系統識別號 U0026-0108201316180200
論文名稱(中文) 用於光獵能之積體電路設計技術
論文名稱(英文) Integrated Circuits Design Techniques for Light-Energy Harvesting
校院名稱 成功大學
系所名稱(中) 電腦與通信工程研究所
系所名稱(英) Institute of Computer & Communication
學年度 101
學期 2
出版年 102
研究生(中文) 劉文權
研究生(英文) Wen-Chuen Liu
電子信箱 wcliu@msic.ee.ncku.edu.tw
學號 N26994504
學位類別 碩士
語文別 英文
論文頁數 77頁
口試委員 口試委員-江瑞利
中文關鍵字 光能獵能  電流總諧波失真  最大功率追踪  行動裝置  電網併接系統  光伏模組  功率轉換效率  處理電路  穩態精度  暫態時間  無線感測網絡 
英文關鍵字 Light energy harvesting  current total harmonic distortion (THDi)  maximum power point tracking (MPPT)  mobile devices  grid-connected system  photovoltaic (PV) module  power conversion efficiency  processing circuit  steady-state accuracy  transient time  wireless sensor networks (WSN) 
中文摘要 本論文提出光能處理電路的設計技術,其目標應用含無線感測網絡節點,行動裝置和電網併接系統,並使整體系統維持高效率。
在設計具光伏模組整合之行動裝置上,開發了最適等效負載線斜率調整調整晶片。該晶片為世界第一個同時考量最大功率追踪之暫態時間及穩態精度的作品,並各自達到470μs以及99%以上的表現。搭配負載線斜率調整機制,在不同的太陽能模組下均能維持低的暫態時間。該作品以台積電 0.5μm的互補式金氧半導體製程實現,面積為1.70 x 1.77 mm2。與此同時,為滿足行動裝置對電源供應效率與體積效率的需求,該晶片還擁有94%的峰值功率轉換效率以及168mW/mm2的功率密度。
此外,電網併接系統使用了太陽能優化器搭配併網逆變器的架構,成果之性能超越現有文獻之最先進技術。該架構可使每個光伏模組操作在各自最大功率點且獲得超過99%的穩態精度,同時該架構可以低於5%的電流總諧波失真橋接直流與交流端。整體系統可操作至200W,而太陽能優化器和併網逆變器的峰值功率轉換效率分別為97%和98%。其中,併網逆變器是由所提出之電流失真縮減器晶片所控制,並透過台積電0.5μm的互補式金氧半導體製程完成實作,面積為651 x 767 μm2。
英文摘要 This thesis proposes the design techniques for light-energy processing circuits, which target the applications of wireless sensor network (WSN) node, mobile devices and grid-connected systems.
For WSN nodes, an energy-efficient maximum power point tracking (MPPT) charger, which integrates adaptive MPPT and switching schemes, is proposed for maximizing the MPPT and power conversion efficiency. This concept leads over other literatures of the related field and aids ubiquitous installation of small-size WSN nodes to be a reality.
On the design of photovoltaic (PV) module integrated mobile devices, an adaptive load-line tuning (ALT) IC is developed. The ALT IC implemented in TSMC 0.5μm CMOS process (1.70 x 1.77 mm2) is the first work that simultaneously addresses MPPT transient time and steady-state accuracy, and performances of 470μs and over 99% are achieved respectively. With load-line slope calibration (LSC), for different PV modules, transient time can be maintained low. It also features 94% peak power conversion efficiency and 168mW/mm2 power density fulfilling the power- and volume-efficient requirements of mobile devices.
Furthermore, the grid-connected systems utilizing combination of solar optimizer and inverter outperform the state-of-the-art. It operates each PV module at its unique MPP with over 99% steady-state accuracy, and well bridge DC and AC with current total harmonic distortion (THDi) below 5%. The overall system, which operates up to 200W with the solar optimizer and inverter peaks at 97% and 98% power conversion efficiency respectively. The inverter, which is controlled by a proposed current distortion reducer (CDR) chip, is implemented with TSMC 0.5µm CMOS process (651 x 767 μm2).
論文目次 摘要 I
Abstract II
Acknowledgment III
Table of Contents IV
List of Tables VI
List of Figures VII
Chapter 1 Introductions 1
1.1 Motivation 1
1.2 Organization 5
Chapter 2 Fundamentals of Light Energy Harvesting 6
2.1 Irradiance and Illumination 6
2.2 Model of PV devices 9
2.3 Performance Indexes 13
2.4 MPPT Schemes 14
Chapter 3 Energy-Efficient MPPT Charger 17
3.1 Background Survey 18
3.2 Basics for High Efficiency Charger 20
3.2.1 Power Loss Analysis 21
3.2.2 High Efficiency Converters 23
3.2.3 Front- and Rear-end Converters 25
3.2.4 Energy Storage 26
3.3 System Design 27
3.3.1 Adaptive MPPT Scheme 27
3.3.2 Adaptive Switching Schemes 30
3.4 Summary 32
Chapter 4 Adaptive Load-line Tuning 33
4.1 Background Survey 35
4.2 System Design 35
4.2.1 Operating Principle 36
4.2.2 System Algorithm 38
4.2.3 Performance Comparison 39
4.3 Circuit Design 42
4.4 Measurement Results 43
4.5 Summary 47
Chapter 5 Grid-Connected System 48
5.1 Solar Optimizer 49
5.1.1 System Design 49
5.1.2 Circuit Selection 54
5.1.3 Measurement Results 56
5.2 Grid-Connected Inverter 58
5.2.1 System Design 58
5.2.2 Circuit Design 62
5.2.3 Measurement 66
5.3 Summary 69
Chapter 6 Conclusions 70
Reference 71
參考文獻 [1] – (2012), Key World Energy Statistics. International Energy Agency (IEA), Paris, France. [Online]. Available: http://www.iea.org/publications/freepublications/ publication/kwes.pdf
[2] – (2012, Mar.), Carbon footprinting: the next step to reducing your emissions. Carbon Trust, London, UK. [Online]. Available: http://www.carbontrust.com/media/44869/j7912_ctv043_ carbon_footprinting_aw_interactive.pdf
[3] K. Romer and F. Mattern, “The design space of wireless sensor networks,” IEEE Wireless Commun., vol. 11, no. 6, pp. 54–61, Dec. 2004.
[4] Mirko Presser (2011), Inspiring the internet of things. Project “Internet of Things Initiative (IoT-i)” by The Alexandra Institute, Aarhus, Denmark. [Online]. Available: http://www.alexandra.dk/uk/services/publications/documents/iot_comic_book.pdf
[5] – (2012, Dec.), Off-Grid Solar Power in Rural India. Energy Technology Systems Analysis Program (IEA-ESTAP), Lisbon, Portugal. [Online]. Available: http://www.iea-etsap.org/ web/Workshop/Lisbon_Dec2012/PB_Off-grid solar Power in Rural India.pdf
[6] – (Accessed 2013, July), Solar solutions. Barefoot College, Rajasthan, India. [Online]. Available: http://www.barefootcollege.org/solution/solar-electrification/
[7] “Application Brief: Consumer Devices”, Alta Devices, [Online]. Available: http://www. altadevices.com/pdfs/consumer_devices.pdf
[8] “Indoor Specification Sheet”, G24i Power, [Online]. Available: http://www.g24i.com/filebase/ G24i_Indoor_Specification_Sheet.pdf
[9] “PowerFLEX™ brochure”, Global Solar Energy Inc., [Online]. Available: http://www. globalsolar.com/downloads/gs00209-brochure17.pdf
[10] “Solar Power Amorphous PV Product Brochure”, Sanyo Semiconductors Co., Ltd., [Online]. Available: http://us.sanyo.com/Dynamic/customPages/docs/solarPower_Amorphous_PV_ Product_Brochure _EP120B.pdf
[11] D. Dondi, A. Bertacchini, D. Brunelli, L. Larcher, and L. Benini, “Modeling and optimization of a solar energy harvester system for self-powered wireless sensor networks,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2759–2766, Jul. 2008.
[12] D. Brunelli, C. Moser, L. Thiele, and L. Benini, “Design of a solar-harvesting circuit for batteryless embedded systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 11, pp. 2519–2528, 2009.
[13] W. C. Liu, Y. H. Wang, and T. H. Kuo, “An adaptive load-line tuning IC for photovoltaic module integrated mobile device with 470μs transient time, over 99% steady-state accuracy and 94% power conversion efficiency,” in IEEE ISSCC Dig. Tech. Papers, pp. 70-71, Feb. 2013.
[14] B. Liu, S. Duan, and T. Cai, “Photovoltaic DC-building-module-based BIPV system–concept and design considerations,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1418-1429, May 2011.
[15] “Case Studies: Greater Murcia”, Suntech Power Holdings Co., Ltd., [Online]. Available: http://www.suntech-power.com/images/stories/pdf/case-studies/CaseStudy_Murcia 17Sep08.pdf
[16] – (Accessed 2013, July), Projects: Proven Results. First Solar, Inc., Arizona. [Online]. Available: http://www. firstsolar.com/en/Projects
[17] – (Accessed 2013, July), USGS Updates Magnitude of Japan's 2011 Tohoku Earthquake to 9.0. United States Geological Survey (USGS), Virginia. [Online]. Available: http://www.usgs.gov/newsroom/article_pf.asp?ID=2727
[18] – (Accessed 2013, July), Wireless Sensor Networks (WSN) 2012-2022: Forecasts, Technologies, Players. IDTechEx, Cambridge, UK. [Online]. Available: http://www.idtechex. com/research/reports/wireless-sensor-networks-2012-2022-000314.asp
[19] – (Accessed 2013, July), Energy Harvesting and Storage for Electronic Devices 2011-2021. IDTechEx, Cambridge, UK. [Online]. Available: http://www.idtechex.com/research/reports/ energy-harvesting-and-storage-for-electronic-devices-2011-2021-000270.asp
[20] V. C. Gungor and G. P. Hancke, “Industrial wireless sensor networks: Challenges, design principles, and technical approaches,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 4258–4265, Oct. 2009.
[21] R. N. Mayo and P. Ranganathan, “Energy Consumption in Mobile Devices: Why Future Systems Need Requirements–Aware Energy Scale-Down,” in Power-Aware Computer Systems, Heidelberg: Springer Berlin 2004, pp. 26–40.
[22] “GT-E1107 Mobile Phone user manual”, Samsung Electronics, [Online]. Available: http://downloadcenter.samsung.com/content/UM/201006/20100622154301531/GT-E1107_CEN_ENG_24194A_Rev.1.0_090601.pdf
[23] “NP-NC215-A01US 10.1" Netbook”, Samsung Electronics, [Online]. Available: http://www.samsung.com/us/business/laptops/NP-NC215-A01US
[24] M. N. Rosenblatt, et al., “Integrated touch sensor and solar assembly,” U.S. Patent 8 368 654, Feb. 5, 2013.
[25] N. Savage, “Solar Cells in Smartphone Screens,” IEEE Spectrum, Jan. 2012, [Online]. Available: http://spectrum.ieee.org/consumer-electronics/portable-devices/solar-cells-in- smartphone-screens
[26] – (2008), Renewables 2007: Global Status Report. Renewable Energy Policy Network for the 21st Century (REN 21), Paris, France. [Online]. Available: http://www.ren21.net/Portals/0/ documents/activities/gsr/RE2007_Global_Status_Report.pdf
[27] – (2010), Technology Roadmap: Solar Photovoltaic Energy. International Energy Agency (IEA), Paris, France. [Online]. Available: http://www.iea.org/publications/freepublications/ publication/pv_roadmap.pdf
[28] W. Herrmann, W. Wiesner, and W. Vaaßen, “Hot Spot Investigations on PV Modules-New Concepts for a Test Standard and Consequences for Module Design with Respect to Bypass Diodes,” in Proc. IEEE Photovoltaic Specialists Conference (PVSC), Sep.–Oct. 1997, pp. 1129–1132.
[29] “SPV1001: Cool bypass switch for photovoltaic applications,” STMicroelectronics, [Online]. Available: http://www.st.com/web/en/resource/technical/document/datasheet/CD00287228.pdf
[30] “SM74611 Smart Bypass Diode,” Texas Instrument, [Online]. Available: http://www.ti.com/ lit/ds/snvs903/snvs903.pdf
[31] A. Stockman and L.T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision, Cambridge: Cambridge University Press UK, 1999, pp. 53–88.
[32] “MASTER TL5 HO 24W/865 1SL”, Philips Lighting, [Online]. Available: http://download.p4c.philips.com/l4b/9/927928086555_eu/927928086555_eu_pss_aen.pdf
[33] “SOLAR-100 Solar Power Meter”, Amprobe, [Online]. Available: http://content. amprobe.com/manuals/SOLAR100_umeng0000.pdf
[34] Robert A. Rohde (Accessed 2013), Solar radiation spectrum. Global Warming Art, Berkeley, California. [Online]. Available: http://www.globalwarmingart.com/wiki/File:Solar_Spectrum_ png
[35] M. Freunek (M¨uller), Michael Freunek, and L. M. Reindl, “Maximum Efficiencies of Indoor Photovoltaic Devices,” IEEE J. Photovoltaics, vol. 3, no. 1, pp. 59–64, Jan. 2013.
[36] – (Accessed 2013, July), Best Research-Cell Efficiency. National Center for Photovoltaics (NCPV) at National Renewable Energy Lab (NREL), Golden, Colorado, [Online]. Available: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
[37] S. Roundy, Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion. Ph. D. Dissertation, Dept. of EECS, UC Berkeley, May 2003.
[38] S. Liu and R. A. Dougal, “Dynamic multiphysics model for solar array,” IEEE Trans. Energy Convers., vol. 17, no. 2, pp. 285–294, Jun. 2002.
[39] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulating photovoltaic arrays,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1198–1208, May 2009.
[40] R. A. Kumar, J. R. Gazoli, and E. R. Filho, “Effect of Solar Array Capacitance on the Performance of Switching Shunt Voltage Regulator,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 543–548, Mar. 2006.
[41] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, Jun. 2007.
[42] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963–973, Jul. 2005.
[43] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A variable step size INC MPPT method for PV systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2622–2628, Jul. 2008.
[44] Q. Mei, M. Shan, L. Liu, and J. M. Gurrero, “A novel improved variable step-size incremental-resistance MPPT method for PV systems,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2427–2434, Jun. 2011.
[45] N. Shibata, H. Kiya, S. Kurita, H. Okamoto, M. Tan'no, T. Douseki, "A 0.5-V 25-MHz 1-mW 256-kb MTCMOS/SOI SRAM for solar-power-operated portable personal digital equipment - sure write operation by using step-down negatively overdriven bitline scheme," IEEE J. Solid-State Circuits, vol.41, no.3, pp.728-742, Mar. 2006.
[46] C. Rodriguez and G. A. J. Amaratunga, “Analytic solution to the photovoltaic maximum power point problem,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 9, pp. 2054–2060, Sep. 2007.
[47] – (2002), Industrial wireless technology for the 21st century in Office of Energy and Renewable Energy Rep. U.S. Department of Energy, Washington DC.
[48] – (2004), Assessment study on sensors and automation in the industries of the future in Office of Energy and Renewable Energy Rep. U.S. Department of Energy, Washington DC.
[49] J. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics,” IEEE Pervasive Comput., vol. 4, no. 1, pp. 18–27, Jan.–Mar. 2005.
[50] K. Fisher, E. Wallén, P. Paul, L. and M. Collins (2006, Oct), Battery Waste Management Life Cycle Assessment. Environmental Resources Management (ERM), UK.
[51] “LTC3105 400mA Step-Up DC/DC converter with maximum power point control and 250mV,” Linear Technology, [Online]. Available: http://cds.linear.com/docs/en/ datasheet/3105fa.pdf
[52] “bq25504 Ultra low power boost converter with battery management for energy harvester applications,” Texas Instrument, [Online]. Available: http://www.ti.com/lit/ds/symlink/ bq25504.pdf
[53] “MAX17710 Energy-Harvesting Charger and Protector,” Maxim Integrated, [Online]. Available: http://datasheets.maximintegrated.com/en/ds/MAX17710.pdf
[54] “SPV 1040 High efficiency solar battery charger with embedded MPPT,” STMicroelectronics, [Online]. Available: http://www.st.com/st-web-ui/static/active/en/resource/technical/document/ datasheet/CD00287506.pdf
[55] “Si1012-A Ultra-low power 16 kB, 12-bit ADC MCU with integrated 240–960 MHz transceiver,” Silicon Labs, [Online]. Available: http://www.silabs.com/Support Documents/ TechnicalDocs/Si1012-A-short.pdf
[56] “Radio sensors powered by ambient energy: From strange ideas to mass market products,” EnOcean GmbH, [Online]. Available: http://www.enocean.com/fileadmin/redaktion/pdf/ white_paper/wp_radio_sensors_en.pdf
[57] S. S. Kudva and R. Harjani, “Fully-integrated on-chip DC-DC converter with a 450X output range,” IEEE J. Solid-State Circuits, vol. 46, no. 8, pp. 1940–1951, Aug. 2011.
[58] H. Dehbonei, S. R. Lee and H. Nehrir, “Direct energy transfer for high efficiency photovoltaic energy systems. Part I: Concepts and hypothesis,” IEEE Trans. Aerosp. Electron. Syst., vol. 45, no. 1, pp.31 -45, Jan. 2009.
[59] D. Shmilovitz, “On the control of photovoltaic maximum power point tracker via output parameters,” in IEE Proc. Elect. Power Appl., 2005, pp. 239–248.
[60] “AN207: ECS 300/310 Solar Panel - Design Considerations,” EnOcean GmbH, [Online]. Available: http://www.enocean.com/fileadmin/redaktion/pdf/app_notes/AN207_ECS310_ ECS320_SOLAR_PANEL_Jan11.pdf
[61] N. Reich, W. V. Sark, E. Alsema, S. Kan, S. Silvester, A. Heide, R. Lof, and R. Schropp, “Weak light performance and spectral response of different solar cell types,” in Proc. 20th Eur. Photovoltaic Solar Energy Conf., Barcelona, Spain, 2005.
[62] J. Penders, et al., “Power optimization in body sensor networks: The case of an autonomous wireless EMG sensor powered by PV-cells,” in Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Sep. 2010, pp. 2017–2020.
[63] “SLVA446 Introduction to photovoltaic systems MPPT,” Texas Instrument, [Online]. Available: http://www.ti.com/lit/an/slva446/slva446.pdf
[64] Y. C. Shih and B. P. Otis, “An inductor-less DC–DC converter for energy harvesting with a 1.2-μW bandgap-referenced output controller,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 12, pp. 832–836, Dec. 2011.
[65] Y. Qiu, et al., “5μW-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm,” in IEEE ISSCC Dig. Tech. Papers, pp. 118-119, Feb. 2011.
[66] S. Bandyopadhyay and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199–2215, Sep. 2012.
[67] R. Enne, M. Nikolic, and H. Zimmermann, “A maximum power-point tracker without digital signal processing in 0.35μm CMOS for automotive applications,” in IEEE ISSCC Dig. Tech. Papers, pp. 102-103, Feb. 2012.
[68] K. Kadirvel, Y. Ramadass, U. Lyles, et al., “A 330nA Energy-Harvesting Charger with Battery Management for Solar and Thermoelectric Energy Harvesting,” in IEEE ISSCC Dig. Tech. Papers, pp. 106-107, Feb. 2012.
[69] C. Y. Hsieh, et al., “A photovoltaic system with an analog maximum power point tracking technique for 97.3% high effectiveness,” in IEEE ESSCIRC, pp. 230-233, Sep. 2011.
[70] D. A. Warren and M. Rosenblatt, “Power management circuitry and solar cells,” U.S. Patent 8 022 571, Sep. 20, 2011.
[71] Z. Liang, R. Guo, and A. Q. Huang, “A High Efficiency DC MIC for PV Energy Harvest in FREEDM Systems,” IEEE APEC, pp. 301-308, Feb. 2011.
[72] L. Bowtell and A. Ahfock, “Comparison between unipolar and bipolar single phase grid connected inverters for PV applications,” in Proc. Aust. Univ. Power Eng. Conf. (AUPEC 2007), Dec. 9–12, pp. 1–5.
[73] Y. Chen, K. Smedley, F. Vacher, and J. Brouwer, “A New Maximum Power Point Tracking Controller for Photovoltaic Power Generation,” in Proc. IEEE APEC, vol. 1, Feb. 2003, pp. 58-62.
[74] J. Ramírez-Angulo, et al., “Comparison of conventional and new flipped voltage structures with increased input/output signal swing and current sourcing/sinking capabilities,” IEEE International Midwest Symposium on Circuits and Systems, pp. 1151-1154, Aug. 2005.
[75] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules,” IEEE Trans. Ind. Appl., Vol. 41, No. 5, pp. 1292-1306, Sept/Oct. 2005.
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-31起公開。

  • 如您有疑問,請聯絡圖書館