar elemental concentrations of lettuce, after in situ stabilization of an arsenic-contaminated soil. Appl. Soil Ecol. 41(3): 351-359.

Bhattacharya, P., A.C. Samal, J. Majumdar, & S.C. Santra. 2010. Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy Water Environ. 8:63–70. doi:10.1007/ s10333-009-0180-z.

Bhattacharya, P., D. Chatterjee & G. Jacks, 1997. Occurrence of Arsenic-contaminatedGroundwater in Alluvial Aquifers from Delta Plains, Eastern India: Options for Safe Drinking Water Supply. Internat. J. Water Resour. Develop. 13(1): 79-92 doi:10.1080/07900629749944.

Bogdan, K. & M. K. Schenk, 2012. Arsenic mobilization in rice (Oryza sativa) and its accumulation in the grains. J. Plant Nutrit. Soil Sci. 175(1): 135-141. doi:10.1002/jpln.201000426.

Bose, P. & A. Sharma, 2002. Role of iron in controlling speciation and mobilization of arsenic in subsurface environment. Water Res. 36(19): 4916-4926. doi:10.1016/s0043-1354(02)00203-8.

Bu-Olayan, A. H. & B. V. Thomas, 2009. Trace Metals Sequestration In Desert Plants Of Kuwait. Res. J. Chem. Environ. 13(3): 33-38.

Carbonell-Barrachina, A. A., F. Burlo, D. Valero, E. Lopez, D. Martinez-Romero & F. Martinez-Sanchez, 1999. Arsenic toxicity and accumulation in turnip as affected by arsenic chemical speciation. J. Agric. Food Chem. 47(6): 2288-2294. doi:10.1021/jf981040d.

Chatterjee, D., Haider, D., Majumder, S., Biswas, A., Nath, B., Bhattacharya, P., Bhowmick, S., Mukherjee-Goswami, A., Saha, D., Hazra, R., Maity, P.B., Chatterjee, D., Mukherjee & A., Bundschuh, J., 2010. Assessment of arsenic exposure from groundwater and rice in Bengal delta region, West Bengal, India. Water Res.44, 5803-5812.

Coleman, M. L., T. J. Shepherd, J. J. Durham, J. E. Rouse & G. R. Moore, 1982. Reduction of water with zinc for hydrogen isotope analysis. Anal. Chem. 54(6):993-995. doi:10.1021/ac00243a035.

Comino, E., S. Menegatti, A. Fiorucci & J. P. Schwitzguebel, 2011. Accumulation and translocation capacity of As, Co, Cr and Pb by forage plants. Agrochim. 55(2): 105-115.

Das, D., G. Samanta, B. K. Mandal, T. R. Chowdhury, C. R. Chanda, P. P. Chowdhury, G. K. Basu & D. Chakraborti, 1996. Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Health 18(1): 5-15. doi:10.1007/bf01757214.

Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus 16: 436–468.

Davies, S. H. R. & J. J. Morgan, 1989. Manganese(ii) oxidation-kinetics on metal-oxide surfaces. J. Colloid Interface Sci. 129(1): 63-77. doi:10.1016/0021-9797(89)90416-5.

Dittmar, J., A. Voegelin, L.C. Roberts, S.J. Hug, G.C. Saha, M.A. Ali, A.B.M. Badruzzaman, & R. Kretzschmar. 2007. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil. Environ. Sci. Technol. 41: 5967–5972. doi:10.1021/es0702972.

Du Laing, G., S. K. Chapagain, M. Dewispelaere, E. Meers, F. Kazama, F. M. G. Tack, J. Rinklebe & M. G. Verloo, 2009. Presence and mobility of arsenic in estuarine wetland soils of the Scheldt estuary (Belgium). J. Environ. Monit. 11(4): 873-881. doi:10.1039/b815875d.

Epstein, S. & T. Mayeda, 1953. Variation of O18 content of waters from natural sources. Geochim. Cosmochim. Acta 4(5): 213-224 doi:http://dx.doi.org/10.1016/0016-7037(53)90051-9.

Frankenberger Jr., W.T. (Ed.), 2002. Environmental Chemistry of Arsenic. Marcel Dekker, New York.

Gat, J.R., 1980. The isotopes of hydrogen and oxygen in precipitation in Handbook of Environmental Isotope Geochemistry. Vol. 1. In: The Terrestrial Environment, A, (eds. P. Fritz and J. Ch. Fontes, pp.21-47). Amsterdam: Elsevier.

Gat, J. R. & R. Gonfiantini, 1981. Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle, Tech. Rep., 210, I.A.E.A. (Int. At. Energy Agency) (1981), pp. 203–221.

Gazis, C. & X. Feng, 2004. A stable isotope study of soil water: evidence for mixing and preferential flow paths. Geoderma 119(1): 97-111.

Geiszinger, A., W. Goessler, & W. Kosmus. 2002. Organoarsenic compounds in plants and soil on top of an ore vein. Appl. Organomet. Chem. 16: 245–249. doi:10.1002/aoc.294.

Gutierrez, J., Hong, C.O., Lee, B.H., Kim & P.J., 2010. Effect of steel-making slag as a soil amendment on arsenic uptake by radish (Raphanus sativa L.) in an upland soil. Biol. Fertil. Soils 46: 617-623.

Hage, K. D., J. Gray & J. C. Linton, 1975. Isotopes in precipitation in northwestern North-America. Monthly Weather Rev. 103(11): 958-966. doi:10.1175/1520-0493(1975)103<0958:iipinn>2.0.co;2.

Hayashi, S., A. Kamoshita, & J. Yamagishi, 2006. Effect of planting density on grain yield and water productivity of rice (Oryza sativa L.) grown in flooded and non-flooded fields in Japan. Plant Prod. Sci. 9: 298–311. doi:10.1626/pps.9.298.

Hsu, W.-M., H.-C. Hsi, Y.-T. Huang, C.-S. Liao & Z.-Y. Hseu, 2012. Partitioning of. arsenic in soil-crop systems irrigated using groundwater: A case study of rice paddy soils in southwestern Taiwan. Chemosphere 86(6): 606-613. doi:10.1016/j.chemosphere.2011.10.029.

Hundal, H. S., K. Singh, D. Singh & R. Kumar, 2013. Arsenic mobilization in alluvial soils of Punjab, North-West India under flood irrigation practices. Environ Earth Sci 69(5):1637-1648. doi:10.1007/s12665-012-1999-y.

Ingraham, N. L., 1998. Isotopic variations in precipitation. In: Isotope Tracers in Catchment Hydrology, C. Kendall and J. J. McDonnell (eds.), Chapter 3, Elsevier Science B. V., Amsterdam, the Netherlands, pp. 87-118.

International Rice Research Institute (IRRI), 1993. Rice in human nutrition. No. 26. Food and Agriculture Organization of the United Nations, Rome.

Jimenez De Blas, O., N. Rodriguez Mateos & A. Garcia Sanchez, 1996. Determination of total arsenic and selenium in soils and plants by atomic absorption spectrometry with hydride generation and flow injection analysis coupled techniques. Journal of AOAC International 79(3): 764-768.

Kendall, C., McDonnell, J.J., 1998. Isotope Tracers in Catchment Hydrology. Elesvier Science B.V, Amsterdam, The Netherlands. ISBN: 978-0-444-81546-0. pp. 203-246.

Kuehnelt, D., J. Lintschinger, & W. Goessler. 2000. Arsenic compounds in terrestrial organisms. IV. Green plants and lichens from an old arsenic smelter site in Austria. Appl. Organomet. Chem. 14: 411–420. doi:10.1002/1099-0739(200008)14:8<411::AIDAOC24>3.0.CO;2-M

Kumpiene, J., Lagerkvist, A., Maurice, & C., 2008. Stabilization of as, Cr, Cu, Pb and Zn in soil using amendments - a review. Waste Manag. 28, pp. 215–225.

Lee, S.H., Kim, E.Y., Park, H., Yun, J., Kim, J.G., 2011. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma 161:1-7.

Leist, M., R.J. Casey, D. Caridi., 2000. The management of arsenic waste: problems and prospects. J. Hazard. Mater. 76: 125–138.

Li, Y.J., O.P. Dankher, L. Carreira, A.P. Smith, & R.B. Meagher, 2006. The shoot-specific expression of gamma-glutamylcysteine synthetase directs the long-distance transport of thiolpeptides to roots conferring tolerance to mercury and arsenic. Plant Physiol. 141: 288–298. doi:10.1104/pp.105.074815

Liao, X.Y., T.B. Chen, H. Xie, & Y. R. Liu, 2005. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou city, southern China. Environ. Int. 31 (6): 791–798.

Linquist, B.A., M.M. Anders, M.A.A. Adviento-Borbe, R.L. Chaney, L.L. Nalley, & E.F.F. Da Rosa, et al. 2015. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Change Biol. 21: 407–417. doi:10.1111/gcb.12701.

Liu, C.P., C. L.Luo, X. H. Xu, C. A. Wu, F. B. Li, & G. Zhang, 2012. Effects of calcium peroxide on arsenic uptake by celery (Apium graveolens L.) grown in arsenic contaminated soil. Chemosphere 86: 1106-1111.

Liu, K., T. Yui, Y. Shieh, S. Chiang, L. Chen & J. Hu, 1990. Hydrogen and oxygen isotopic compositions of meteoric and thermal waters from the Chingshui geothermal area, northeastern Taiwan. In: Proc. Geol. Soc. China 3: 143-165.

Liu, H.Y., A. Probst, & B. H. Liao, 2005. Metal contamination of soils and crops affected by the chenzhou lead/zinc mine spill (Hunan, China). Sci. Tot. Environ. 339: 153–166.

Lombi, E., K.G. Scheckel, J. Pallon, A.M. Carey, Y.G. Zhu, & A.A. Meharg, 2009. Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytol. 184: 193–201. doi:10.1111/j.1469-8137.2009.02912.x.

Lu, F.-J., 1990. Blackfoot disease. Lancet 2: 442.

Mandal, B. K., T. R. Chowdhury, G. Samanta, G. K. Basu, P. P. Chowdhury, C. R. Chanda, D. Lodh, N. K. Karan, R. K. Dhar, D. K. Tamili, D. Das, K. C. Saha & D. Chakraborti, 1996. Arsenic in groundwater in seven districts of West Bengal, India - The biggest arsenic calamity in the world. Curr. Sci. 70(11): 976-986.

Manning, B. A., S. E. Fendorf & S. Goldberg, 1998. Surface structures and stability of arsenic(III) on goethite: Spectroscopic evidence for inner-sphere complexes. Environ. Sci. Technol. 32(16): 2383-2388. doi:10.1021/es9802201.

Marin, A. R., P. H. Masscheleyn & W. H. Patrick, 1993. Soil redox-ph stability of arsenic species and its influence on arsenic uptake by rice. Plant and Soil 152(2): 245-253. doi:10.1007/bf00029094.

Masscheleyn, P. H., R. D. Delaune & W. H. Patrick, 1991. Arsenic and selenium chemistry as affected by sediment redox potential and pH. J. Environ. Qual. 20(3): 522-527.

Maule, C. P., D. S. Chanasyk & K. Muehlenbachs, 1994. Isotopic determination of snow-water contribution to soil-water and groundwater. J. Hydrol. 155(1-2): 73-91. doi:10.1016/0022-1694(94)90159-7.

McCreadie, H. & D. W. Blowes, 2000. Influence of reduction reactions and solid phase composition on porewater concentrations of arsenic. Environ. Sci. Technol. 34(15): 3159-3166. doi:10.1021/es991194p.

McGeehan, S. L. & D. V. Naylor, 1994. Sorption and redox transformation of arsenite and arsenate in 2 flooded soils. Soil Sci. Soc. Amer. J. 58(2): 337-342.

Meharg, A.A., 2004. Arsenic in rice- understanding a new disaster for South-East Asia. Trends Plant Sci. 9:415–417. doi:10.1016/j. tplants.2004.07.002

Meharg, A. A. & L. Jardine, 2003. Arsenite transport into paddy rice (Oryza sativa) roots. New Phytologist 157(1): 39-44. doi:10.1046/j.1469-8137.2003.00655.x.

Mok, W. M. & Wai, C. M., 1994 Mobilization of arsenic in contaminated river waters.p. 99-118. In Nriagu, J. O. (ed.). Arsenic in the Environment. Part I. Cycling and Characterization. Vol. 26, Wiley Series in Advances in Environmental Science and Technology, Wiley-Interscience, pp. 430.

Moon, D.H., Dermatas, D., Menounou, N., 2004. Arsenic immobilization by calciumarsenic precipitates in lime treated soils. Sci. Tot. Environ. 330: 171–185.

Naidu R, N. S. Bolan Kookana & K. G. Tiller, 1994. Ionicstrength and pH effects on the adsorption of cadmium and the surface charge of soils. Eur. J. Soil Sci. 45: 419–429.

Nath, B., J. S. Jean, M. K. Lee, H. J. Yang & C. C. Liu, 2008. Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: Possible sources and reactive transport of arsenic. J. Contamin. Hydrol. 99(1-4): 85-96 doi:10.1016/j.jconhyd.2008.04.005.

Nicholson, F. A., B. J. Chambers, J. R. Williams & R. J. Unwin, 1999. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour. Technol. 70(1): 23-31. doi:10.1016/s0960-8524(99)00017-6.

Nickson, R., J. McArthur, W. Burgess, K. M. Ahmed, P. Ravenscroft & M. Rahmann, 1998. Arsenic poisoning of Bangladesh groundwater. Nature 395(6700): 338-338.

Nickson, R. T., J. M. McArthur, P. Ravenscroft, W. G. Burgess & K. M. Ahmed, 2000. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 15(4): 403-413. doi:10.1016/s0883-2927(99)00086-4.

Nissen, P., & A.A. Benson, 1982. Arsenic metabolism in freshwater and terrestrial plants. Physiol. Plant. 54:446–450. doi:10.1111/j.1399-3054.1982.tb00706.x

O'Connor, A. E., J. L. Luek, H. McIntosh & A. J. Beck, 2015. Geochemistry of redox-sensitive trace elements in a shallow subterranean estuary. Marine Chem. 172: 70-81. doi:10.1016/j.marchem.2015.03.001.

Oparka, K.J., & P. Gates. 1984. Sink anatomy in relation to solute movement in rice (Oryza-Sativa L.): A summary of findings. Plant Growth Regul. 2: 297–307. doi:10.1007/BF00027289

Orlowski N., F. Lauer, P. Kraft, H.G. Frede & L. Breuer, 2014. Linking Spatial Patterns of Groundwater Table Dynamics and Streamflow Generation Processes in a Small Developed Catchment. Water 6: 3085-3117. doi: 10.3390/w6103085.

Overesch, M., J. Rinklebe, G. Broll & H. U. Neue, 2007. Metals and arsenic in soils and corresponding vegetation at Central Elbe river floodplains (Germany). Environ. Pollut. 145(3): 800-812. doi:10.1016/j.envpol.2006.05.016.

Panaullah, G. M., T. Alam, M. B. Hossain, R. H. Loeppert, J. G. Lauren, C. A. Meisner, Z. U. Ahmed & J. M. Duxbury, 2009. Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant and Soil 317(1-2): 31-39. doi:10.1007/s11104-008-9786-y.

Peng T.-R., C.-H Wang, C.-C.Huang, L.-Y. Fei, C.-T.A. Chen, J.-L. Hwong, 2010 Stable isotopic characteristic of Taiwan's precipitation: A case study of western Pacific monsoon region. Earth and Planet. Sci. Lett. 289: 357-366. doi: 10.1016/j.epsl.2009.11.024.

Peng T.-R., C.-C. Huang, C.-H. Wang, T.-K. Liu, W.-C. Lu, K.-Y. Chen, 2012. Using oxygen, hydrogen, and tritium isotopes to assess pond water’s contribution to groundwater and local precipitation in the pediment tableland areas of northwestern Taiwan. J. Hydrol. 450–451: 105-116. doi: http://dx.doi.org/10.1016/j.jhydrol.2012.05.021.

Peng, T., 1995. Environmental Isotopic Study (δ13C, δD, δ18O, 14C, T) on Meteoric Water and Groundwaters in I-Lan Area. Ph. D. Dissertation, National Taiwan University, Taipei, Taiwan, pp. 248.(in Chinese).

Pierce, M. L. & C. B. Moore, 1980. Adsorption of arsenite on amorphous iron hydroxide from dilute aqueous-solution. Environ. Sci. Technol. 14(2): 214-216. doi:10.1021/es60162a011.

Pierce, M. L. & C. B. Moore, 1982. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 16(7): 1247-1253. doi:10.1016/0043-1354(82)90143-9.

Postma, D., F. Larsen, N. T. Minh Hue, M. T. Duc, P. H. Viet, P. Q. Nhan & S. Jessen, 2007. Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling. Geochim. Cosmochim. Acta 71(21): 5054-5071 doi:http://dx.doi.org/10.1016/j.gca.2007.08.020.

Queirolo, F., S. Stegen, M. Restovic, M. Paz, P. Ostapczuk, M. J. Schwuger & L. Munoz, 2000. Total arsenic, lead, and cadmium levels in vegetables cultivated at the Andean villages of northern Chile. Sci. Tot. Environ. 255(1-3): 75-84. doi:10.1016/s0048-9697(00)00450-2.

Raessler, M., B. Michalke, S. Schulte-Hostede & A. Kettrup, 2000. Long-term monitoring of arsenic and selenium species in contaminated groundwaters by HPLC and HG-AAS. Sci. Tot. Environ. 258(3): 171-181. doi:10.1016/s0048-9697(00)00535-0.

Rahman, M. A., H. Hasegawa, M. M. Rahman, M. N. Islam, M. A. M. Miah & A. Tasmen, 2007a. Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 67(6): 1072-1079 doi:10.1016/j.chemosphere.2006.11.061.

Rahman, M. A., H. Hasegawa, M. M. Rahman, M. A. Rahman & M. A. M. Miah, 2007b. Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 69(6):942-948 doi:10.1016/j.chemosphere.2007.05.044.

Rahman, M. A. M. Miah & A. Tasmin, 2008. Arsenic accumulation in rice (Oryza sativa L.): Human exposure through food chain. Ecotoxicol. Environ. Safety 69(2): 317-324. doi:10.1016/j.ecoenv.2007.01.005.

Rahman, R., A. Islam & M.R. Khan, 2004. Arsenic-microbe interaction: A case study. Bangladesh J. Bot. 33:133–136.
Raven, K. P., A. Jain & R. H. Loeppert, 1998. Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol. 32(3): 344-349. doi:10.1021/es970421p.

Renshaw, C. E., X. H. Feng, K. J. Sinclair & R. H. Dums, 2003. The use of stream flow routing for direct channel precipitation with isotopically-based hydrograph separations: the role of new water in stormflow generation. J. Hydrol. 273(1-4):205-216. doi:10.1016/s0022-1694(02)00392-x.

Reynolds, J. G., D. V. Naylor & S. E. Fendorf, 1999. Arsenic sorption in phosphate-amended soils during flooding and subsequent aeration. Soil Sci. Soci. Amer. J 63(5): 1149-1156.

Reza, A. H. M. S., J.-S. Jean,. M.-K. Lee, C.-C. Liu, J. Bundschuh, H.-J. Yang, J.-F. Lee, Y.-C. Lee, 2010. Implications of organic matter on arsenic mobilization into groundwater: Evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Water Res. 44(19): 5556-5574.

Roberts, L.C., S.J. Hug, A. Voegelin, J. Dittmar, R. Kretzschmar & B. Wehrli, et al., 2011. Arsenic dynamics in porewater of an intermittently irrigated paddy field in Bangladesh. Environ. Sci. Technol. 45: 971–976. doi:10.1021/es102882q

Ruiz-Chancho, M. J., R. Sabe, J. F. Lopez-Sanchez, R. Rubio & P. Thomas, 2005. New approaches to the extraction of arsenic species from soils. Microchim. Acta 151(3-4): 241-248. doi:10.1007/s00604-005-0405-9.

Sakata, M. 1987. Relationship between adsorption of arsenic (III) and boron by soil and soil properties. Environ. Sci. Technol. 21: 1126-1130.

Sarkar, S., B. Basu, C.K. Kundu, and P.K. Patra, 2012. Deficit irrigation: An option to mitigate arsenic load of rice grain in West Bengal, India. Agric. Ecosyst. Environ. 146: 147–152. doi:10.1016/j.agee.2011.10.008

Schoof, R. A., L. J. Yost, J. Eickhoff, E. A. Crecelius, D. W. Cragin, D. M. Meacher & D. B. Menzel, 1999. A market basket survey of inorganic arsenic in food. Food Chem. Toxicol. 37(8): 839-846. doi:10.1016/s0278-6915(99)00073-3.

Schreiber, M. E., J. A. Simo & P. G. Freiberg, 2000. Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin, USA. Hydrogeol. J. 8(2): 161-176.

Sengupta, S., O. Sracek, J. S. Jean, H. Y. Lu, C. H. Wang, L. Palcsu, C. C. Liu, C. H. Jen & P. Bhattacharya, 2014. Spatial variation of groundwater arsenic distribution in the Chianan Plain, SW Taiwan: Role of local hydrogeological factors and geothermal sources. J. Hydrol. 518: 393-409. doi:http://dx.doi.org/10.1016/j.jhydrol.2014.03.067.

Shimada, N., 1996. Geochemical conditions enhancing the solubilization of arsenic into groundwater in Japan. Appl. Organomet. Chem. 10(9): 667-674.

Smedley, P. L. & D. G. Kinniburgh, 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17(5):517-568. doi:http://dx.doi.org/10.1016/S0883-2927(02)00018-5.

Smith, E., Naidu, R., Alston, A., 1998. Arsenic in the soil environment: a review. Academic Press, Vol 64. pp. 149-195.

Somenahally, A.C., E.B. Hollister, W. Yan, T.J. Gentry & R.H. Loeppert. 2011. Water management impacts on arsenic speciation and iron-reducing bacteria in contrastingrice-rhizosphere compartments. Environ. Sci. Technol. 45: 8328–8335. doi:10.1021/es2012403.

Sun, L., X. Yan, X. Liao, Y. Wen, Z. Chong & T. Liang, 2011. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L. Environ. Pollut. 159(12): 3398-3405. doi:10.1016/j.envpol.2011.08.045.

Sung, W. & J. J. Morgan, 1980. Kinetics and product of ferrous iron oxygenation in aqueous systems. Environ. Sci. Technol. 14(5): 561-568. doi:10.1021/es60165a006.

Sung, W. & J. J. Morgan, 1981. Oxidative removal of Mn(II) from solution catalysed by the γ-FeOOH (lepidocrocite) surface. Geochim. Cosmochim. Acta 45(12): 2377-2383. doi:http://dx.doi.org/10.1016/0016-7037(81)90091-0.

Takahashi, Y., R. Minamikawa, K.H. Hattori, K. Kurishima, N. Kihou, and K. Yuita. 2004. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded period. Environ. Sci. Technol. 38:1038–1044. doi:10.1021/es034383n.

Tang, K. L. & X. H. Feng, 2001. The effect of soil hydrology on the oxygen and hydrogen isotopic compositions of plants' source water. Earth Planet. Sci. Lett. 185(3-4): 355-367. doi:10.1016/s0012-821x(00)00385-x.

Tang, Y., X. Guan, T. Su, N. Gao, & J. Wang, 2009. Fluoride adsorption onto activated alumina: Modeling the effects of pH and some competing ions. Colloids and Surfaces A-Physicochemical and Engineering Aspects 337: 33–38. doi: 10.1016/j.colsurfa.2008.11.027.

Tao, Y.Q., S.Z. Zhang, , W. Jian, , C.G. Yuan, , X.Q. Shan, 2006. Effects of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat. Chemosphere 65: 1281–1287.

Tieckelman, R.E., R.E. Steele, 1991. Higher-assay grade of calcium peroxide improves properties of dough. Food Technol. 45: 106–112.

Tseng, W.P. 1985. Blackfoot disease and skin cancer in an endemic area of chronic arsenicism in Taiwan. In: W.-P. Tseng, editor, Proceedings of the seminar on environmental toxicology, Taipei. 26 Mar.–2 Apr. 1985. Natl. Taiwan Univ. Hospital, Taipei, Taiwan. p. 142–155.

Tseng, W.P. 1977. Effects and dose–Response relationship of skin cancer and Blackfoot disease with arsenic. Environ. Health Perspect. 19: 109–119. doi:10.1289/ehp.7719109.

Tseng, W.P., W.Y. Chen, J.L. Sung & J.S. Chen. 1961. A clinical study of Blackfoot disease in Taiwan: An endemic peripheral vascular disease. Proc. Seminar Environ. Toxicol. 3:1–8.

Yeh, H. F., H. I. Lin, C. H. Lee, K. C. Hsu & C. S. Wu, 2014. Identifying Seasonal Groundwater Recharge Using Environmental Stable Isotopes. Water 6(10):2849-2861. doi:10.3390/w6102849.

Wang, C.-H., C.-H. Kuo, T.-R. Peng, W.-F. Chen, T.-K. Liu, C.-J. Chiang, W.-C. Liu & J.-J. Hung, 2001. Isotope characteristics of Taiwan groundwaters. Western Pacific Earth Sciences 1(4): 415-428.

Wang, C.-H. & T.-R. Peng, 2001. Hydrogen and Oxygen Isotopic Compositions of Taipei Precipitation 1990 to 1998. Western Pacific Earth Sciences 1(4): 429-442.

Wang, C., T. Peng, P. Tsai, S. Wu, Y. Shieh & F. Cherng, 1994. Stable isotope compositions of groundwaters from Penghu Islands and its implications. In: Proceedings of the First Symposium on Groundwater Resources and Water Protection, 1994. pp. 147-163.

Warren, G.P., B.J. Alloway, N.W. Lepp, B. Singh, F.J.M. Bochereau & C. Penny, 2003. Field trials to assess the uptake of arsenic by vegetables from con-taminated soils and soil remediation with iron oxides. Sci. Tot. Environ. 311: 19–33. doi:10.1016/S0048-9697(03)00096-2.

Wenzel, W. W., N. Kirchbaumer, T. Prohaska, G. Stingeder, E. Lombi & D. C. Adriano, 2001. Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta 436(2): 309-323. doi:10.1016/s0003-2670(01)00924-2.

Wilkie, J. A. & J. G. Hering, 1998. Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada. Environ. Sci. Technol. 32(5): 657-662. doi:10.1021/es970637r.

Williams, P. N., A. Villada, C. Deacon, A. Raab, J. Figuerola, A. J. Green, J. Feldmann & A. A. Meharg, 2007. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ. Sci. Technol. 41(19): 6854-6859. doi:10.1021/es070627i.

Yeh, H. F., H. I. Lin, C. H. Lee, K. C. Hsu & C. S. Wu, 2014. Identifying Seasonal Groundwater Recharge Using Environmental Stable Isotopes. Water 6(10): 2849-2861. doi:10.3390/w6102849.

Zhao P., X.Y. Tang, P. Zhao, C. Wang & J. L. Tang, 2013. Identifying the water source for subsurface flow with deuterium and oxygen-18 isotopes of soil water collected from tension lysimeters and cores. J. Hydrol. 503:1-10. doi: 10.1016/j.jhydrol.2013.08.033.

Zhao, F.J., Y. Ago, N. Mitani, R.Y. Li, Y.H. Su & N. Yamaji, et al., 2010. The role of the rice aquaporin Lsi 1 in arsenite efflux from roots. New Phytol. 186: 392–399. doi:10.1111/j.1469-8137.2010.03192.x.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw