進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0108201317365300
論文名稱(中文) Epstein-Barr病毒誘發血清類澱粉蛋白質A及其對於免疫抑制的潛在貢獻
論文名稱(英文) Epstein-Barr virus induces serum amyloid A that potentially contributes to immunosuppression
校院名稱 成功大學
系所名稱(中) 微生物及免疫學研究所
系所名稱(英) Department of Microbiology & Immunology
學年度 101
學期 2
出版年 102
研究生(中文) 林韋宏
研究生(英文) Wei-Hung Lin
學號 S46001082
學位類別 碩士
語文別 中文
論文頁數 81頁
口試委員 指導教授-張堯
口試委員-胡承波
口試委員-林以行
口試委員-蔣輯武
中文關鍵字 EB病毒  鼻咽癌  Rta  LMP1  血清類澱粉蛋白質A (SAA)  IL-10 
英文關鍵字 EBV  nasopharyngeal carcinoma  Rta  LMP1  SAA  IL-10 
學科別分類
中文摘要 鼻咽癌是一種與EB病毒相關的上皮腫瘤。鼻咽癌的生成與復發時常伴隨著血清類澱粉蛋白質A (SAA) 的大量表現。SAA是一個急性發炎時的指標,而且可能幫助腫瘤的生成與惡化。在鼻咽癌病患的血清當中,EB病毒DNA的量與SAA呈現正相關,因此我們想知道EB病毒是否且如何調控SAA的表現,以及SAA對於鼻咽癌可能有何生物功能。首先,我們發現當EB病毒在鼻咽癌細胞株中進入溶裂期感染時,會誘發SAA1、2、4的大量表現。藉由基因缺失與回補的實驗,證實EB病毒的致癌蛋白質LMP1對於EB病毒誘發SAA的產生是重要的。雖然單獨表現LMP1不足以產生大量的SAA,但同時表現LMP1和一個EB病毒溶裂期的轉錄因子Rta時,則對於誘發SAA的表現具有加乘作用。這種加乘效用需要Rta的入核訊號和轉錄活化區域,以及LMP1 的兩個C端訊息活化區域。LMP1所活化的 NF-κB訊息傳遞路徑對於EB病毒誘發SAA的產生是重要的。此外,我們在SAA基因啟動子中的NF-κB結合位置附近找到一個Rta可能結合的序列,這或許能解釋LMP1和Rta對於SAA的表現為何具有加乘作用。與此假設相符的是,同時表現Rta和NF-κB轉錄因子p65對於誘發SAA表現一樣具有加乘效果。在探討SAA功能方面,我們發現SAA1重組蛋白質和EB病毒所誘發的SAA都會促使人類週邊血單核細胞表現介白素-10 (IL-10),而已知IL-10是一種與鼻咽癌逃脫免疫攻擊有關的細胞激素。因此,我們推論EB病毒蛋白質加乘性誘發產生的SAA可能會促進鼻咽癌腫瘤的免疫抑制反應,因而幫助鼻咽癌的惡性發展。
英文摘要 Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated epithelial cancer. The onset and relapse of NPC have been linked to an elevated serum level of serum amyloid A (SAA), a marker of acute inflammation and also a potential factor contributing to cancer progression. In NPC patients’ sera, the level of EBV DNA correlates with that of SAA, so we wondered whether and how SAA expression is upregulated by EBV and what biologic effects SAA may exert on NPC. First we found that expression of SAA1, SAA2 and SAA4 genes was dramatically induced during EBV reactivate into the lytic cycle in NPC cells. By gene knockout and compensation approaches, we demonstrated that an EBV oncoprotein LMP1 was required for the SAA induction in EBV-infected cells. Although LMP1 alone was not sufficient to cause prominent SAA induction, coexpression of LMP1 and a viral lytic transactivator Rta synergistically induced SAA expression. The synergistic SAA induction required nuclear localization signal and the transactivation domain of Rta, as well as two carboxyl terminal activation regions of LMP1. The NF-κB signaling pathway, which was activated by LMP1, was critical for the EBV-induced SAA expression. We found a putative Rta-binding element adjacent to a NF-B element in SAA promoters, which may explain the synergistic SAA induction. Consistently, coexpression of Rta and p65, a member of NF-κB transcription factors, also caused synergistic SAA induction. Functionally, recombinant SAA1 protein or EBV-induced SAA drove human peripheral blood mononuclear cells to express interleukin-10, an immunosuppressive cytokine associated with local immune evasion of NPC. Therefore, we propose that SAA synergistically upregulated by EBV proteins may contribute to immune suppression and malignant progression of NPC.
論文目次 目錄
中文摘要........................................................ Ⅰ
Abstract......................................................... Ⅱ
致謝........................................................... Ⅲ
目錄............................................................ Ⅳ
圖目錄.......................................................... Ⅵ
縮寫索引表...................................................... Ⅶ

緒論
一、Epstein-Barr 病毒簡介......................................... 1
二、EB病毒生活史:潛伏期與溶裂期............................... 2
三、EB病毒潛伏期蛋白質LMP1.................................... 4
四、EB病毒溶裂期蛋白質Rta...................................... 6
五、EB病毒相關疾病............................................. 8
六、鼻咽癌...................................................... 9
七、鼻咽癌與EB病毒溶裂期之相關性............................... 10
八、EB病毒溶裂期的免疫逃避機制................................. 11
九、血清類澱粉蛋白質A (serum amyloid A, SAA) ..................... 13
十、SAA和癌症的相關性.......................................... 16
十一、SAA和鼻咽癌的相關性...................................... 17
十二、研究動機與假設............................................ 17

材料與方法
一、細胞株及培養方式............................................ 18
二、細胞轉染質體DNA或siRNA................................... 18
三、質體DNA及siRNA........................................... 19
四、質體DNA轉型與製備......................................... 20
五、抽取細胞RNA................................................ 21
六、cDNA之備製................................................. 21
七、即時定量PCR................................................ 22
八、西方墨點法.................................................. 24
九、酵素免疫分析 (ELISA) ....................................... 27
十、藥物處理實驗................................................ 28
十一、細胞培養上清液之收取...................................... 28
十二、週邊血單核細胞的分離和處理................................ 29
十三、抗體...................................................... 30
十四、數據分析.................................................. 30
實驗結果
一、EB病毒溶裂期感染會大量誘發SAA的表現,而且LMP1對於EB病毒
促進SAA表現是必需的....................................... 31
二、EB病毒蛋白質Rta和LMP1對於誘發SAA的表現具有加乘作用..... 32
三、Rta 的入核訊號及轉錄活化區域對於誘發SAA表現是必需的........ 32
四、LMP1 的C端訊息活化區域 (CTAR 1、2) 對於誘發SAA表現是必需的
............................................................ 32
五、NF-κB訊息傳遞路徑對於EB病毒活化SAA是必需的.............. 33
六、LMP1會活化NF-κB訊息傳遞路徑.............................. 33
七、NF-κB轉錄因子p65和Rta對於誘發SAA的表現具有加乘作用...... 34
八、SAA1重組蛋白質會誘發人類週邊血單核細胞 (PBMC) 表現IL-10... 34
九、Rta和LMP1所誘發產生的SAA會促使週邊血單核細胞表現IL-10... 35

討論
一、實驗成果總結................................................ 36
二、IL-10於慢性病毒感染的角色................................... 36
三、EB病毒調控細胞產生IL-10的方法.............................. 37
四、EB病毒誘發SAA表現的可能機制.............................. 38
五、鼻咽癌組織中SAA的來源..................................... 40
六、SAA對於腫瘤局部免疫微環境的影響............................ 41
七、SAA增加細胞侵襲的潛力...................................... 42
八、SAA調控血管新生............................................ 43
九、SAA在鼻咽癌治療上的潛在應用性.............................. 43

參考文獻........................................................ 45
圖表............................................................ 64
自述............................................................ 81

圖目錄

圖一、LMP1活化NF-κB訊息傳遞路徑.............................. 64
圖二、EB病毒溶裂期感染會大量誘發SAA的表現,而且LMP1對於EB病
毒促進SAA表現是必需的................................... 65
圖三、EB病毒的蛋白質LMP1對於EB病毒誘發SAA表現是必需的..... 66
圖四、EB病毒蛋白質Rta和LMP1對於促進SAA的表現具有加乘作用... 67
圖五、Rta 的入核訊號及轉錄活化區域對於誘發SAA表現是必需的...... 68
圖六、LMP1 的C端訊息活化區域 (CTAR 1和CTAR2) 對於誘發SAA表
現是必需的................................................ 69
圖七、NF-κB訊息傳遞路徑對於EB病毒誘發SAA表現是必需的........ 70
圖八、LMP1會活化NF-κB訊息傳遞路徑............................ 71
圖九、SAA1基因啟動子前500個核苷酸含有一個已知的C/EBP結合位置和
一個NF-κB結合位置,中間有一個可能的Rta結合位置 (RRE) ... 72
圖十、SAA2基因啟動子前500個核苷酸含有一個已知的C/EBP結合位置和
一個NF-κB結合位置,中間有一個可能的Rta結合位置 (RRE) ... 73
圖十一、SAA1和SAA2的基因啟動子含有已知的C/EBP和NF-κB結合位置
,而且C/EBP和NF-κB結合位置的中間存在一個可能的Rta結合位置
(RRE)..................................................... 74
圖十二、NF-κB轉錄因子p65和Rta對於誘發SAA的表現具有加乘作用.. 75
圖十三、SAA1重組蛋白質會誘發人類週邊血單核細胞 (PBMC) 產生IL-10
.......................................................... 76
圖十四、表現LMP1 和Rta的鼻咽癌細胞會分泌物質促進週邊血單核細胞產
生IL-10................................................... 77
圖十五、表現Rta和LMP1的鼻咽癌細胞所產生的培養液會促進週邊血單核
細胞產生IL-10和SAA1, 2................................... 78
圖十六、Rta和LMP1所誘發產生的SAA會促使週邊血單核細胞產生IL-10
.......................................................... 79
圖十七、本研究結論模式圖........................................ 80
參考文獻 Abusamra, A.J., Zhong, Z., Zheng, X., Li, M., Ichim, T.E., Chin, J.L., and Min, W.P. (2005). Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis 35, 169-173.

Adamson, A.L., Darr, D., Holley-Guthrie, E., Johnson, R.A., Mauser, A., Swenson, J., and Kenney, S. (2000). Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol 74, 1224-1233.

Aldo-Benson, M.A., and Benson, M.D. (1982). SAA suppression of immune response in vitro: evidence for an effect on T cell-macrophage interaction. J Immunol 128, 2390-2392.

An, X., Wang, F.H., Ding, P.R., Deng, L., Jiang, W.Q., Zhang, L., Shao, J.Y., and Li, Y.H. (2011). Plasma Epstein-Barr virus DNA level strongly predicts survival in metastatic/recurrent nasopharyngeal carcinoma treated with palliative chemotherapy. Cancer 117, 3750-3757.

Ancsin, J.B., and Kisilevsky, R. (1999a). The heparin/heparan sulfate-binding site on apo-serum amyloid A. Implications for the therapeutic intervention of amyloidosis. J Biol Chem 274, 7172-7181.

Ancsin, J.B., and Kisilevsky, R. (1999b). Laminin interactions with the apoproteins of acute-phase HDL: preliminary mapping of the laminin binding site on serum amyloid A. Amyloid 6, 37-47.

Badolato, R., Wang, J.M., Murphy, W.J., Lloyd, A.R., Michiel, D.F., Bausserman, L.L., Kelvin, D.J., and Oppenheim, J.J. (1994). Serum amyloid A is a chemoattractant: induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J Exp Med 180, 203-209.

Baranova, I.N., Vishnyakova, T.G., Bocharov, A.V., Kurlander, R., Chen, Z., Kimelman, M.L., Remaley, A.T., Csako, G., Thomas, F., Eggerman, T.L., et al. (2005). Serum amyloid A binding to CLA-1 (CD36 and LIMPII analogous-1) mediates serum amyloid A protein-induced activation of ERK1/2 and p38 mitogen-activated protein kinases. J Biol Chem 280, 8031-8040.

Bauer, G. (1983). Quantitative analysis of the cooperative effect between inducers of Epstein-Barr virus antigen synthesis. J Gen Virol 64 (Pt 6), 1337-1346.

Betts, J.C., Cheshire, J.K., Akira, S., Kishimoto, T., and Woo, P. (1993). The role of NF-kappa B and NF-IL6 transactivating factors in the synergistic activation of human serum amyloid A gene expression by interleukin-1 and interleukin-6. J Biol Chem 268, 25624-25631.

Bouvier, G., Hergenhahn, M., Polack, A., Bornkamm, G.W., de The, G., and Bartsch, H. (1995). Characterization of macromolecular lignins as Epstein-Barr virus inducer in foodstuff associated with nasopharyngeal carcinoma risk. Carcinogenesis 16, 1879-1885.

Brady, M.T., MacDonald, A.J., Rowan, A.G., and Mills, K.H. (2003). Hepatitis C virus non-structural protein 4 suppresses Th1 responses by stimulating IL-10 production from monocytes. Eur J Immunol 33, 3448-3457.

Brooks, D.G., Trifilo, M.J., Edelmann, K.H., Teyton, L., McGavern, D.B., and Oldstone, M.B. (2006). Interleukin-10 determines viral clearance or persistence in vivo. Nat Med 12, 1301-1309.

Brooks, L., Yao, Q.Y., Rickinson, A.B., and Young, L.S. (1992). Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J Virol 66, 2689-2697.

Chang, L.K., Chung, J.Y., Hong, Y.R., Ichimura, T., Nakao, M., and Liu, S.T. (2005). Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res 33, 6528-6539.

Chang, L.K., Lee, Y.H., Cheng, T.S., Hong, Y.R., Lu, P.J., Wang, J.J., Wang, W.H., Kuo, C.W., Li, S.S., and Liu, S.T. (2004a). Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J Biol Chem 279, 38803-38812.

Chang, P.J., Chang, Y.S., and Liu, S.T. (1998). Role of Rta in the translation of bicistronic BZLF1 of Epstein-Barr virus. J Virol 72, 5128-5136.

Chang, Y., Lee, H.H., Chang, S.S., Hsu, T.Y., Wang, P.W., Chang, Y.S., Takada, K., and Tsai, C.H. (2004b). Induction of Epstein-Barr virus latent membrane protein 1 by a lytic transactivator Rta. J Virol 78, 13028-13036.

Chen, L.W., Chang, P.J., Delecluse, H.J., and Miller, G. (2005). Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J Virol 79, 9635-9650.

Chen, Y.J., Tsai, W.H., Chen, Y.L., Ko, Y.C., Chou, S.P., Chen, J.Y., and Lin, S.F. (2011). Epstein-Barr virus (EBV) Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells. PLoS One 6, e17809.

Chen, Y.L., Chen, Y.J., Tsai, W.H., Ko, Y.C., Chen, J.Y., and Lin, S.F. (2009). The Epstein-Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells. Cell Cycle 8, 58-65.

Chien, Y.C., Chen, J.Y., Liu, M.Y., Yang, H.I., Hsu, M.M., Chen, C.J., and Yang, C.S. (2001). Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 345, 1877-1882.

Cho, W.C., Yip, T.T., Cheng, W.W., and Au, J.S. (2010). Serum amyloid A is elevated in the serum of lung cancer patients with poor prognosis. Br J Cancer 102, 1731-1735.

Cho, W.C., Yip, T.T., Yip, C., Yip, V., Thulasiraman, V., Ngan, R.K., Lau, W.H., Au, J.S., Law, S.C., Cheng, W.W., et al. (2004). Identification of serum amyloid a protein as a potentially useful biomarker to monitor relapse of nasopharyngeal cancer by serum proteomic profiling. Clin Cancer Res 10, 43-52.

Cocco, E., Bellone, S., El-Sahwi, K., Cargnelutti, M., Buza, N., Tavassoli, F.A., Schwartz, P.E., Rutherford, T.J., Pecorelli, S., and Santin, A.D. (2010). Serum amyloid A: a novel biomarker for endometrial cancer. Cancer 116, 843-851.

Cochet, C., Martel-Renoir, D., Grunewald, V., Bosq, J., Cochet, G., Schwaab, G., Bernaudin, J.F., and Joab, I. (1993). Expression of the Epstein-Barr virus immediate early gene, BZLF1, in nasopharyngeal carcinoma tumor cells. Virology 197, 358-365.

Couper, K.N., Blount, D.G., and Riley, E.M. (2008). IL-10: the master regulator of immunity to infection. J Immunol 180, 5771-5777.

Dawson, C.W., Port, R.J., and Young, L.S. (2012). The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol 22, 144-153.

de-Vathaire, F., Sancho-Garnier, H., de-The, H., Pieddeloup, C., Schwaab, G., Ho, J.H., Ellouz, R., Micheau, C., Cammoun, M., Cachin, Y., et al. (1988). Prognostic value of EBV markers in the clinical management of nasopharyngeal carcinoma (NPC): a multicenter follow-up study. Int J Cancer 42, 176-181.

De Santo, C., Arscott, R., Booth, S., Karydis, I., Jones, M., Asher, R., Salio, M., Middleton, M., and Cerundolo, V. (2010). Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 11, 1039-1046.

de Waal Malefyt, R., Haanen, J., Spits, H., Roncarolo, M.G., te Velde, A., Figdor, C., Johnson, K., Kastelein, R., Yssel, H., and de Vries, J.E. (1991). Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174, 915-924.

Delecluse, H.J., Hilsendegen, T., Pich, D., Zeidler, R., and Hammerschmidt, W. (1998). Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A 95, 8245-8250.

Dirmeier, U., Neuhierl, B., Kilger, E., Reisbach, G., Sandberg, M.L., and Hammerschmidt, W. (2003). Latent membrane protein 1 is critical for efficient growth transformation of human B cells by epstein-barr virus. Cancer Res 63, 2982-2989.

Dukers, D.F., Meij, P., Vervoort, M.B., Vos, W., Scheper, R.J., Meijer, C.J., Bloemena, E., and Middeldorp, J.M. (2000). Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J Immunol 165, 663-670.

Edwards, R.H., Marquitz, A.R., and Raab-Traub, N. (2008). Epstein-Barr virus BART microRNAs are produced from a large intron prior to splicing. J Virol 82, 9094-9106.

Ejrnaes, M., Filippi, C.M., Martinic, M.M., Ling, E.M., Togher, L.M., Crotty, S., and von Herrath, M.G. (2006). Resolution of a chronic viral infection after interleukin-10 receptor blockade. J Exp Med 203, 2461-2472.

Eliopoulos, A.G., Blake, S.M., Floettmann, J.E., Rowe, M., and Young, L.S. (1999). Epstein-Barr virus-encoded latent membrane protein 1 activates the JNK pathway through its extreme C terminus via a mechanism involving TRADD and TRAF2. J Virol 73, 1023-1035.

Epstein, M.A., Achong, B.G., and Barr, Y.M. (1964). Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet 1, 702-703.

Faty, A., Ferre, P., and Commans, S. (2012). The acute phase protein Serum Amyloid A induces lipolysis and inflammation in human adipocytes through distinct pathways. PLoS One 7, e34031.

Feederle, R., Kost, M., Baumann, M., Janz, A., Drouet, E., Hammerschmidt, W., and Delecluse, H.J. (2000). The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19, 3080-3089.

Feng, B.J., Jalbout, M., Ayoub, W.B., Khyatti, M., Dahmoul, S., Ayad, M., Maachi, F., Bedadra, W., Abdoun, M., Mesli, S., et al. (2007). Dietary risk factors for nasopharyngeal carcinoma in Maghrebian countries. Int J Cancer 121, 1550-1555.

Feng, P., Ren, E.C., Liu, D., Chan, S.H., and Hu, H. (2000). Expression of Epstein-Barr virus lytic gene BRLF1 in nasopharyngeal carcinoma: potential use in diagnosis. J Gen Virol 81, 2417-2423.

Findeisen, P., Zapatka, M., Peccerella, T., Matzk, H., Neumaier, M., Schadendorf, D., and Ugurel, S. (2009). Serum amyloid A as a prognostic marker in melanoma identified by proteomic profiling. J Clin Oncol 27, 2199-2208.

Flanagan, J., Middeldorp, J., and Sculley, T. (2003). Localization of the Epstein-Barr virus protein LMP 1 to exosomes. J Gen Virol 84, 1871-1879.

Fujieda, S., Lee, K., Sunaga, H., Tsuzuki, H., Ikawa, H., Fan, G.K., Imanaka, M., Takenaka, H., and Saito, H. (1999). Staining of interleukin-10 predicts clinical outcome in patients with nasopharyngeal carcinoma. Cancer 85, 1439-1445.

Geiger, T.R., and Martin, J.M. (2006). The Epstein-Barr virus-encoded LMP-1 oncoprotein negatively affects Tyk2 phosphorylation and interferon signaling in human B cells. J Virol 80, 11638-11650.

Gires, O., Kohlhuber, F., Kilger, E., Baumann, M., Kieser, A., Kaiser, C., Zeidler, R., Scheffer, B., Ueffing, M., and Hammerschmidt, W. (1999). Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J 18, 3064-3073.

Gruffat, H., Duran, N., Buisson, M., Wild, F., Buckland, R., and Sergeant, A. (1992). Characterization of an R-binding site mediating the R-induced activation of the Epstein-Barr virus BMLF1 promoter. J Virol 66, 46-52.

Gruffat, H., Manet, E., Rigolet, A., and Sergeant, A. (1990). The enhancer factor R of Epstein-Barr virus (EBV) is a sequence-specific DNA binding protein. Nucleic Acids Res 18, 6835-6843.

Gruffat, H., and Sergeant, A. (1994). Characterization of the DNA-binding site repertoire for the Epstein-Barr virus transcription factor R. Nucleic Acids Res 22, 1172-1178.

Guasparri, I., Bubman, D., and Cesarman, E. (2008). EBV LMP2A affects LMP1-mediated NF-kappaB signaling and survival of lymphoma cells by regulating TRAF2 expression. Blood 111, 3813-3820.

Henle, G., Henle, W., and Diehl, V. (1968). Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci U S A 59, 94-101.

Henle, W., Ho, J.H., Henle, G., Chau, J.C., and Kwan, H.C. (1977). Nasopharyngeal carcinoma: significance of changes in Epstein-Barr virus-related antibody patterns following therapy. Int J Cancer 20, 663-672.

Higuchi, M., Kieff, E., and Izumi, K.M. (2002). The Epstein-Barr virus latent membrane protein 1 putative Janus kinase 3 (JAK3) binding domain does not mediate JAK3 association or activation in B-lymphoma or lymphoblastoid cell lines. J Virol 76, 455-459.

Hoebe, E.K., Wille, C., Hopmans, E.S., Robinson, A.R., Middeldorp, J.M., Kenney, S.C., and Greijer, A.E. (2012). Epstein-Barr virus transcription activator R upregulates BARF1 expression by direct binding to its promoter, independent of methylation. J Virol 86, 11322-11332.

Horst, D., van Leeuwen, D., Croft, N.P., Garstka, M.A., Hislop, A.D., Kremmer, E., Rickinson, A.B., Wiertz, E.J., and Ressing, M.E. (2009). Specific targeting of the EBV lytic phase protein BNLF2a to the transporter associated with antigen processing results in impairment of HLA class I-restricted antigen presentation. J Immunol 182, 2313-2324.

Hsu, T.Y., Chang, Y., Wang, P.W., Liu, M.Y., Chen, M.R., Chen, J.Y., and Tsai, C.H. (2005). Reactivation of Epstein-Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol 86, 317-322.

Huang, S.Y., Hsieh, M.J., Chen, C.Y., Chen, Y.J., Chen, J.Y., Chen, M.R., Tsai, C.H., Lin, S.F., and Hsu, T.Y. (2012). Epstein-Barr virus Rta-mediated transactivation of p21 and 14-3-3sigma arrests cells at the G1/S transition by reducing cyclin E/CDK2 activity. J Gen Virol 93, 139-149.

Huber, R., Pietsch, D., Panterodt, T., and Brand, K. (2012). Regulation of C/EBPbeta and resulting functions in cells of the monocytic lineage. Cell Signal 24, 1287-1296.

Hui, E.P., Taylor, G.S., Jia, H., Ma, B.B., Chan, S.L., Ho, R., Wong, W.L., Wilson, S., Johnson, B.F., Edwards, C., et al. (2013). Phase I trial of recombinant modified vaccinia ankara encoding Epstein-Barr viral tumor antigens in nasopharyngeal carcinoma patients. Cancer Res 73, 1676-1688.

Husebekk, A., Skogen, B., Husby, G., and Marhaug, G. (1985). Transformation of amyloid precursor SAA to protein AA and incorporation in amyloid fibrils in vivo. Scand J Immunol 21, 283-287.

Ji, J., Sahu, G.K., Braciale, V.L., and Cloyd, M.W. (2005). HIV-1 induces IL-10 production in human monocytes via a CD4-independent pathway. Int Immunol 17, 729-736.

Jones, R.J., Seaman, W.T., Feng, W.H., Barlow, E., Dickerson, S., Delecluse, H.J., and Kenney, S.C. (2007). Roles of lytic viral infection and IL-6 in early versus late passage lymphoblastoid cell lines and EBV-associated lymphoproliferative disease. Int J Cancer 121, 1274-1281.

Kaykas, A., Worringer, K., and Sugden, B. (2002). LMP-1's transmembrane domains encode multiple functions required for LMP-1's efficient signaling. J Virol 76, 11551-11560.

Keryer-Bibens, C., Pioche-Durieu, C., Villemant, C., Souquere, S., Nishi, N., Hirashima, M., Middeldorp, J., and Busson, P. (2006). Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC Cancer 6, 283.

Kim, S.H., Lechman, E.R., Bianco, N., Menon, R., Keravala, A., Nash, J., Mi, Z., Watkins, S.C., Gambotto, A., and Robbins, P.D. (2005). Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol 174, 6440-6448.

Kisilevsky, R., and Subrahmanyan, L. (1992). Serum amyloid A changes high density lipoprotein's cellular affinity. A clue to serum amyloid A's principal function. Lab Invest 66, 778-785.

Kouzarides, T., Packham, G., Cook, A., and Farrell, P.J. (1991). The BZLF1 protein of EBV has a coiled coil dimerisation domain without a heptad leucine repeat but with homology to the C/EBP leucine zipper. Oncogene 6, 195-204.

Kung, C.P., and Raab-Traub, N. (2010). Epstein-Barr virus latent membrane protein 1 modulates distinctive NF- kappaB pathways through C-terminus-activating region 1 to regulate epidermal growth factor receptor expression. J Virol 84, 6605-6614.

Kutok, J.L., and Wang, F. (2006). Spectrum of Epstein-Barr virus-associated diseases. Annu Rev Pathol 1, 375-404.

Laichalk, L.L., and Thorley-Lawson, D.A. (2005). Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol 79, 1296-1307.

Lambert, S.L., and Martinez, O.M. (2007). Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10. J Immunol 179, 8225-8234.

Lan, Y.Y., Hsiao, J.R., Chang, K.C., Chang, J.S., Chen, C.W., Lai, H.C., Wu, S.Y., Yeh, T.H., Chang, F.H., Lin, W.H., et al. (2012). Epstein-Barr virus latent membrane protein 2A promotes invasion of nasopharyngeal carcinoma cells through ERK/Fra-1-mediated induction of matrix metalloproteinase 9. J Virol 86, 6656-6667.

Lan, Y.Y., Yeh, T.H., Lin, W.H., Wu, S.Y., Lai, H.C., Chang, F.H., Takada, K., and Chang, Y. (2013). Epstein-Barr virus Zta upregulates matrix metalloproteinases 3 and 9 that synergistically promote cell invasion in vitro. PLoS One 8, e56121.

Lau, K.M., Cheng, S.H., Lo, K.W., Lee, S.A., Woo, J.K., van Hasselt, C.A., Lee, S.P., Rickinson, A.B., and Ng, M.H. (2007). Increase in circulating Foxp3+CD4+CD25(high) regulatory T cells in nasopharyngeal carcinoma patients. Br J Cancer 96, 617-622.

Lee, C.H., Yeh, T.H., Lai, H.C., Wu, S.Y., Su, I.J., Takada, K., and Chang, Y. (2011). Epstein-Barr virus Zta-induced immunomodulators from nasopharyngeal carcinoma cells upregulate interleukin-10 production from monocytes. J Virol 85, 7333-7342.

Lee, H.Y., Kim, M.K., Park, K.S., Bae, Y.H., Yun, J., Park, J.I., Kwak, J.Y., and Bae, Y.S. (2005). Serum amyloid A stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells. Biochem Biophys Res Commun 330, 989-998.

Lee, H.Y., Kim, S.D., Baek, S.H., Choi, J.H., and Bae, Y.S. (2013a). Role of formyl peptide receptor 2 on the serum amyloid A-induced macrophage foam cell formation. Biochem Biophys Res Commun 433, 255-259.

Lee, H.Y., Kim, S.D., Baek, S.H., Choi, J.H., Cho, K.H., Zabel, B.A., and Bae, Y.S. (2013b). Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation. Biochem Biophys Res Commun 433, 18-23.

Lee, H.Y., Kim, S.D., Shim, J.W., Lee, S.Y., Lee, H., Cho, K.H., Yun, J., and Bae, Y.S. (2008). Serum amyloid A induces CCL2 production via formyl peptide receptor-like 1-mediated signaling in human monocytes. J Immunol 181, 4332-4339.

Lee, M.S., Yoo, S.A., Cho, C.S., Suh, P.G., Kim, W.U., and Ryu, S.H. (2006). Serum amyloid A binding to formyl peptide receptor-like 1 induces synovial hyperplasia and angiogenesis. J Immunol 177, 5585-5594.

Lee, Y.K., Mukasa, R., Hatton, R.D., and Weaver, C.T. (2009). Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol 21, 274-280.

Li, D., Qian, L., Chen, C., Shi, M., Yu, M., Hu, M., Song, L., Shen, B., and Guo, N. (2009). Down-regulation of MHC class II expression through inhibition of CIITA transcription by lytic transactivator Zta during Epstein-Barr virus reactivation. J Immunol 182, 1799-1809.

Li, H.P., and Chang, Y.S. (2003). Epstein-Barr virus latent membrane protein 1: structure and functions. J Biomed Sci 10, 490-504.

Lin, J.C., Wang, W.Y., Chen, K.Y., Wei, Y.H., Liang, W.M., Jan, J.S., and Jiang, R.S. (2004). Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N Engl J Med 350, 2461-2470.

Liu, C., Sista, N.D., and Pagano, J.S. (1996). Activation of the Epstein-Barr virus DNA polymerase promoter by the BRLF1 immediate-early protein is mediated through USF and E2F. J Virol 70, 2545-2555.

Liu, D.H., Wang, X.M., Zhang, L.J., Dai, S.W., Liu, L.Y., Liu, J.F., Wu, S.S., Yang, S.Y., Fu, S., Xiao, X.Y., et al. (2007). Serum amyloid A protein: a potential biomarker correlated with clinical stage of lung cancer. Biomed Environ Sci 20, 33-40.

Liu, M.Y., Chang, Y.L., Ma, J., Yang, H.L., Hsu, M.M., Chen, C.J., Chen, J.Y., and Yang, C.S. (1997). Evaluation of multiple antibodies to Epstein-Barr virus as markers for detecting patients with nasopharyngeal carcinoma. J Med Virol 52, 262-269.

Lo, Y.M., Chan, L.Y., Chan, A.T., Leung, S.F., Lo, K.W., Zhang, J., Lee, J.C., Hjelm, N.M., Johnson, P.J., and Huang, D.P. (1999a). Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res 59, 5452-5455.

Lo, Y.M., Chan, L.Y., Lo, K.W., Leung, S.F., Zhang, J., Chan, A.T., Lee, J.C., Hjelm, N.M., Johnson, P.J., and Huang, D.P. (1999b). Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res 59, 1188-1191.

Louis, C.U., Straathof, K., Bollard, C.M., Ennamuri, S., Gerken, C., Lopez, T.T., Huls, M.H., Sheehan, A., Wu, M.F., Liu, H., et al. (2010). Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J Immunother 33, 983-990.

Lu, S.Y., Rodriguez, M., and Liao, W.S. (1994). YY1 represses rat serum amyloid A1 gene transcription and is antagonized by NF-kappa B during acute-phase response. Mol Cell Biol 14, 6253-6263.

Lynn, T., Tu, S., Hirayama, T., and Kawamura, A., Jr. (1973). Nasopharyngeal carcinoma and Epstein-Barr virus. I. Factors related to the anti-VCA antibody. Jpn J Exp Med 43, 121-133.

Mahot, S., Sergeant, A., Drouet, E., and Gruffat, H. (2003). A novel function for the Epstein-Barr virus transcription factor EB1/Zta: induction of transcription of the hIL-10 gene. J Gen Virol 84, 965-974.

Mainou, B.A., Everly, D.N., Jr., and Raab-Traub, N. (2005). Epstein-Barr virus latent membrane protein 1 CTAR1 mediates rodent and human fibroblast transformation through activation of PI3K. Oncogene 24, 6917-6924.

Malle, E., Sodin-Semrl, S., and Kovacevic, A. (2009). Serum amyloid A: an acute-phase protein involved in tumour pathogenesis. Cell Mol Life Sci 66, 9-26.

Manet, E., Allera, C., Gruffat, H., Mikaelian, I., Rigolet, A., and Sergeant, A. (1993). The acidic activation domain of the Epstein-Barr virus transcription factor R interacts in vitro with both TBP and TFIIB and is cell-specifically potentiated by a proline-rich region. Gene Expr 3, 49-59.

Manet, E., Rigolet, A., Gruffat, H., Giot, J.F., and Sergeant, A. (1991). Domains of the Epstein-Barr virus (EBV) transcription factor R required for dimerization, DNA binding and activation. Nucleic Acids Res 19, 2661-2667.

Martel-Renoir, D., Grunewald, V., Touitou, R., Schwaab, G., and Joab, I. (1995). Qualitative analysis of the expression of Epstein-Barr virus lytic genes in nasopharyngeal carcinoma biopsies. J Gen Virol 76 ( Pt 6), 1401-1408.

Matsuo, T., Heller, M., Petti, L., O'Shiro, E., and Kieff, E. (1984). Persistence of the entire Epstein-Barr virus genome integrated into human lymphocyte DNA. Science 226, 1322-1325.

Micheau, C., Rilke, F., and Pilotti, S. (1978). Proposal for a new histopathological classification of the carcinomas of the nasopharynx. Tumori 64, 513-518.

Middeldorp, J.M., and Pegtel, D.M. (2008). Multiple roles of LMP1 in Epstein-Barr virus induced immune escape. Semin Cancer Biol 18, 388-396.

Migita, K., Kawabe, Y., Tominaga, M., Origuchi, T., Aoyagi, T., and Eguchi, K. (1998). Serum amyloid A protein induces production of matrix metalloproteinases by human synovial fibroblasts. Lab Invest 78, 535-539.

Miller, G. (1990). The switch between latency and replication of Epstein-Barr virus. J Infect Dis 161, 833-844.

Mitchell, T.I., Coon, C.I., and Brinckerhoff, C.E. (1991). Serum amyloid A (SAA3) produced by rabbit synovial fibroblasts treated with phorbol esters or interleukin 1 induces synthesis of collagenase and is neutralized with specific antiserum. J Clin Invest 87, 1177-1185.

Morelli, A.E., Larregina, A.T., Shufesky, W.J., Sullivan, M.L., Stolz, D.B., Papworth, G.D., Zahorchak, A.F., Logar, A.J., Wang, Z., Watkins, S.C., et al. (2004). Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104, 3257-3266.

Mullan, R.H., Bresnihan, B., Golden-Mason, L., Markham, T., O'Hara, R., FitzGerald, O., Veale, D.J., and Fearon, U. (2006). Acute-phase serum amyloid A stimulation of angiogenesis, leukocyte recruitment, and matrix degradation in rheumatoid arthritis through an NF-kappaB-dependent signal transduction pathway. Arthritis Rheum 54, 105-114.

Murai, M., Turovskaya, O., Kim, G., Madan, R., Karp, C.L., Cheroutre, H., and Kronenberg, M. (2009). Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol 10, 1178-1184.

Nguyen, K.D., Macaubas, C., Nadeau, K.C., Truong, P., Yoon, T., Lee, T., Park, J.L., and Mellins, E.D. (2011). Serum amyloid A overrides Treg anergy via monocyte-dependent and Treg-intrinsic, SOCS3-associated pathways. Blood 117, 3793-3798.

Niiro, H., Otsuka, T., Abe, M., Satoh, H., Ogo, T., Nakano, T., Furukawa, Y., and Niho, Y. (1992). Epstein-Barr virus BCRF1 gene product (viral interleukin 10) inhibits superoxide anion production by human monocytes. Lymphokine Cytokine Res 11, 209-214.

Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P. (2005). Global cancer statistics, 2002. CA Cancer J Clin 55, 74-108.

Pathmanathan, R., Prasad, U., Sadler, R., Flynn, K., and Raab-Traub, N. (1995). Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med 333, 693-698.

Preciado-Patt, L., Levartowsky, D., Prass, M., Hershkoviz, R., Lider, O., and Fridkin, M. (1994). Inhibition of cell adhesion to glycoproteins of the extracellular matrix by peptides corresponding to serum amyloid A. Toward understanding the physiological role of an enigmatic protein. Eur J Biochem 223, 35-42.

Quinlivan, E.B., Holley-Guthrie, E.A., Norris, M., Gutsch, D., Bachenheimer, S.L., and Kenney, S.C. (1993). Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein-Barr virus early promoter, BMRF1. Nucleic Acids Res 21, 1999-2007.

Raab-Traub, N., and Flynn, K. (1986). The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 47, 883-889.

Ragoczy, T., Heston, L., and Miller, G. (1998). The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72, 7978-7984.

Ramankulov, A., Lein, M., Johannsen, M., Schrader, M., Miller, K., Loening, S.A., and Jung, K. (2008). Serum amyloid A as indicator of distant metastases but not as early tumor marker in patients with renal cell carcinoma. Cancer Lett 269, 85-92.

Ray, A., Hannink, M., and Ray, B.K. (1995). Concerted participation of NF-kappa B and C/EBP heteromer in lipopolysaccharide induction of serum amyloid A gene expression in liver. J Biol Chem 270, 7365-7374.

Ren, Y., and Liao, W.S. (2001). Transcription factor AP-2 functions as a repressor that contributes to the liver-specific expression of serum amyloid A1 gene. J Biol Chem 276, 17770-17778.

Ressing, M.E., Horst, D., Griffin, B.D., Tellam, J., Zuo, J., Khanna, R., Rowe, M., and Wiertz, E.J. (2008). Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products. Semin Cancer Biol 18, 397-408.

Ressing, M.E., van Leeuwen, D., Verreck, F.A., Gomez, R., Heemskerk, B., Toebes, M., Mullen, M.M., Jardetzky, T.S., Longnecker, R., Schilham, M.W., et al. (2003). Interference with T cell receptor-HLA-DR interactions by Epstein-Barr virus gp42 results in reduced T helper cell recognition. Proc Natl Acad Sci U S A 100, 11583-11588.

Ressing, M.E., van Leeuwen, D., Verreck, F.A., Keating, S., Gomez, R., Franken, K.L., Ottenhoff, T.H., Spriggs, M., Schumacher, T.N., Hutt-Fletcher, L.M., et al. (2005). Epstein-Barr virus gp42 is posttranslationally modified to produce soluble gp42 that mediates HLA class II immune evasion. J Virol 79, 841-852.

Rowe, M., Glaunsinger, B., van Leeuwen, D., Zuo, J., Sweetman, D., Ganem, D., Middeldorp, J., Wiertz, E.J., and Ressing, M.E. (2007). Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci U S A 104, 3366-3371.

Saito, N., Courtois, G., Chiba, A., Yamamoto, N., Nitta, T., Hironaka, N., Rowe, M., and Yamaoka, S. (2003). Two carboxyl-terminal activation regions of Epstein-Barr virus latent membrane protein 1 activate NF-kappaB through distinct signaling pathways in fibroblast cell lines. J Biol Chem 278, 46565-46575.

Salek-Ardakani, S., Arrand, J.R., and Mackett, M. (2002). Epstein-Barr virus encoded interleukin-10 inhibits HLA-class I, ICAM-1, and B7 expression on human monocytes: implications for immune evasion by EBV. Virology 304, 342-351.

Salmenpera, P., Hamalainen, S., Hukkanen, M., and Kankuri, E. (2003). Interferon-gamma induces C/EBP beta expression and activity through MEK/ERK and p38 in T84 colon epithelial cells. Am J Physiol Cell Physiol 284, C1133-1139.

Samanta, M., Iwakiri, D., and Takada, K. (2008). Epstein-Barr virus-encoded small RNA induces IL-10 through RIG-I-mediated IRF-3 signaling. Oncogene 27, 4150-4160.

Sander, L.E., Sackett, S.D., Dierssen, U., Beraza, N., Linke, R.P., Muller, M., Blander, J.M., Tacke, F., and Trautwein, C. (2010). Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J Exp Med 207, 1453-1464.

Sandri, S., Hatanaka, E., Franco, A.G., Pedrosa, A.M., Monteiro, H.P., and Campa, A. (2008). Serum amyloid A induces CCL20 secretion in mononuclear cells through MAPK (p38 and ERK1/2) signaling pathways. Immunol Lett 121, 22-26.

Schultheiss, U., Puschner, S., Kremmer, E., Mak, T.W., Engelmann, H., Hammerschmidt, W., and Kieser, A. (2001). TRAF6 is a critical mediator of signal transduction by the viral oncogene latent membrane protein 1. EMBO J 20, 5678-5691.

Shanmugaratnam, K. (1978). Histological typing of nasopharyngeal carcinoma. IARC Sci Publ, 3-12.

Sipe, J.D., Vogel, S.N., Douches, S., and Neta, R. (1987). Tumor necrosis factor/cachectin is a less potent inducer of serum amyloid A synthesis than interleukin 1. Lymphokine Res 6, 93-101.

Sixbey, J.W., Nedrud, J.G., Raab-Traub, N., Hanes, R.A., and Pagano, J.S. (1984). Epstein-Barr virus replication in oropharyngeal epithelial cells. N Engl J Med 310, 1225-1230.

Sixbey, J.W., Vesterinen, E.H., Nedrud, J.G., Raab-Traub, N., Walton, L.A., and Pagano, J.S. (1983). Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature 306, 480-483.

Sloan, D.D., and Jerome, K.R. (2007). Herpes simplex virus remodels T-cell receptor signaling, resulting in p38-dependent selective synthesis of interleukin-10. J Virol 81, 12504-12514.

Smith, C., Wakisaka, N., Crough, T., Peet, J., Yoshizaki, T., Beagley, L., and Khanna, R. (2009). Discerning regulation of cis- and trans-presentation of CD8+ T-cell epitopes by EBV-encoded oncogene LMP-1 through self-aggregation. Blood 113, 6148-6152.

Strissel, K.J., Girard, M.T., West-Mays, J.A., Rinehart, W.B., Cook, J.R., Brinckerhoff, C.E., and Fini, M.E. (1997). Role of serum amyloid A as an intermediate in the IL-1 and PMA-stimulated signaling pathways regulating expression of rabbit fibroblast collagenase. Exp Cell Res 237, 275-287.

Strockbine, L.D., Cohen, J.I., Farrah, T., Lyman, S.D., Wagener, F., DuBose, R.F., Armitage, R.J., and Spriggs, M.K. (1998). The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor. J Virol 72, 4015-4021.

Sukenik, S., Henkin, J., Zimlichman, S., Skibin, A., Neuman, L., Pras, M., Horowitz, J., and Shainkin-Kestenbaum, R. (1988). Serum and synovial fluid levels of serum amyloid A protein and C-reactive protein in inflammatory and noninflammatory arthritis. J Rheumatol 15, 942-945.

Sun, R., Lin, S.F., Gradoville, L., Yuan, Y., Zhu, F., and Miller, G. (1998). A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 95, 10866-10871.

Tai, C.C., Chen, C.Y., Lee, H.S., Wang, Y.C., Li, T.K., Mersamm, H.J., Ding, S.T., and Wang, P.H. (2009). Docosahexaenoic acid enhances hepatic serum amyloid A expression via protein kinase A-dependent mechanism. J Biol Chem 284, 32239-32247.

Thorn, C.F., Lu, Z.Y., and Whitehead, A.S. (2003). Tissue-specific regulation of the human acute-phase serum amyloid A genes, SAA1 and SAA2, by glucocorticoids in hepatic and epithelial cells. Eur J Immunol 33, 2630-2639.

Thornburg, N.J., and Raab-Traub, N. (2007). Induction of epidermal growth factor receptor expression by Epstein-Barr virus latent membrane protein 1 C-terminal-activating region 1 is mediated by NF-kappaB p50 homodimer/Bcl-3 complexes. J Virol 81, 12954-12961.

Uhlar, C.M., and Whitehead, A.S. (1999). Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem 265, 501-523.

Urieli-Shoval, S., Finci-Yeheskel, Z., Dishon, S., Galinsky, D., Linke, R.P., Ariel, I., Levin, M., Ben-Shachar, I., and Prus, D. (2010). Expression of serum amyloid a in human ovarian epithelial tumors: implication for a role in ovarian tumorigenesis. J Histochem Cytochem 58, 1015-1023.

Vieira, P., de Waal-Malefyt, R., Dang, M.N., Johnson, K.E., Kastelein, R., Fiorentino, D.F., deVries, J.E., Roncarolo, M.G., Mosmann, T.R., and Moore, K.W. (1991). Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci U S A 88, 1172-1176.

Vockerodt, M., Haier, B., Buttgereit, P., Tesch, H., and Kube, D. (2001). The Epstein-Barr virus latent membrane protein 1 induces interleukin-10 in Burkitt's lymphoma cells but not in Hodgkin's cells involving the p38/SAPK2 pathway. Virology 280, 183-198.

Wan, J., Zhang, W., Wu, L., Bai, T., Zhang, M., Lo, K.W., Chui, Y.L., Cui, Y., Tao, Q., Yamamoto, M., et al. (2006). BS69, a specific adaptor in the latent membrane protein 1-mediated c-Jun N-terminal kinase pathway. Mol Cell Biol 26, 448-456.

Wang, J.Y., Zheng, Y.Z., Yang, J., Lin, Y.H., Dai, S.Q., Zhang, G., and Liu, W.L. (2012). Elevated levels of serum amyloid A indicate poor prognosis in patients with esophageal squamous cell carcinoma. BMC Cancer 12, 365.

Ward, M.H., Pan, W.H., Cheng, Y.J., Li, F.H., Brinton, L.A., Chen, C.J., Hsu, M.M., Chen, I.H., Levine, P.H., Yang, C.S., et al. (2000). Dietary exposure to nitrite and nitrosamines and risk of nasopharyngeal carcinoma in Taiwan. Int J Cancer 86, 603-609.

Wei, W.I., and Sham, J.S. (2005). Nasopharyngeal carcinoma. Lancet 365, 2041-2054.

Whitehouse, A., Carr, I.M., Griffiths, J.C., and Meredith, D.M. (1997). The herpesvirus saimiri ORF50 gene, encoding a transcriptional activator homologous to the Epstein-Barr virus R protein, is transcribed from two distinct promoters of different temporal phases. J Virol 71, 2550-2554.

Xia, C., Cheshire, J.K., Patel, H., and Woo, P. (1997). Cross-talk between transcription factors NF-kappa B and C/EBP in the transcriptional regulation of genes. Int J Biochem Cell Biol 29, 1525-1539.

Xu, L., Badolato, R., Murphy, W.J., Longo, D.L., Anver, M., Hale, S., Oppenheim, J.J., and Wang, J.M. (1995). A novel biologic function of serum amyloid A. Induction of T lymphocyte migration and adhesion. J Immunol 155, 1184-1190.

Yip, T.T., Ngan, R.K., Lau, W.H., Poon, Y.F., Joab, I., Cochet, C., and Cheng, A.K. (1994). A possible prognostic role of immunoglobulin-G antibody against recombinant Epstein-Barr virus BZLF-1 transactivator protein ZEBRA in patients with nasopharyngeal carcinoma. Cancer 74, 2414-2424.

Yoon, S.I., Jones, B.C., Logsdon, N.J., and Walter, M.R. (2005). Same structure, different function crystal structure of the Epstein-Barr virus IL-10 bound to the soluble IL-10R1 chain. Structure 13, 551-564.

Yoshizaki, T., Sato, H., Murono, S., Pagano, J.S., and Furukawa, M. (1999). Matrix metalloproteinase 9 is induced by the Epstein-Barr virus BZLF1 transactivator. Clin Exp Metastasis 17, 431-436.

Young, L.S., Dawson, C.W., Clark, D., Rupani, H., Busson, P., Tursz, T., Johnson, A., and Rickinson, A.B. (1988). Epstein-Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol 69 ( Pt 5), 1051-1065.

Young, L.S., and Rickinson, A.B. (2004). Epstein-Barr virus: 40 years on. Nat Rev Cancer 4, 757-768.

Zdanov, A., Schalk-Hihi, C., Menon, S., Moore, K.W., and Wlodawer, A. (1997). Crystal structure of Epstein-Barr virus protein BCRF1, a homolog of cellular interleukin-10. J Mol Biol 268, 460-467.

Zeidler, R., Eissner, G., Meissner, P., Uebel, S., Tampe, R., Lazis, S., and Hammerschmidt, W. (1997). Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10. Blood 90, 2390-2397.

Zhang, G., Sun, X., Lv, H., Yang, X., and Kang, X. (2012). Serum amyloid A: A new potential serum marker correlated with the stage of breast cancer. Oncol Lett 3, 940-944.

Zhang, J.X., Chen, H.L., Zong, Y.S., Chan, K.H., Nicholls, J., Middeldorp, J.M., Sham, J.S., Griffin, B.E., and Ng, M.H. (1998). Epstein-Barr virus expression within keratinizing nasopharyngeal carcinoma. J Med Virol 55, 227-233.

Zhou, X., Bailey-Bucktrout, S.L., Jeker, L.T., Penaranda, C., Martinez-Llordella, M., Ashby, M., Nakayama, M., Rosenthal, W., and Bluestone, J.A. (2009). Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10, 1000-1007.

Zuo, J., Currin, A., Griffin, B.D., Shannon-Lowe, C., Thomas, W.A., Ressing, M.E., Wiertz, E.J., and Rowe, M. (2009). The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog 5, e1000255.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw