進階搜尋


下載電子全文  
系統識別號 U0026-0108201413431500
論文名稱(中文) 全光纖被動式鎖模雷射之色散補償研究
論文名稱(英文) Study on Dispersion Compensation in All-Fiber Passively Mode-Locked Lasers
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 102
學期 2
出版年 103
研究生(中文) 李凱任
研究生(英文) Kai-Gen Lee
學號 Q16011055
學位類別 碩士
語文別 中文
論文頁數 75頁
口試委員 指導教授-蔡宗祐
口試委員-魏明達
口試委員-李志成
口試委員-方彥程
口試委員-林士廷
中文關鍵字 色散  非線性偏振旋轉  全光纖系統 
英文關鍵字 Dispersion  nonlinear polarization rotation  All-Fiber Laser system 
學科別分類
中文摘要 我們以摻鉺光纖作為增益介質其波段操作在1550奈米,在環形共振腔中產生非線性旋轉最後達成鎖模雷射。為提升鎖模雷射特性,本論文將探討單模光纖中的色散相關原理。實驗架構為環形共振腔中加入色散補償光纖,並於公式推導中找出最佳化光纖長度,同時以實驗證明相關理論;另外,在非線性旋轉機制下產生的脈衝式雷射,仍有連續波雷射的存在,為了方便將來設計連續波濾除器,本論文將採用聲光調變器做雷射輸出的開關,但為了匹配鎖模雷射之脈衝重複率,本論文將利用STC12C系列單晶片輸出足以匹配鎖模雷射的脈衝重複率,透過RF驅動器控制聲光調變器,可達到脈衝式與連續波功濾除及率量測的目的。
英文摘要 The purpose of the study is to reduce dispersion of all-fiber passively mode-locked lasers system. In the thesis, we use erbium-doped fiber as gain medium and apply nonlinear polarization rotation to generate pulsed laser at 1550nm. The pulse width had been successfully reduced to 436fs from 8.7ps by utilizing optimized dispersion-compensating fiber.

Moreover, we adopted Acousto-optical Modulators which can filter half continuous wave from the laser system output. The function generator consisted of STC12C series chip produced high-frequency square-wave so that the pulsed laser could be matched.
論文目次 目錄
摘要 i
致謝 vi
目錄 vii
表目錄 ix
圖目錄 x
第1章 緒論 1
1.1 前言 1
1.2 研究目的與動機 8
第2章 原理 11
2.1 鎖模原理 13
2.1.1 主動鎖模 17
2.1.2 被動鎖模 19
2.2 色散補償原理 22
2.2.1 光纖的色散 22
2.2.2 色散補償機制 28
第3章 疊加波鎖模雷射之色散補償 35
3.1 前置作業及架構 37
3.2 實驗結果 39
第4章 連續波雷射功率量測 51
4.1 前置作業及架構 53
4.2 實驗結果 55
第5章 結論 63
5.1 成果與討論 63
5.2 未來展望 65
參考文獻 67
參考文獻 [1] A.M. Weiner, Ultrafast Optics( ed.), New Jersey: John Wiley & Sons, pp.1-4, (2009).
[2] A. Chamorovskiy, Y. Chamorovskiy, I. Vorob'ev & O.G. Okhotnikov , ‘‘95-Femtosecond Suspended Core Ytterbium Fiber Laser,’’ IEEE Photonics Technology Letters, 22 (17) pp.1321-1323, (2010).
[3] M. Zhang, E.J.R. Kelleher, E.D. Obraztsova, S.V. Popov & J.R. Taylor , ‘‘Nanosecond Pulse Generation in Lumped Normally Dispersive All-Fiber Mode-Locked Laser,’’ IEEE Photonics Technology Letters, 23 (19) pp.1379-1381, (2011).
[4] A. Martinez & S. Yamashita (2012), ‘‘10 GHz fundamental mode fiber laser using a graphene saturable absorber,’’ Applied Physics Letters, 101 (4), (2012).
[5] K. Ozgoren & F.O. Ilday , ‘‘All-fiber all-normal dispersion laser with a fiber-based Lyot filter,’’ Optics Letters, 35 (8) pp.1296-1298, (2010).
[6] C. Aguergaray, N.G.R Broderick, M. Erkintalo, J.S.Y. Chen & V. Kruglov , ‘‘Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror,’’ Optics Express, 20 (10) pp.10545-10551, (2012).
[7] N. Russo & R. Duchowicz (2010), ‘‘High frequency pulse trains from a self-starting additive pulse mode-locked all-fiber laser,’’ Optics Communications, 283 (1) pp.113-117, (2010).
[8] 朱旭新, 陳聿昕, 汪治平, 李超煌, 陳賜原 , “十兆瓦超短脈衝雷射系統,”科儀新知, 128期 pp.5-18, (2012).
[9] Shixiang Xu, Yanxia Gao, Qingyang Wu, Bin Hui, Jingzhen Li , ‘‘Half-Brewster-prism pair for broadband mode-locked optical pulse compression,’’ Pure and Applied Optics , 21 (9-12) pp.5, (2009).
[10] K. Gerd, ‘‘Lecture 6. Transmission Characteristics of Optical Fiber,’’ from:
http://course.ee.ust.hk/elec342/notes/Lecture%206_attenuation%20and%20dispersion.pdf
[11] C. Lin, H. Kogelnik, and L. G. Cohen , ‘‘Optical-pulse equalization of low-dispersion transmission in single-mode fibers in the 1.3-1.7μ m spectral region,’’ Optics Letters, 5(11), (1980).
[12] M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, ‘‘Dispersion compensating fibre with a high figure of merit of 250 ps/nm/dB,’’ Electronics Letters, 30(2). (1994).
[13] A. Bjarklev, T. Rasmussen, O. Lumholt, K. Rottwitt, and M. Helmer , ‘‘Optimal design of single-cladded dispersion-compensating optical fibers,’’ Optics Letters, 19(7). (1994).
[14] A. J. Antos and D. K. Smith , ‘‘Design and characterization of dispersion compensating fiber based on the LP01 mode,’’ Journal of lightwave technology, 12(10), (1994).
[15] A. M. Vengsarkar, A. E. Miller, M. Haner, A. H. Gnauck, W. A. Reed, and K. L. Walker,‘‘Fundamental-mode dispersion-compensating fibers: Design considerations and experiments,’’ in Digest of Optical Fiber Communications Conference, OFC’94, pp 225-227, paper ThK2, (1994).
[16] M. Onishi, C. Fukuda, H. Kanamori, and M. Nishimura, ‘‘High NA double-cladding dispersion compensating fiber for WDM systems,’’ in Proceedings, European Conference on Optical Communication,ECOC’94, pp.681-684, (1994).
[17] Karin Ennser, R. I. Laming, and M. N. Zervas , ‘‘Analysis of 40 Gb/s TDM-Transmission over Embedded Standard Fiber Employing Chirped Fiber Grating Dispersion Compensators,’’ Journal of lightwave technology , 16 (5), (1998).
[18] F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Optics Letters,12(10), pp. 847–849, 1987.
[19] L. Dong et al., “40 Gbit/s 1.55 μm transmission over 109 km of nondispersion shifted fiber with long continuously chirped fiber gratings,” in Proc. OFC’97, postdeadline paper PD6.
[20] R. Kashyap et al., “Eight wavelength 10 Gb/s simultaneous dispersion compensation over 100 km single-mode fiber using a single 10 nm bandwidth, 1.3 m long, super-step-chirped fiber Bragg grating with a continuosly delay of 13.5 ns,” in Proc. ECOC’96, paper ThB3.2, pp. 5.7–5.10.
[21] M. N. Zervas, K. Ennser, and R. I. Laming, “Design of apodised linearlychirped fiber gratings for optical communications,” in Proc. ECOC’96, paper WeP.06, pp. 3.233–236.
[22] J. Arkwright et al., “Fiber gratings for dispersion compensation,” in Proc.ECOC’971(1).
[23] B. Grudinin, “Straight line 10 Gbit/s soliton transmission over 1000 km of standard fiber with in-line chirped grating for partial dispersion compensation,” Electronics Letters, 33(18), pp. 1572–73, (1997).
[24] A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andres, and P. St. J. Russell, “Designing a photonic crystal fiber with flattened chromatic dispersion,” Electronics Letters, vol. 35, pp. 325–327, (1999).
[25] T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photonics Technology Letters, vol. 11, pp. 674–676, (1999).
[26] M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electronics Letters, vol. 35, pp. 63–64, (1999).
[27] J. K. Ranka, R. S.Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Optics Letters, vol. 25, pp. 25–27, (2000).
[28] W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibers at 850 nm,” Electronics Letters, vol. 36, pp. 53–55, (2000).
[29] C. K. Madsen and G. Lenz, "Optical All Pass Filter for Phase Response Design with Application for Dispersion Compensation," IEEE Photonics Technology Letters, vol. 10, pp. 994-996, (1998).
[30] W. P. Ng, W. Loedhammacakra, Z. Ghassemlooy, and R. A. Cryan, "Characterisation of a parallel optical all pass filter for chromatic dispersion equalisation in 10 Gb/s system," Circuits, Devices & Systems, IET, vol. 2, pp. 112-118, (2008).
[31] Yariv, D. Fekete, and D. M. Pepper, “Compensating for channel dispersion by nonlinear optical phase conjugation,” Optics Letters, vol. 4,pp. 52–54, (1979).
[32] K. Kikuchi and C. Lorattanasane, “Compensation for pulse waveform distortion in ultra-long distance optical communication systems by usingmidway optical phase conjugator,” IEEE Photonics Technology Letters, vol. 6,pp. 104–105, (1994).
[33] S.Watanabe, T. Chikagama, G. Ishikawa, T. Terahara, and H. Kuwahara,“Compensation of pulse shape distortion due to chromatic dispersion and kerr effect by optical phase conjugation,” IEEE Photonics Technology Letters, vol. 5, pp. 1241–1243, (1993).
[34] S.Watanabe, T. Chikagama, G. Ishikawa, T. Terahara, and H. Kuwahara, “Compensation of pulse shape distortion due to chromatic dispersion and kerr effect by optical phase conjugation,” IEEE Photonics Technology Letters, vol. 5, pp. 1241–1243, (1993).
[35] X. Zhang and B. F. Jorgensen, “Extending transmission distance limitation for a 40 Gb/s signal over standard fiber using optical phaseconjugation,” Optics Fiber Technology, vol. 2, pp. 188–190, (1996).
[36] F. Gerome, J.-L. Auguste, J. Maury, J.-M. Blondy, J. Marcou, “Theoretical and experimental analysis of a chromatic dispersion compensating module using a dual concentric core fiber,“ Journal of lightwave technology. Vol. 24, p.p.442–448, (2006).
[37] M. Otto, M. Mailand, “Dispersion-compensation module based on one preform design matching arbitrary dispersion and slope requirements,” Journal of lightwave technology, 3469–3474, (2005).
[38] L.V. Jorgensen, J.S. Andersen, S. Primdahl, M.N. Andersen, B. Edvold, Next generation dispersion compensating modules for 40 Gb/s systems, in: Proc. Nat. Fiber Optic Engineers Conf, vol. 2, p. 1171, (2002).
[39] 吳耀東," 光纖原理與應用 ", 全華科技圖書股份有限公司, (1999)
[40] A.M. Weiner , Ultrafast Optics( ed.), New Jersey: John Wiley & Sons, p.13, (2009).
[41] H.A. Haus, “THEORY OF MODE-LOCKING WITH A FAST SATURABLE ABSORBER,” Journal of Applied Physics, 46 (7) pp.3049-3058, (1975).
[42] H.A. Haus, “THEORY OF MODE-LOCKING WITH A SLOW SATURABLE ABSORBER,” IEEE Journal of Quantum Electronics, 11 (9) pp.736-746, (1975).
[43] See the website:
http://www.rp-photonics.com/passive_mode_locking.html
[44] M. Hofer, M.E. Fermann, F. Haberl, M.H. Ober & A.J. Schmidt , ‘‘Mode locking with cross-phase and self-phase modulation,’’ Optics Letters, 16 (7) pp.502-504, (1991).
[45] A. Joseph Antos and David K. Smith, “Design and Characterization of Dispersion Compensating Fiber Based on the LPo1 Mode,” JOURNAL OF LIGHTWAVE TECHNOLOGY, 12 (10) , (1994).
