進階搜尋


 
系統識別號 U0026-0108201321183600
論文名稱(中文) 含銅碳鋼於氯化鈉水溶液中之腐蝕性質研究
論文名稱(英文) Corrosion behavior of copper-containing carbon steels in NaCl solution
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 林榮信
研究生(英文) Rong-Sin Lin
學號 N56004169
學位類別 碩士
語文別 中文
論文頁數 88頁
口試委員 指導教授-蔡文達
口試委員-劉宏義
口試委員-黃何雄
口試委員-楊聰仁
中文關鍵字 含銅碳鋼  浸泡試驗  動電位極化曲線  交流阻抗頻譜 
英文關鍵字 coppering-containing steels  immersion test  potentiodynamic polarization curves  electrochemical impedance spectroscopy 
學科別分類
中文摘要 本研究係探討銅的添加對碳鋼於3.5 wt% NaCl水溶液中之耐蝕性的影響,以浸泡試驗計算其腐蝕重量損失,利用動電位極化曲線及交流阻抗頻譜量測以了解其電化學耐蝕性質,並利用X光繞射分析儀(X-ray diffraction, XRD)及X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS)分析定電位測試後表面腐蝕產物之結晶結構與化學組態。
浸泡試驗結果顯示,在酸性溶液中,不含銅之SS400有最大的腐蝕重量損失,且隨著Cu含量的增加,其重量損失也隨之下降;在中性及鹼性溶液中,SS400仍有較高之腐蝕量,顯示銅的添加可降低碳鋼之重量損失,且在此環境中,重量損失量並未隨銅含量的增加而明顯減少。動電位極化曲線量測結果指出,腐蝕電位(corrosion potential, Ecorr)不因鋼材銅含量不同而改變,但會隨pH值增加而減小,且含銅碳鋼相較於SS400有較低之陽極電流密度,而當pH值大於10時,於陽極區皆可見鈍化現象。交流阻抗頻譜分析(electrochemical impedance spectroscopy, EIS)結果顯示,在pH = 2之條件下,隨著碳鋼含銅量增加,其極化阻抗(polarization resistance, Rp)可由130 ohm-cm2增加至958 ohm-cm2;於pH = 12之情況下,含有4.5 wt% Cu之碳鋼其阻抗可達3166 ohm-cm2,且當溶液pH值提升,鋼材之阻抗值也隨之提升。此外,施加定電位於-0.7 VSCE持續30分鐘後由XPS分析結果發現,含銅碳鋼表面含有鐵的氧化物、銅及銅的氧化物。綜合上述研究成果,銅的添加有助提升於碳鋼在3.5 wt% NaCl水溶液中之耐蝕性質,尤以酸性條件下,有更加明顯之趨勢。
英文摘要 The corrosion behavior of Cu-containing carbon steels in various acidity 3.5 wt% NaCl solution was investigated. By immersion test to calculated the weight loss. The properties of electrochemical corrosion behavior were obtained from potentiodynamic polarization curves and electrochemical impedance spectroscopy. The corrosion products’ crystal structure and chemical bonding energy after potentiostat testing obtained from the X-ray diffraction and X-ray photoelectron spectroscope.
The immersion test showed that the weight loss of SS400 steel was higher than that of Cu-containing carbon steels in acidic solution. The weight loss of the Cu-containing carbon steels is decreased with increasing Cu content of the carbon steel. Furthermore, the weight loss of SS400 steel was still higher than that of Cu-containing carbon steels in neutral or basic solution. Potentiodynamic polarization curves showed that the corrosion potential (Ecorr) of Cu-containing carbon steels did not change greatly by adding various Cu content in carbon steel. However, the corrosion potential of Cu-containing carbon steels decreased as the pH value of solution increased. In case of anodic region, the anodic current density of Cu-containing carbon steels was lower than that of SS400 steel. There was a passivation region could be observed in the anodic curves with the pH value of solution was more than 10. The electrochemical impedance spectroscopy (EIS) results indicated that the polarization resistance (Rp) of Cu-containing carbon steel varied from 130 ohm-cm2 to 958 ohm-cm2, depending on the Cu content, in acidic solution (pH = 2). On the other hand, the results also shows that the Rp was increased as the solution pH increased. A significant increase in Rp (3166 ohm-cm2) could be obtained for 4.5 wt% Cu in carbon steel, in basic solution (pH = 12). After potentiostatic test at -0.7 VSCE for 30 minutes, iron oxide, Cu oxide and Cu could be formed on the Cu-containing carbon steels, as confirmed by X-ray photoelectron spectroscopy (XPS) analysis According to the results, the corrosion resistance could be improved by adding Cu element for carbon steels in 3.5 wt% NaCl solution, especially under acidic solution.
論文目次 總目錄
中文摘要 I
Abstract III
致謝 V
總目錄 VII
表目錄 IX
圖目錄 X
第一章 前言 1
第二章 文獻回顧 3
2.1 含銅鋼之背景 3
2.2 含銅鋼的腐蝕 3
2.2.1 酸性環境 3
2.2.2 中性環境 6
2.2.3 鹼性環境 7
第三章 實驗方法與步驟 24
3.1 試驗材料 24
3.2 基材特性分析 27
3.3 試驗溶液 27
3.4 浸泡試驗 28
3.5 電化學性質測試 28
3.6 定電位測試(potentiostatic test) 31
第四章 結果與討論 32
4.1 鋼材之基本性質 32
4.2 浸泡試驗結果 37
4.3 鋼材在NaCl水溶液中的耐蝕性質分析結果 41
4.4 鋼材表面腐蝕生成物分析結果 60
4.5 溶液中pH值改變對鋼材耐蝕性質之影響 65
4.6 鋼材銅含量對其耐蝕性質之影響 78
第五章 結論 81
參考文獻 83

表目錄
表2-1 不同銅含量之碳鋼於10 wt% H2SO4溶液中改變浸置時間的交流阻抗頻譜分析結果[9]。 9
表3-1 實驗材料化學成分組成(wt%)。 25
表4-1 鋼材於不同pH之3.5 wt% NaCl水溶液經浸泡14天後之腐蝕速率。 39
表4-2 由動電極化曲線結果計算之腐蝕電位(Ecorr)、腐蝕電流密度(icorr)、極化阻抗(Rp)及腐蝕速率(corrosion rate)。 68
表4-3 交流阻抗頻譜分析之阻抗值。 69

圖目錄
圖2-1 不同銅含量之碳鋼於10 wt% H2SO4溶液之動電位極化曲線[9]。 10
圖2-2 不同銅含量之碳鋼於10 wt% H2SO4溶液之交流阻抗頻譜分析[9]。 11
圖2-3 不同銅含量之碳鋼於10 wt% H2SO4溶液浸泡6小時後之XPS分析結果(a)碳鋼、(b)與(c)分別為含銅量0.2與0.35 wt%之含銅碳鋼[9]。 12
圖2-4 不同含銅含量之碳鋼在42 wt% H2SO4水溶液中浸泡24小時之腐蝕速率與銅含量關係圖[7]。 13
圖2-5 不同含銅含量之碳鋼於在42 wt% H2SO4水溶液中浸泡24小時之動電位極化曲線[7]。 14
圖2-6 含銅不銹鋼於除氧之0.1 M H2SO4水溶液中之動電位極化曲線[23]。 15
圖2-7 不同銅含量之麻田散體不銹鋼於10 wt%之HCl水溶液中之動電位極化曲線[8]。 16
圖2-8 不含銅之低碳鋼與含銅低碳鋼在5 wt% NaCl環境中進行加速循環腐蝕試驗之重量損失量與循環次數之關係圖[25]。 17
圖2-9 低碳鋼於合成自來水中之(a)動電位極化曲線、(b)為由動電位極化曲線計算而得之腐蝕速率[12]。 18
圖2-10 含銅碳鋼於合成自來水中浸泡3小時之Cu元素之EPMA分析結果,可發現銹層與基材界面Cu富集之現象[12]。 19
圖2-11 不同銅含量之不銹鋼在0.05 M NaCl水溶液中之開路電位(a)Austenite及(b)Ferrite[6]。 20
圖2-12 不同銅含量之不銹鋼在0.05 M NaCl水溶液中之動電位極化曲線(a)Austenite及(b)Ferrite[6]。 21
圖2-13 純鐵、純銅與鐵銅合金在含有0.01 M NaCl之Ca(OH)2溶液(pH =10)之極化曲線[10]。 22
圖2-14 於0.01 M NaCl之Ca(OH)2溶液(pH =10)中施加-0.1 VSSE極化10分鐘之陽極電流密度(a)純鐵與鐵銅合金、(b)將(a)之y軸放大[11]。 23
圖3-1 研究架構流程圖。 26
圖3-2 動電位極化曲線阻抗值計算方式。 30
圖4-1 不含銅SS400碳鋼、含銅鋼種A690及特製B、C、D鋼種之XRD繞射分析結果。 33
圖4-2 不含銅SS400碳鋼、含銅鋼種A690及特製B、C、D鋼種之OM金相圖:(a)S (SS400)、(b)A(A690)、(c)B、(d)C及(e)D。 34
圖4-3 編號D鋼種之SEM及EDS分析結果。(a)基材SEM影像、(b)第二相、(c)析出物及(d)EDS結果。 35
圖4-4 鐵-銅二元相圖[34]。 36
圖4-5 不同銅含量鋼材於不同pH值3.5 wt% NaCl水溶液之浸泡試驗重量損失量及腐蝕速率結果。 40
圖4-6 不同銅含量鋼材在3.5 wt% NaCl水溶液(pH = 2)中的極化曲線圖。 45
圖4-7 不同銅含量鋼材在3.5 wt% NaCl水溶液(pH = 2)中的交流阻抗頻譜分析(a)Nyquist及(b)Bode圖。 46
圖4-8 不同銅含量鋼材在3.5 wt% NaCl水溶液(pH = 4)中的極化曲線圖。 48
圖4-9 不同銅含量鋼材在3.5 wt% NaCl水溶液(pH = 4)中的交流阻抗頻譜分析(a)Nyquist及(b)Bode圖。 49
圖4-10 不同銅含量鋼材在3.5 wt% NaCl水溶液(pH = 6)中的極化曲線圖。 51
圖4-11 不同銅含量鋼材在3.5 wt% NaCl水溶液(pH = 6)中的交流阻抗頻譜分析(a)Nyquist及(b)Bode圖。 52
圖4-12 不同銅含量鋼材在3.5 wt% NaCl水溶液(pH = 10)中的極化曲線圖。 54
圖4-13 不同銅含量鋼材在3.5 wt% NaCl水溶液(pH = 10)中的交流阻抗頻譜分析(a)Nyquist及(b)Bode圖。 55
圖4-14 不同銅含量鋼材在3.5 wt% NaCl水溶液(pH = 12)中的極化曲線圖。 57
圖4-15 不同銅含量鋼材在3.5 wt% NaCl水溶液(pH = 12)中的交流阻抗頻譜分析(a)Nyquist及(b)Bode圖。 58
圖4-16 測試鋼種經定電位測試後之XRD分析結果。 62
圖4-17 基材經XPS分析之圖譜(a)Fe 2p3/2及(b)Cu 2p3/2。 63
圖4-18 鋼材經定電位試驗後之XPS分析圖譜(a)Fe 2p3/2及(b)Cu 2p3/2。 64
圖4-19 各式碳鋼於3.5 wt% NaCl水溶液中的腐蝕電位(Ecorr)及腐蝕電流密度(icorr)隨銅含量及溶液pH值之趨勢圖。 70
圖4-20 Fe-H2O系統於25 oC下之Pourbaix diagram[37]。 71
圖4-21 測試鋼種在不同pH值之3.5 wt% NaCl水溶液中的極化曲線圖(a)SS400及(b)含4.5 wt% Cu特製鋼材。 72
圖4-22 編號S鋼種在不同pH值之3.5 wt% NaCl水溶液中的交流阻抗頻譜分析(a)Nyquist及(b)Bode圖。 73
圖4-23 編號D鋼種在不同pH值之3.5 wt% NaCl水溶液中的交流阻抗頻譜分析(a)Nyquist及(b)Bode圖。 75
圖4-24 測試鋼種在不同pH值之3.5 wt% NaCl水溶液中的阻抗值之(a)直流訊號及(b)交流訊號圖。 77
參考文獻 1. R. H. McCuen and P. Albrecht, “Effect of Alloy Composition on Atmospheric Corrosion of Weathering Steel”, Journal of Materials in Civil Engineering, Vol. 17 (2005) 117-125.
2. J. W. Qiu, V. Thiyagarajan, S. Cheung and P. Y. Qian, “Toxic Effects of Copper on Larval Development of the Barnacle Balanus Amphitrite ”, Marine Pollution Bulletin, Vol. 51 (2005) 688-693.
3. M. Perez, G. Blustein, M. Garcia, B. D. Amo and M. Stupak, “Cupric Tannate: A Low Copper Content Antifouling Pigment”, Progress in Organic Coatings, Vol. 55 (2006) 311-315.
4. Y. P. Rao, V. U. Devi and D. G. V. P. Rao, “Copper Toxicity in Tropical Barnacles, Balanus Amphitrite and Balanus Tintinnabulum”, Water , Air and Soil Pollution, Vol. 27 (1986) 109-115.
5. W. H. Lang, R. B. Forward, D. C. Miller and M. Marcy, “Acute Toxicity and Sublethal Behavioral Effects of Copper on Barnacle Nauplii”, Marine Biology, Vol. 58 (1980) 139-145.
6. E. E. Oguzie, J. Li, Y. Liu, D. Chen, Y. Li, K. Yang and F. Wang, “Electrochemical Corrosion Behavior of Novel Cu-containing Antimicrobial Austenitic and Ferritic Stainless Steels in Chloride Media”, Journal of Materials Science, Vol. 45 (2010) 5902-5909.
7. E. Williams and M. E. Komp, “Effect of Copper Content of Carbon Steel on Corrosion in Sulfuric Acid”, Corrosion, Vol. 21 (1965) 9-21.
8. H. Geng, X. Wu, H. Wang and Y. Min, “Effects of Copper Content on the Machinability and Corrosion Resistance of Martensitic Stainless Steel”, Journal of Materials Science, Vol. 43 (2008) 83-87.
9. J. H. Hong, S. H. Lee, J. G. Kim and J. B. Yoon, ”Corrosion Behavior of Copper Containing Low Alloy Steels in Sulphuric Acid”, Corrosion Science, Vol. 54 (2012) 174-182.
10. J. K. Kim, A. Nishikata and T. Tsuru, “Influence of Copper on Iron Corrosion on Iron Corrosion in Weakly Alkaline Environment Containing Chloride Ions”, Materials Transactions, Vol. 44, No. 3 (2003) 396-400.
11. J. K. Kim, “An Electrochemical Study on the Effect of Pitting Inhibition in Weakly Alkaline Solution by Copper Addition in Pure Iron”, Metals and Materials International, Vol. 9, No. 1 (2003) 47-51.
12. Y. S. Choi, J. J. Shim and J. G. Kim, “Effects of Cr, Cu, Ni and Ca on The Corrosion Behavior of Low Carbon Steel in Synthetic Tap Water”, Journal of Alloys and Compounds, Vol. 391 (2005) 161-169.
13. G. C. Liu, J. H. Jun, E. H. Han and K. Wei, “Progress in Research on Rust Layer of Weathering Steel”, Corrosion Science and Protection Technology, Vol. 18 (2006) 268-272.
14. C. Wang and Z. Qi, “Chemical Composition and Property of Atmospheric Corrosion Steels”, Special Steel, Vol. 18 (1997) 13-19.
15. F. Farelas, M. Galicia, B. Brown, S. Nesic and H. Castaneda, “Evolution of Dissolution Processes at the Interface of Carbon Steel Corroding in a CO2 Environment studied by EIS“, Corrosion Science, Vol. 52 (2010) 509-517.
16. G. Moretti, F. Guidi and G. Grion, “Tryptamine as a Green Iron Corrosion Inhibitor in 0.5 M Deaerated Sulphuric Acid”, Corrosion Science, Vol. 46 (2004) 387-403.
17. U. R. Evans, “An Introduction to Metallic Corrosion”, Edward Arnold Ltd., (1960) 56.
18. J. Yuan, L. Wen and W. Shen, “The Effect of Copper on the Anodic Dissolution Behaviour of Austenitic Stainless Steel in Acidic Chloride Solution”, Corrosion Science, Vol. 33 (1992) 851-859.
19. M. Seo, G. Hultquist, C. Leygraf and N. Sato, “The Influence of Minor Alloying Elements (Nb, Ti and Cu) on the Corrosion Resistivity of Ferritic Stainless Steel in Sulfuric Acid Solution”, Corrosion Science, Vol. 26 (1986) 949-960.
20. T. Ujiro, S. Satoh, R. W. Staehle and W. H. Smyrl,”Effect of Alloying Cu on the Corrosion Resistance of Stainless Steels in Chloride Media”, Corrosion Science, Vol.43 (2001) 2185-2200.
21. J. Banas and A. Mazurkiewicz, “The Effect of Copper on Passivity and Corrosion Behaviour of Ferritic and Ferritic-Austenitc Stainless Steels”, Materials Science and Engineering, Vol. A277 (2000) 183-191.
22. A. Pardo, M. C. Merino, M. Carboneras, F. Viejo, R. Arrabal and J. Munoz, “Influence of Cu and Sn Content in the Corrosion of AISI 304 and 316 Stainless Steels in H2SO4”, Corrosion Science, Vol. 48 (2006) 1075-1092.
23. H. T. Lin, W. T. Tsai, J. T Lee and C. S. Huang, “The Electrochemical and Corrosion Behavior of Austenitic Stainless Steel Containing Cu”, Corrosion Science, Vol. 33 (1992) 691-697.
24. M. Sugiyama, T. Hara and H. Asahi, “Roles of Copper and Nickel in 13%Cr Stainless Steel for Improvement of Wet Carbon Dioxide Corrosion Resistance”, Corrosion, Vol. 57 (2001) 777-786.
25. Y. Y. Chen, H. J. Tzeng, L. I. Wei, L. H. Wang, J. C. Oung and H. C. Shih, “Corrosion Resistance and Mechanical Properties of low-alloy Steels under Atmospheric Conditions”, Corrosion Science, Vol. 47 (2005) 1001-1021.
26. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano and T. Misawa, “The Long Term Growth of the Protective Rust Layer Formed on Weathering Steel by Atmospheric Corrosion During a Quarter of a Century”, Corrosion Science, Vol. 36 (1994) 283-299.
27. M. Stratmann, K. Bohnenkamp and T. Ramchandran, “The Influence of Copper upon the Atmospheric Corrosion of Iron”, Corrosion Science, Vol. 27 (1987) 905-926.
28. D.A. Jones, “Principles and Prevention of Corrosion”, 2nd ed., Prentice-Hall, NJ (1996) 76.
29. G. F. V. Voort, “Metallography-Principles and Practice”, 1st ed., McGraw-Hill Book Company, (1984) 632-655.
30. ASTM G1-03, “Standard Practice for Preparing, Cleaning, and Evaluation Corrosion Test Specimens”, (2011).
31. F. A. Shunk, “Constitution of Binary Alloys Second Supplement”, McGraw-Hill Book Company, (1969) 287-289.
32. P. M. Hansen, “Constitution of Binary Alloys”, 2nd ed., McGraw-Hill Book Company, (1958) 2058-2060.
33. T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, ”Binary Alloy Phase Diagrams”, 2nd ed., The Japan Institute of Metals, Vol. 2 (1990) 1408-1410.
34. J. R. Davis, S. D. Henry, B. R. Sanders, N. Hrivnak, J. A. Kinson and W. W. Scott, “ASM Specialty Copper and Copper Alloys”, 1st ed., ASM International, (2001) 372.
35. Y. J. Lu, R. M. Tian, J. Zhou and F. Xue, “Influence of deformation processing on mechanical and conductivity properties of Cu-Fe composites”, The Chinese Journal of Nonferrous Metals, Vol. 19 (2009) 1480-1487.
36. H. B. Li, A. X. He, L. Cao, J. Yang and X. R. Li, “Research on Characteristics and Applications of Cu/Fe Composite Powder”, Sichuan Nonferrous Metals, Vol. 1 (2005) 18-21.
37. P. R. Roberge, “Corrosion Egnineering-Principles and Practice”, 1st ed., The Mc-Graw Hill Companies, (2008) 83-84.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw