系統識別號 U0026-0108201615263500
論文名稱(中文) 開發一個手持式超音波壓痕系統應用於軟組織的生物力學特性量測
論文名稱(英文) Assessment of Biomechanical Properties of Soft Tissues Using Portable Ultrasound Indentation System
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 高詩涵
研究生(英文) Shih-Han Kao
學號 p86034080
學位類別 碩士
語文別 英文
論文頁數 40頁
口試委員 指導教授-陳天送
中文關鍵字 超音波  彈性  壓痕系統  啾聲編碼脈衝 
英文關鍵字 Ultrasound  Elasticity  Indentation system  Chirp-coded excitation 
中文摘要 人體的軟組織是支持、連接包圍其他器官的組織,例如肌腱、韌帶、筋膜、皮膚、纖維和脂肪。軟組織常見的疾病有感染、發炎、斷裂、腫瘤、水腫和出血。軟組織若有病變,通常會伴隨著硬度及厚度的變化。目前被廣泛使用的診斷方式為觸診,主要判斷軟組織的軟硬程度變化以及厚度變化,但此方法存在著主觀的問題,隨著醫學的進步,臨床上需要的是更客觀且量化的診斷工具,超音波是一個很好的選擇,具有非游離輻射、非侵入式、相較於其他檢測方法更便宜、操作容易等優點。因此本研究以超音波的彈性技術開發一套可攜式的手持超音波壓痕系統,搭配塔基(Tukey)窗函數的啾聲編碼脈衝作為激發訊號。塔基(Tukey)窗函數的啾聲編碼脈衝根據近年的研究具有可有效提高訊號訊雜比以及提高穿透深度等優點,若訊號訊雜比不夠高,可能會影響訊號分析的結果,用於影像系統則會影響到影像品質,降低其臨床上的應用價值;穿透深度則考量到本系統並不只是單純使用在人體的肱二頭肌,此設計希望能在未來應用於人體不同部位的軟組織診斷。本研究以手持式的彈性技術為基準,使用5-MHz單陣元探頭搭配可量測0–5牛頓,精準度可達0.5 g的壓力傳感器,記錄量測時於探頭上的壓力數值。結合超音波訊號和壓力傳感器數值,以演算法做分析計算軟組織的彈性資訊。驗證實驗部分,本系統進行了假體實驗,以雙層不同硬度、不同厚度的假體做為量測樣本,發現不論是上硬下軟的假體,或是上軟下硬的假體皆可藉由本系統判斷出明顯的軟硬差異;為求實驗樣本更接近人體組織,也量測了豬肉組織的彈性資訊,也可判斷豬肉組織不同分層的軟硬差異;進一步進行人體的肱二頭肌彈性量測,由結果可知,本系統量測人體肱二頭肌亦可同豬肉組織,可觀察出不同分層的組織軟硬差異。
英文摘要 The definition of soft tissues is any tissues that connect, support, or surround organs of human. It consists of skin, fat, fiber, tendon, ligament, muscle, and fascia. Diseases of soft tissues include infection, inflammation, rupture, tumor, edema, and hematoma. The status of soft tissues in the human body is often of interest in clinical diagnosis. According to previous studies, we know that, if soft tissues undergo pathological changes, they are usually accompanied by changes in their stiffness and thickness. Palpation is often used to clinically detect changes in soft tissues, but this method is subjective and unquantifiable; we need a quantitative, more accurate system to collocate with palpation. Ultrasound is a good choice because advantages of using it are that it is non-invasive, quantifiable, easy to perform, and cheaper than other instruments. Hence, in this study, we developed a portable ultrasound indentation system with a hand-held probe and used chirp-coded excitation with the Tukey window function as the signal trigger. Chirp-coded excitation with the Tukey window function is an effective method to increase the echo signal-to-noise ratio (eSNR) and transmitted energy because if eSNR is too low, this may affect the output of the signal process and reduce the worth of a technique in clinical diagnosis. If the energy of the transmitted ultrasound signals is too low, it will affect the penetration depth of the ultrasound system. In future studies, we could use this system to detect abnormalities not only in the biceps brachii but also in other soft tissues in the human body. Therefore, we used ultrasound elastography with a 5-MHz single element transducer combined with a load cell, which can measure 0–5 N and record the force when compressing the transducer. We then integrated the ultrasound signals and force values to process the elastic information of the soft tissues. In the in vitro validation, we tested the technique on double layer phantoms with different hardness and stiffness as well as on porcine soft tissues. In the in vivo validation, we tested the biceps brachii in the human body. From the information gained on tissue elasticity, we found that our system was able to distinguish variations in hardness in a double layer phantom along with different layers in the porcine tissues and biceps brachii of the human body.
論文目次 中文摘要 I
Abstract II
致謝 IV
Contents V
List of Tables VII
List of Figures VIII
Chapter 1. Introduction 1
1.1 Ultrasound Elastography 1
1.2 Coded Excitation 4
1.3 Literatures Review 6
1.4 Motivation and Aim 11
Chapter 2. Materials and Methods 12
2.1 System Architecture 12
2.1.1 Load Cell 13
2.1.2 Data Acquisition (DAQ) 16
2.1.3 Chirp Pulse 17
2.1.4 Indenter Probe 19
2.2 Experimental Procedures 20
2.2.1 Measurement Method 20
2.2.2 Tissue-mimicking Phantoms 21
2.2.3 Signal Processing 22
2.2.4 Participants 25
Chapter 3. Results and Discussion 27
3.1 System Test 27
3.2 Indentation Probe 28
3.3 Double Layer Phantoms 31
3.4 Porcine Tissue 34
3.5 Normal Subjects 34
Chapter 4. Conclusion 36
References 38
參考文獻 [1] F. W. Kremkau, Sonography principles and instruments: Elsevier Health Sciences, 2010.
[2] C. Y. Chao, Y.-P. Zheng, and G. L. Cheing, "Epidermal thickness and biomechanical properties of plantar tissues in diabetic foot," Ultrasound in medicine & biology, vol. 37, pp. 1029-1038, 2011.
[3] S.-Y. Lee, H. J. Park, H. J. Kwag, H.-P. Hong, H.-W. Park, Y.-R. Lee, et al., "Ultrasound elastography in the early diagnosis of plantar fasciitis," Clinical imaging, vol. 38, pp. 715-718, 2014.
[4] J. Bamber, D. Cosgrove, C. Dietrich, J. Fromageau, J. Bojunga, F. Calliada, et al., "EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology," Ultraschall Med, vol. 34, pp. 169-184, 2013.
[5] J.-L. Gennisson, T. Deffieux, M. Fink, and M. Tanter, "Ultrasound elastography: principles and techniques," Diagnostic and interventional imaging, vol. 94, pp. 487-495, 2013.
[6] J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: a quantitative method for imaging the elasticity of biological tissues," Ultrasonic imaging, vol. 13, pp. 111-134, 1991.
[7] L. D. Landau and E. Lifshitz, "Theory of Elasticity, vol. 7," Course of Theoretical Physics, vol. 3, p. 109, 1986.
[8] K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, "On the feasibility of remote palpation using acoustic radiation force," The Journal of the Acoustical Society of America, vol. 110, pp. 625-634, 2001.
[9] A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, "Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics," Ultrasound in medicine & biology, vol. 24, pp. 1419-1435, 1998.
[10] 林景祥, "啾聲編碼波形於雙頻組織諧波影像之分析與比較," 國立台灣科技大學電機工程學系學位論文, 2012.
[11] L. Kuan-Hung, "建構一套啾聲編碼激發超音波系統搭配對比劑於小動物影像," 成功大學生物醫學工程學系學位論文, pp. 1-62, 2014.
[12] M. O'Donnell, "Coded excitation system for improving the penetration of real-time phased-array imaging systems," Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 39, pp. 341-351, 1992.
[13] J. Liu and M. F. Insana, "Coded pulse excitation for ultrasonic strain imaging," Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 52, pp. 231-240, 2005.
[14] H. Peng and D. C. Liu, "Chirp-coded pulse excitation for ultrasound elasticity imaging," in Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on, 2010, pp. 1-4.
[15] 何祚明, "高頻超音波影像系統," 國立台灣大學電機工程學研究所碩士論文, 2001.
[16] G. N. Kawchuk, T. R. Liddle, O. R. Fauvel, and C. Johnston, "The accuracy of ultrasonic indentation in detecting simulated bone displacement: a comparison of three techniques," Journal of manipulative and physiological therapeutics, vol. 29, pp. 126-133, 2006.
[17] E. Drakonaki, G. Allen, and D. Wilson, "Ultrasound elastography for musculoskeletal applications," The British journal of radiology, 2014.
[18] Y.-P. Zheng and A. F. Mak, "An ultrasound indentation system for biomechanical properties assessment of soft tissues in-vivo," Biomedical Engineering, IEEE Transactions on, vol. 43, pp. 912-918, 1996.
[19] Y.-P. Huang, Y.-P. Zheng, and S.-F. Leung, "Quasi-linear viscoelastic properties of fibrotic neck tissues obtained from ultrasound indentation tests in vivo," Clinical Biomechanics, vol. 20, pp. 145-154, 2005.
[20] Y.-P. Zheng, Z. Li, A. Choi, M.-H. Lu, X. Chen, and Q.-H. Huang, "Ultrasound palpation sensor for tissue thickness and elasticity measurement–Assessment of transverse carpal ligament," Ultrasonics, vol. 44, pp. e313-e317, 2006.
[21] J.-H. Sun, B. K. Cheng, Y.-P. Zheng, Y.-P. Huang, J. Y. Leung, and G. L. Cheing, "Changes in the thickness and stiffness of plantar soft tissues in people with diabetic peripheral neuropathy," Archives of physical medicine and rehabilitation, vol. 92, pp. 1484-1489, 2011.
[22] M.-Y. Ke, "建構多功能脈衝激發器於高頻超音波影像系統之應用," 成功大學生物醫學工程學系學位論文, pp. 1-44, 2015.
[23] National and Instruments, "NI USB-6008/6009 User Guide and Specifications," ed, 2012.
[24] H. Peng and D. C. Liu, "Enhanced ultrasound strain imaging using chirp-coded pulse excitation," Biomedical Signal Processing and Control, vol. 8, pp. 130-141, 2013.
[25] F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transform," Proceedings of the IEEE, vol. 66, pp. 51-83, 1978.
[26] R. Zahiri-Azar and S. E. Salcudean, "Motion estimation in ultrasound images using time domain cross correlation with prior estimates," IEEE Transactions on Biomedical Engineering, vol. 53, pp. 1990-2000, 2006.
[27] Y.-L. Chang, "利用超音波技術評估軟組織的生物力學特性," 成功大學生物醫學工程學系學位論文, pp. 1-47, 2013.
[28] S. Tixa, Atlas of surface palpation: anatomy of the neck, trunk, upper and lower limbs: Elsevier Health Sciences, 2015.
[29] J. E. Muscolino, The muscle and bone palpation manual with trigger points, referral patterns and stretching: Elsevier Health Sciences, 2008.
[30] G. R. Lockwood, J. W. Hunt, and F. S. Foster, "The design of protection circuitry for high-frequency ultrasound imaging systems," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 38, pp. 48-55, 1991.
[31] T. Raveh Tilleman, M. Tilleman, and H. Neumann, "The elastic properties of cancerous skin: Poisson’s ratio and Young’s modulus," Optimization of Incisions in Cutaneous Surgery including Mohs’ Micrographic Surgery., p. 105, 2004.
[32] C. Pailler-Mattei, S. Bec, and H. Zahouani, "In vivo measurements of the elastic mechanical properties of human skin by indentation tests," Medical engineering & physics, vol. 30, pp. 599-606, 2008.
[33] M. J. McNeely, E. J. Boyko, J. H. Ahroni, V. L. Stensel, G. E. Reiber, D. G. Smith, et al., "The Independent Contributions of Diabetic Neuropathy and Yasculopatny in Foot Ulceration: How great are the risks?," Diabetes care, vol. 18, pp. 216-219, 1995.
[34] 李佳謀, "影響社區第 2 型糖尿病居民出現周邊神經血管病變相關因素之探討," 2012.
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-01起公開。

  • 如您有疑問,請聯絡圖書館