[46] A. Bjarklev, T. Rasmussen, O. Lumholt, K. Rottwitt, and M. Helmer, ‘‘Optimal design of single-cladded dispersion-compensating optical fibers,’’ Optics Letters, 19(7), (1994).
[47] S. Kawakami and N. Nishida, “Characteristics of a doubly-clad optical fibers with a low index inner cladding,” IEEE J. Quantum Electron., vol. QE-10, pp. 879-887, (1974).
[48] M. Miyagi and S. Nishida, “ Pulse spreading in a single-mode fiber due to thirdorder dispersion,” Applied Optics, vol. 18, pp. 678-682, (1979).
[49] Taha Mohamed Barake., “A Generalized Analysis of Multiple-Clad Optical Fibers with Arbitrary step-Index Profiles and Applications,” Virginia Polytechnic Institute and State University, Department of Electrical Engineering, (1997).
[50] Michel Monerie, “Propagation in Doubly Clad Single-Mode Fibers,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 30(4), (1982).
[51] Liangjia Zong , Fengguang Luo , Yanmei Wangc, Xiangdong Cao, “Dispersion compensation module for 100 Gbit/s optical system and beyond,” Optical Fiber Technology, vol. 17, pp. 227-232, (2011).
[52] A. Boskovic, S. V. Chernikov, and J. R. Taylor, L. Gruner-Nielsen and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 mm,” OPTICS LETTERS, 21(24), (1996).
[53] G. Lenz and C. K. Madsen, “General Optical All-Pass Filter Structures for Dispersion Control in WDM Systems,” Journal of Lightwave Technology, 17(7), (1999).
[54] H. A. Macleod, “Thin-Film Optical Filter ,” Third Edition, Institute of Physics Publishing Bristol and Philadephia.
[55] S. Watanabe, N. Saito, and T. Chikama, “10-Gbh 360-km Transmission Over Normal-Dispersion Fiber Using Mid-system Spectral Inversion , ” IEEE Photonics Technology Letters, 5(92), (1993).
[56] Manan Trivedi, Mrs. Sandhya Sharma, and Mrs. Shweta Sharda, “Comparison of Chromatic Dispersion Compensation Fiber Using Circular Hole PCF with Different Pitch and Diameters for Different Materials , ” Journal of Research in Electronics & Communication Technology, 1(1), (2013).
[57] K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers:application to ultra-flattened dispersion ,”Optics Express , 11(8), (2003).
[58] K. Gerd, ‘‘Lecture 6. Transmission Characteristics of Optical Fiber,’’ from:
http://course.ee.ust.hk/elec342/notes/Lecture%206_attenuation%20and%20dispersion.pdf
[59] R. M. Jopson, A. H. Gnauck, R. M. Derosier, “Compensation of fiber chromatic dispersion by spectral inversion,” Electrom Letter, 29, pp.567-578, (1993).
[60] A.V. Ivanenko, S. M. Kobtsev & S.V. Kukarin, “Femtosecond Ring All-Fiber Yb Laser with Combined Wavelength-Division Multiplexer-Isolator,”Laser Physics, 20(2) pp.344-346, (2010).
[61] D. Mortag, D. Wandt, U. Morgner, D. Kracht & J. Neumann, “Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1um,“ Optics Express, 19(2)pp.546-551, (2011).
[62] C. H. Chang, “Study on all-fiber passively mode-locked lasers, ”National Cheng Kung University, Department of electrical engineering, (2014).
[63] Femtochrome Research Inc, FR-103XL Autocorrelator Instruction Manual.
[64] K. Tamura, E. P. Haus, L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser, ”Optics Letters, 18(13), (1993).
[65] E. Snitzer, L. Tumminelli, F. Hakimi, N.M. Chu, T. Haw, “Doubly clad high brightness Nd fiber laser pumped by GaAlAs phased array,”Optical Fiber Communication Conference, PD7, (1989).
[66] M. Auerbach, P. Adel, D. Wandt, C. Fallnich, S. Unger, S. Jetschke, H.-R. Muller“10W widely tunable narrow linewidth double-clad fiber ring laser”Optics Express, 10(2)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw