進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0108201612031100
論文名稱(中文) 研製高功率之被動式Q切換全光纖雷射架構
論文名稱(英文) Passively Q-switched all-fiber laser at high peak power
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 104
學期 2
出版年 105
研究生(中文) 蔡長青
研究生(英文) Chang-Ching Tsai
學號 Q16024210
學位類別 碩士
語文別 中文
論文頁數 72頁
口試委員 指導教授-蔡宗祐
口試委員-李志成
口試委員-林士廷
口試委員-方彥程
中文關鍵字 Q切換  模態場不匹配 
英文關鍵字 Q-switched  mode-field area mismatch 
學科別分類
中文摘要 本論文將以數值模擬的方式模擬出Q切換脈衝並設計出一摻鐿全光纖式Q切換脈衝雷射系統。由於市售單模雷射輸出功率最多500mW,製作高功率脈衝雷射仍嫌不足,因此本文雷射系統架構將採用多模雷射並將光耦合進入雙披覆層光纖,藉此輸出高功率雷射,而系統中會加入摻鐿之可飽和吸收體光纖來產生脈衝雷射,並利用增益切換來將可飽和吸收體光纖迅速恢復初始吸收值以便進行產生下一個Q切換脈衝。本文中將會推導出一組雙波長光子雷射方程式以便用來模擬分析光子在雷射系統中隨增益居量及吸收居量的變化,並探討輸入幫浦能量、可飽和吸收體初始吸收值、第一共振腔長度及第一共振腔反射率的變化對脈衝雷射之脈衝重複率、脈衝能量、脈衝寬度、脈衝功率峰值所產生的影響。而在實驗上,我們會建置一個被動式全光纖Q切換脈衝雷射系統,並量測其脈衝輸出。此外,也會透過更換飽和吸收體光纖的長度,給予系統不同的初始吸收值,並藉此了解元件參數的改變對脈衝輸出特性的影響,以便為日後脈衝雷射系統的最佳化提供一個較明確的方向
英文摘要 This thesis focused on simulation of Q-switched pulsed laser and implement the passively all- Yb+3fiber Q-switched pulsed laser at high peak power using mode-field area mismatch method in dual cavity. Since the output power of single-mode laser diode is too low,we use multi-mode laser and cladding pumped laser system to boost the output power of laser system and achieve the high power Q-switched all-fiber laser system. We also derive some theories about mode-field mismatch method and rate equations about dual cavity. Based on the outcome in the chapter2,we establish a numerical model to simulate a Q-switched pulse. In the simulation,we get a Q-switched pulse with an energy of 38.64 μJ、a width of 32.83 ns and a peak power of 975W. Moreover, the performance of pulses can be improved by replacing the longer SAQS fiber in the experiment. The tendency observed in the experiment provide a clear direction to optimize the pulsed laser system in the future.
論文目次 摘要 II
第一章 緒論 1
1.1 前言 1
1.2 研究動機與方法 6
1.3 論文架構 8
第二章 被動式Q切換雷射系統原理之探討 9
2.1 雷射原理 9
2.2 鐿原子特性及其能帶之分析與討論 11
2.3 Q切換脈衝雷射運作機制概述 13
2.4 Q切換脈衝雷射產生的條件及模態場面積不匹配理論介紹 15
2.5 Q切換雷射脈衝連續產生之重要條件 18
2.6 雙共振腔雷射系統 20
2.6.1 雙共振腔雷射系統之架構與運作機制概述 20
2.6.2 雙共振腔雷射之理論推導與雷射方程式修正 24
第三章 全光纖被動式Q切換雷射系統模擬分析與設計 27
3.1 摻鐿光纖之長度與雷射波長模擬分析 28
3.2 1030nm Q切換脈衝雷射系統模擬 31
3.3 元件參數的改變對脈衝輸出特性的影響 33
3.3.1 輸入泵浦能量對脈衝特性的影響 33
3.3.2 可飽和吸收體初始吸收值對脈衝特性的影響 36
3.3.3 共振腔長度對脈衝特性的影響 40
3.3.4 共振腔反射率對脈衝特性的影響 42
3.3.5 總結:系統元件參數對脈衝特性的影響 44
第四章 被動式全光纖Q切換雷射系統的建立與量測 45
4.1 實驗目的 45
4.2 實驗流程及規劃 46
4.3 實驗結果量測 46
4.3.1 激發光源的量測 46
4.3.2 連續波雷射的量測 47
4.3.3 被動式Q切換脈衝雷射的量測 54
第五章 總結與未來展望 65
5.1 成果討論 65
5.2 未來展望 66
參考文獻 67
附錄 文中使用的參數符號 71

參考文獻 1. H. M. Pask, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, J. M. Dawes, and R. J. Carman, "Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1–1.2 μm Region," IEEE J. Select. Topics Quantum Electron. 1, 2-13 (1995).
2. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
3. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).
4. Y.-C. Jeong, A. J. Boyland, J. K. Sahu, S.-H. Chung, J. Nilsson, and D. N. Payne, "Multi-kilowatt Single-mode Ytterbium-doped Large-core Fiber Laser," J. Opt. Soc. Korea 13, 416-422 (2009).
5. E. Snitzer, "Proposed fiber cavities for optical lasers," J.Appl. Phys. 32, 36-39 (1961).
6. E. Snitzer, "Optical maser action of Nd3+ in a barium crown
glass," Phys. Rev. Lett. 7, 444-446 (1961).
7. C. J. Koester, and E. Snitzer, "Amplification in a fiber laser," Appl. Opt. 3, 1182-1186 (1964).
8. D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J.Suni, and A. C. Tropper, "An Yb-doped monomode fiber laser: broadly tunable operation from 1.010 μm to 1.162 μm and three-level operation at 974 nm," J. Mod. Opt. 37, 517-525 (1990).
9. R. Selvas, J. K. Sahu, L. B. Fu, J. N. Jang, J. Nilsson, A. B. Grudinin, K. H. Ylä-Jarkko, S. A. Alam, P. W. Turner, and J. Moore, "High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980nm," Opt. Lett. 28, 1093-1095 (2003).
10. J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, "High power ytterbium-doped rod-type three-level photonic crystal fiber laser," Opt. Express 16, 17891-17902 (2008).
11. F. Roeser, C. Jauregui, J. Limpert, and A. Tünnermann, "94 W 980 nm high brightness Yb-doped fiber laser," Opt. Express 16, 17310-17318 (2008).
12. A. Shirakawa, C. B. Olausson, M. Chen, K.-i. Ueda, J. K. Lyngsø, and J. Broeng, "Power-Scalable Photonic Bandgap Fiber Sources with 167 W, 1178 nm and 14.5 W, 589 nm Radiations," in Lasers, Sources and Related Photonic Devices(Optical Society of America, San Diego, California, 2010), p. APDP6.
13. M. L. Osowski, W. Hu, R. M. Lammert, S. W. Oh, P. T. Rudy, T. Stakelon, L. Vaissie, and J. E. Ungar, "Advances in high-brightness semiconductor lasers," in Laser Source Technology for Defense and Security IV(Orlando, FL, 2008).
14. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, "DOUBLE CLAD, OFFSET CORE Nd FIBER LASER," in Optical Fiber Sensors(Optical Society of America, New Orleans, Louisiana, 1988), p. PD5.
15. K. Ueda, H. Sekiguchi, and H. Kan, "1kW CW output from fiber-embedded disk lasers," in Lasers and Electro-Optics, 2002. CLEO '02. Technical Digest. Summaries of Papers Presented at the(2002), pp. CPDC4-CPDC4.
16. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).
17. C. Wirth, O. Schmidt, A. Kliner, T. Schreiber, R. Eberhardt, and A. Tünnermann, "High-power tandem pumped fiber amplifier with an output power of 2:9kW," Opt. Lett. 36, 3061-3063 (2011).
18. F. J. McClung, and R. W. Hellwarth, "Giant optical pulsations from ruby," Journal of Applied Physics 33, 828-829 (1962).
19. H. L. Offerhaus, N. G. Broderick, D. J. Richardson, R. Sammut, J. Caplen, and L. Dong, "High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber," Opt. Lett. 23, 1683-1685 (1998).
20. A. Piper, A. Malinowski, K. Furusawa, and D. J. Richardson, "High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser," Electronics Letters 40, 928-929 (2004).
21. O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, "Millijoule pulse energy Q-switched short-length fiber laser," Opt. Lett. 32, 1551-1553 (2007).
22. T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, "All-fiber actively Q-switched Yb-doped laser," Opt Commun 260, 251-256 (2006).
23. M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, "Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating," Opt. Express 14, 1106-1112 (2006).
24. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S. Girard, and R. Moncorgé, "Compact diode-pumped passively Q-switched tunable Er–Yb double-clad fiber laser," Opt. Lett. 27, 1980-1982 (2002).
25. L. Pan, I. Utkin, and R. Fedosejevs, "Passively Q-switched ytterbium-doped double-clad fiber laser with a Cr4+:YAG saturable absorber," IEEE Photonics Technol Lett 19, 1979-1981 (2007).
26. J. B. Lecourt, G. Martel, M. Guézo, C. Labbé, and S. Loualiche, "Erbium-doped fiber laser passively Q-switched by an InGaAs/InP multiple quantum well saturable absorber," Opt Commun 263, 71-83 (2006).
27. P. Adel, M. Auerbach, C. Fallnich, S. Unger, H.-R. Müller, and J. Kirchhof, "Passive Q-switching by Tm3+ codoping of a Yb3+-fiber laser," Opt. Express 11, 2730-2735 (2003).
28. A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, "All-fiber passively Q-switched ytterbium laser," in Lasers and Electro-Optics Europe, 2005. CLEO/Europe. 2005 Conference on(2005), p. 515.
29. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, "Yb-Bi pulsed fiber lasers," Opt. Lett. 32, 451-453 (2007).
30. T.-Y. Tsai, Y.-C. Fang, H.-M. Huang, H.-X. Tsao, and S.-T. Lin, "Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm," Opt. Express 18, 23523-23528 (2010).
31. T.-Y. Tsai, Y.-C. Fang, Z.-C. Lee, and H.-X. Tsao, "All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch," Opt. Lett. 34, 2891-2893 (2009).
32. T.-Y. Tsai, and Y.-C. Fang, "A self-Q-switched all-fiber erbium laser at 1530 nm using an auxiliary 1570-nm erbium laser," Opt. Express 17, 21628-21633 (2009).
33. T.-Y. Tsai, and Y.-C. Fang, "A saturable absorber Q-switched all-fiber ring laser," Opt. Express 17, 1429-1434 (2009).
34. T.-Y. Tsai, Z.-C. Lee, H.-X. Tsao, and S.-T. Lin, "Lensless intracavity focusing in a passively Q-switched all-fiber laser using the mode-field-area mismatch," Opt. Lett. 37, 2610-2612 (2012).
35. "https://www.rp-photonics.com/v_number.html."
36. J. He, S. Du, Z. Wang, Z. Wang, J. Zhou, and Q. Lou, "Linearly-polarized short-pulse AOM Q-switched 978 nm photonic crystal fiber laser," Opt. Express 21, 29249-29254 (2013).
37. K. H. Ylä-Jarkko, R. Selvas, D. B. S. Son, J. K. Sahu, C. A. Codemard, J. Nilsson, S. A. Alam, and A. B. E. D. Z. J. Grudinin, "A 3.5 W 977 nm Cladding-pumped Jacketed Air-Clad Ytterbium-Doped Fiber Laser," in Advanced Solid-State Photonics(Optical Society of America, San Antonio, Texas, 2003), p. 103.
38. A. Wang, A. K. George, and J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Opt. Lett. 31, 1388-1390 (2006).
39. A. Polynkin, P. Polynkin, A. Schülzgen, M. Mansuripur, and N. Peyghambarian, "Watts-level, short all-fiber laser at 1.5 mm with a large core and diffraction-limited output via intracavity spatial-mode filtering," Opt. Lett. 30, 403-405 (2005).
40. P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, "Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser," Opt. Lett. 31, 226-228 (2006).
41. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, "Investigation of single-mode–multimode–single-mode and single-mode–tapered-multimode–single-mode fiber structures and their application for refractive index sensing," J. Opt. Soc. Am. B 28, 1180-1186 (2011).
42. Q. Wang, G. Farrell, and W. Yan, "Investigation on Single-Mode–Multimode–Single-Mode Fiber Structure," J. Lightwave Technol. 26, 512-519 (2008).
43. Y. Zhao, Y. Jin, and H. Liang, "Investigation on Single-Mode-Multimode-Single-Mode Fiber Structure," Photonics and Optoelectronics (2011).
44. X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, "Single-transverse-mode output from a fiber laser based on multimode interference," Opt. Lett. 33, 908-910 (2008).
45. X. Zhu, A. Schulzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, "High-Power Fiber Lasers and Amplifiers Based on Multimode Interference," Selected Topics in Quantum Electronics, IEEE Journal of 15, 71-78 (2009).
46. J. Zhou, B. He, Y. Feng, and X. Gu, "High efficiency single-mode-multimode-single-mode fiber laser with diffraction-limited beam output," Applied Optics 53, 5554-5558 (2014).
47 A. Siegman, Lasers (University Science Books 1986),pp1024-1028.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw