進階搜尋


下載電子全文  
系統識別號 U0026-0108201411344400
論文名稱(中文) 奈米衛星姿態判定與控制次系統之控制程序設計及驗證
論文名稱(英文) Design and Verification of the Control Procedure of Attitude Determination and Control Subsystem for Nanosatellite
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 林庭揚
研究生(英文) Ting-Yang Lin
學號 N26014354
學位類別 碩士
語文別 英文
論文頁數 132頁
口試委員 指導教授-莊智清
口試委員-莊哲男
口試委員-苗君易
口試委員-林穎裕
口試委員-壽鶴年
中文關鍵字 奈米衛星  控制程序  姿態判定  姿態控制  卡爾曼濾波器  磁力控制  飛輪控制 
英文關鍵字 PHOENIX  Nanosatellite  Control Procedure  Attitude Determination  Attitude Control  Kalman Filter  Magnetic Control  Wheel Control 
學科別分類
中文摘要 本論文旨在設計與驗證PHOENIX奈米衛星的三軸穩定控制程序。根據QB50的任務目標,PHOENIX將針對低海拔的大氣層進行量測與調查衛星重返大氣層與氣動熱力學現象的關係。基於任務目的,三軸穩定控制程序的建立能使PHOENIX達到任務需求的姿態。為驗證控制程序設計的可靠性,論文中以MATLAB/Simulink來建立近似於真實情況的模擬環境,包含了衛星本體和太空環境的物理模型、姿態估測器和控制器。基於MATLAB/Simulink所建立的模擬介面提供使用者一個直觀且自由度高的控制程序開發環境,並以曲線圖表來顯示模擬結果。
一般來說,姿態判定與控制次系統被分成兩部分,姿態判定用來估測衛星當前的姿態資訊,而姿態控制則是用來調整衛星在軌道中的三軸姿態。在系統中,姿態判定將利用基於磁場量測的卡爾曼濾波器和無跡卡爾曼濾波器,並依據太陽感測器,地球感測器,磁力計和速度傳感器所量測之數值來估測當前衛星姿態和角速度。而姿態控制部分,由於在衛星上裝設制動器的限制,磁力控制和單軸動量飛輪控制被選用來應用在控制程序中。速率控制法則、B-dot控制法則,與外積控制法則都屬於磁力控制,用以實現對角速度的控制。此外為實現衛星的三軸穩定控制,在控制程序中,偏置動量法被選來進行單軸的動量飛輪控制。上述的估測器和控制器將被應用在PHOENIX的控制程序中,並透過本論文所建立的模擬來驗證。
英文摘要 This thesis depict the design and verification of the control procedure for PHOENIX nanosatellite. For QB50 mission, the main objective of PHOENIX is to conduct the research with respect to the lower atmosphere and study the atmospheric re-entry process associated with aerothermodynamics phenomena. According to this objective, the control procedure for three-axis stabilization is necessary that software can aid PHOENIX to reorient to the desired attitude. For confirming designed control procedure, the investigation of simulation models including physical models, estimators, and controllers is essential in order to build a simulation environment based on MATLAB/Simulink. In this thesis, the simulation interface based on MATLAB/Simulink is intuitive and flexible to develop control program and display graphical results.
Typically, the attitude determination and control subsystem (ADCS) are divided two parts including attitude determination to estimate the current attitude, and attitude control to properly adjust the attitude. Regarding the attitude determination, Rate Kalman Filter (RKF) and Unscented Kalman Filter (UKF) with sun sensor, nadir sensor, magnetometer, and rate sensor will be utilized to estimate the satellite’s attitude and angular velocity. For attitude control, magnetic control and single axis wheel control are considered within the control procedure due to the limitation of equipped actuators. Rate control, B-dot control, and cross product control all belong to magnetic control, and will be implemented for angular rates control. With single axis wheel control, the bias momentum method will be used to complete three-axis stabilization control. The control procedure employs all of above filters and control laws to stabilize the satellite, and they are verified by the simulation built in this thesis.
論文目次 摘要 I
Abstract III
Acknowledgement V
Content VII
List of Tables XI
List of Figures XII
List of Abbreviations XVI
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Literature Review 1
1.3 Attitude Determination and Control System 4
1.3.1 Attitude Determination and Control 4
1.3.2 Development Tool 5
1.4 Organization 8
Chapter 2 PHOENIX Nanosatellite 9
2.1 Objective of QB50 Mission 9
2.2 PHOENIX Nanosatellite Configuration 11
2.3 ADCS Requirement and Hardware 15
Chapter 3 Satellite and Environment Model 20
3.1 Mathematical Definitions of the Attitude 20
3.1.1 Earth Centered Inertial Frame (ECI) 21
3.1.2 Earth Centered Earth Fixed Frame (ECEF) 21
3.1.3 Orbit Frame 22
3.1.4 Body Frame 23
3.1.5 Coordinate Transformation 24
3.2 Attitude Representation 27
3.2.1 Euler Angles 27
3.2.2 Quaternion 29
3.3 Equation of Motions 30
3.3.1 Dynamic Equations 31
3.3.2 Kinematic Equations 32
3.4 Orbit Propagator 33
3.4.1 Keplerian Orbits 33
3.4.2 Position and Velocity as a Function of Time 35
3.4.3 Orbit Perturbations 36
3.5 Space Environment 37
3.5.1 Magnetic Field Model (IGRF) 38
3.5.2 Earth’s Atmosphere Model 43
3.5.3 Sun/Eclipse Position Model 44
3.6 Disturbance Torques 48
3.6.1 Gravity Gradient Torque 48
3.6.2 Aerodynamic Torque 49
3.6.3 Magnetic Disturbance 50
3.7 Sensor and Actuator Models 50
3.7.1 Sun Sensor 51
3.7.2 Nadir Sensor 52
3.7.3 Magnetometer 53
3.7.4 Rate MEMS Sensor 54
3.7.5 Magnetorquer Rods 56
3.7.6 Y-axis Momentum Wheel 56
Chapter 4 ADC Software Design of PHOENIX 59
4.1 Attitude Determination 59
4.1.1 Rate Kalman Filter Based on Magnetometer 60
4.1.2 Extended Kalman Filter 63
4.1.3 Unscented Kalman Filter 70
4.2 Attitude Control 77
4.2.1 B-dot Control Law 78
4.2.2 Rate Control Law 78
4.2.3 Cross Product and Unloading Control Law 79
4.2.4 Pitch Control Law 81
4.3 Control Procedure of PHOENIX ADC Software 82
4.3.1 Attitude Determination and Control Mode 82
4.3.2 Initial Acquisition Mode 83
4.3.3 Attitude Maneuver and Three-axis Stabilization Mode 84
4.3.4 ADCS State Procedure 85
Chapter 5 Software Simulation of ADCS 88
5.1 System Architecture 89
5.2 Results of Attitude Control 92
5.2.1 Overview 92
5.2.2 Without Any Control 94
5.2.3 Attitude Acquisition after Deployment 101
5.2.4 Attitude Control in the End of the Mission 112
5.2.5 Summary 123
Chapter 6 Conclusions and Future Work 125
6.1 Results Discussion 125
6.2 Future Research 125
Reference 128
參考文獻 [1] (2014). AGI STK. Available: http://www.agi.com/products/stk/
[2] (2014). MathWorks. Available: http://www.mathworks.com/
[3] (2014). World Data Center for Geomagnetism. Available: http://wdc.kugi.kyoto-u.ac.jp/index.html
[4] M. Ahmadi, A. Khayatian, and P. Karimaghaee, "Orientation Estimation by Error-state Extended Kalman Filter in Quaternion Vector Space," in 2007 Annual Conference SICE, pp. 60-67, 2007.
[5] J. Auret, "Design of an aerodynamic attitude control system for a CubeSat," Stellenbosch: Stellenbosch University, 2012.
[6] Y.-K. Chang, S.-J. Kang, B.-H. Lee, J.-W. Choi, M.-Y. Yun, and B.-Y. Moon, "Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System," School of Aerospace and Mechanical Engineering, Hankuk Aviation University, 2006.
[7] C.-Y. Chong, J. J. Miau, and J. C. Juang, "Design, Implementation and Verification of Micro Satellite Attitude Determination and Control Subsystem," Master Thesis, Department of Aeronautics & Astronautics, National Cheng Kung University, Taiwan, 2011.
[8] J. Diebel, "Representing attitude: Euler angles, unit quaternions, and rotation vectors," Matrix, vol. 58, pp. 15-16, 2006.
[9] R. V. Garcia, H. K. Kuga, and M. C. F. P. S. Zanardi, "Unscented Kalman Filter Applied to the Spacecraft Attitude Estimation with Euler Angles," Mathematical Problems in Engineering, vol. 2012, pp. 1-12, 2012.
[10] M. L. Gargasz, "Optimal Spacecraft Attitude Control Using Aerodynamic Torques," DTIC Document, 2007.
[11] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice using MATLAB: John Wiley & Sons, 2011.
[12] Y. Hashida, "Kalman filtering and the attitude determination and control task," in 2004 Conference and Exhibit AIAA Space, 2004.
[13] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, "A new method for the nonlinear transformation of means and covariances in filters and estimators," IEEE Transactions on Automatic Control, vol. 45, pp. 477-482, 2000.
[14] C. R. O. Longo and S. L. Rickman, "Method for the Calculation of Spacecraft Umbra and Penumbra Shadow Terminator Points," National Aeronautics and Space Administration (NASA), 1995.
[15] J. Lv, G. Ma, and D. Gao, "Bias Momentum Satellite Magnetic Attitude Control Based on Genetic Algorithms," in 2006 International Control Conference, 2006.
[16] R. Lyle and P. Stabekis, "Spacecraft Aerodynamic Torques," National Aeronautics and Space Administration (NASA)1971.
[17] F. Martel, P. Pal, and M. Psiaki, "Active magnetic control system for gravity gradient stabilized spacecraft," Cornell University, 1988.
[18] T. Meng, H. Wang, Z.-h. Jin, and K. Han, "Attitude stabilization of a pico-satellite by momentum wheel and magnetic coils," Journal of Zhejiang University SCIENCE A, vol. 10, pp. 1617-1623, 2009.
[19] A. S. Mohammed, M. Benyettou, M. Sweeting, and J. Cooksley, "Initial attitude acquisition result of the Alsat-1 first Algerian microsatellite in orbit," in Proceedings Networking, Sensing and Control, 2005. 2005 IEEE, pp. 566-571, 2005.
[20] R. Munakata, "Cubesat design specification rev. 12," The CubeSat Program, California Polytechnic State University, vol. 1, 2009.
[21] C. Özgen, "Design of Kalman Filter Based Attitude Determination Algorithms for a Leo Satellite and for a Satellite Attitude Control Test Setup," Middle East Technical University, 2008.
[22] P. Pal and S. Fox, "The effects of momentum bias on a gravity gradient stabilized spacecraft with active magnetic control," ITHACO, Inc., 1992.
[23] N. Papitashvili. (2014). NRLMSISE-00 Atmosphere Model. Available: http://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php
[24] M. L. Psiaki, F. Martel, and P. K. Pal, "Three-axis attitude determination via Kalman filtering of magnetometer data," Journal of Guidance, Control, and Dynamics, vol. 13, pp. 506-514, 1990.
[25] S. A. Rawashdeh and J. Lumpp, "Nano-satellite passive attitude stabilization systems design by orbital environment modeling and simulation," AIAA Infotech, 2010.
[26] S. A. Rawashdeh and J. E. Lumpp Jr, "Aerodynamic Stability for CubeSats at ISS Orbit." Jornal of Small Satellites, Vol. 2, No. 1, pp. 85-104, 2013
[27] M. H. S. Schalkowsky, "Spacecraft Magnetic Torques," National Aeronautics and Space Administration (NASA), 1969.
[28] J.-K. Shiau and I.-C. Wang, "Unscented Kalman Filtering for Attitude Determination Using MEMS Sensors," Journal of Applied Science and Engineering, vol. 16, p. 165г176, 2013.
[29] H.-N. Shou, J.-S. Sheu, and J.-H. Wang, "Micro-satellite detumbling mode attitude determination and control: UKF approach," in 2010 8th IEEE International Conference on Control and Automation (ICCA), pp. 673-678, 2010.
[30] W. H. Steyn, Y. Hashida, and V. Lappas, "An attitude control system and commissioning results of the SNAP-1 nanosatellite," Surrey Space Centre, University of Surrey, 2000.
[31] A. C. Stickler and K. Alfriend, "Elementary magnetic attitude control system," Journal of Spacecraft and Rockets, vol. 13, pp. 282-287, 1976.
[32] B. O. Sunde, "Sensor modelling and attitude determination for micro-satellite," MSc. thesis, Norwegian University of Science and Technology, 2005.
[33] J. Thoemel. QB50 mission. Available: https://www.qb50.eu/, 2014.
[34] P. Tisa and P. Vergez, "Performance analysis of control algorithms for FalconSat-3," in 16th AAS/AIAA space flight mechanics conference, pp. 22-26, 2006.
[35] V. V. Unhelkar, "Satellite Attitude Estimation using Sun Sensors, Horizon Sensors and Gyros," Indian Institute of Technology, Bombay, 2012.
[36] D. A. Vallado, Fundamentals of astrodynamics and applications vol. 12: Springer, 2001.
[37] J. Vannitsen, J. Sanchez, A. Heimann, T. Y. Lin, Vina, and L. W. Chen, "PHOENIX Critical Design Overview," NCKU, 2013.
[38] M. Vila Fernández, "Mission analysis of QB50, a nanosatellite intended to study the lower thermosphere," University of Liège, 2011.
[39] L. Visagie, "ADCS Interface Control Dovument v2.2," University of Surrey2013.
[40] L. Visagie, "QB50 ADCS Design and Interface Specification," Surrey Space Centre, University of Surrey, 2013.
[41] J. Wertz, "Spacecraft Attitude Determination and Control," in Spacecraft Attitude Determination and Control. vol. 73, J. Wertz, Ed., ed: Springer Netherlands, pp. 1-21, 1978.
[42] Y. Yafei and L. Jianguo, "Comparison of the extended and unscented Kalman filters for satellite motion states estimation," in 2012 International Conference on, Measurement, Information and Control (MIC), pp. 440-444, 2012.
[43] 莊智清, 衛星導航, 全華圖書, 2012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw