進階搜尋


下載電子全文  
系統識別號 U0026-0108201220214200
論文名稱(中文) 電泳法在固態及液態硒化鎘敏化太陽能電池上應用的研究
論文名稱(英文) Applications of Electrophoresis in Fabrications of Solid and Liquid-States CdSe-Sensitized Solar Cells
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 周士權
研究生(英文) Shih-Chuan Chou
學號 N36991401
學位類別 碩士
語文別 中文
論文頁數 116頁
口試委員 指導教授-李玉郎
口試委員-張鑑祥
口試委員-楊毓民
口試委員-林有銘
中文關鍵字 電泳  硒化鎘  半導體敏化太陽能電池 
英文關鍵字 Electrophoresis  CdSe  Semiconductor sensitized solar cells 
學科別分類
中文摘要 本研究旨在以鎘離子電泳方式增進半導體敏化材料硒化鎘(CdSe)在二氧化鈦(TiO2)光電極上的覆蓋率和沉積量。製程中以連續離子層反應法(Sucessive Ionic Layer Adsorption and Reaction, SILAR)將光電極浸泡在陰、陽離子前驅液中,使CdSe沉積在多孔性TiO2結構內。然而在一般的SILAR程序中離子不易擴散至孔洞內部,敏化材料易於孔洞外部成長,導致孔洞堵塞而降低其在TiO2表面的覆蓋率。為了改善此情形,本研究以電泳法來促進離子在孔洞內部的擴散,將TiO2光電極浸泡在含Cd2+離子的溶液中,以白金為對電極,並在TiO2光電極上施加負偏壓,藉由Cd2+的電泳作用來增進其在中孔洞TiO2表面的吸附,使得孔洞內外皆可完整覆蓋Cd2+,接著將光電極浸泡至Se2-溶液中,於孔隙結構內反應,製得高覆蓋率的CdSe半導體敏化層。
在固態CdSe敏化太陽能電池的製備上,電泳法輔助成長的程序,對光電極上CdSe敏化劑的沉積量及覆蓋率皆有大幅增加的效果,元件的光電轉化效率由0.04%提升至0.81%。同樣地,將電泳技術應用在液態CdSe敏化太陽能電池上,亦可將元件的光電轉化效率由1.28%提升至2.12%。
英文摘要 In this study, electrophoresis is used to improve the coverage rate and the deposition amount of CdSe semiconductor on TiO2 surface. Successive Ionic Layer Adsorption and Reaction is a process usually applied to deposit CdSe on porous TiO2 photoelectrode. In the process photoelectrode is immersed in the Cd2+ and Se2- precursor separately and form CdSe in the channel. However, the inefficiency of ion diffusion within the channel results in a deposition on the outer surface and the blockage of pores. Therefore, electrophoresis is exploited aimed at improving the ion diffusion. In the experiment, a platinum plate and a TiO2 photoelectrode set as the counter electrode and the working electrode. Both electrodes are immersed in a Cd2+ solution and applied a negative potential applied to the working electrode promotes Cd2+ adsorption on the TiO2 surface. Together with the subsequent immersion in Se2- solution, CdSe sensitized photoelectrode of high coverage rate is obtained.
Apply electrophoresis method on the solid state and liquid state CdSe sensitized solar cells, the results show that modified TiO2 photoelectrode has a great enhance of the amount of CdSe deposition and coverage, which promote photo current significantly. By electrophoresis method, the efficiency of solid state CdSe sensitized solar cell has increase from 0.04% to 0.81%. And the efficiency of liquid state CdSe sensitized solar cell has increase from 1.28% to 2.12%
論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VIII
圖目錄 IX
第1章 緒論 1
1-1 前言 1
1-2 太陽能電池發展的現況 3
1-3 研究動機與目的 6
第2章 實驗原理及文獻回顧 8
2-1 DSSC之工作原理 8
2-2 DSSC之組成結構 10
2-2.1 透明導電基板 10
2-2.2 氧化物半導體 11
2-2.3 染料光敏化劑 12
2-2.4 電解質 15
2-2.5 對電極 20
2-3 DSSC之沿革及發展現況 24
2-3.1 染料敏化太陽能電池 24
2-3.2 半導體敏化太陽能電池 26
2-4 半導體材料介紹 30
2-4.1 半導體奈米材料與量子點 30
2-4.2 半導體化合物敏化劑 36
2-5 半導體敏化劑合成及組裝技術 37
第3章 實驗儀器與方法 39
3-1 儀器設備 39
3-2 實驗藥品與材料 48
3-3 實驗流程 50
3-3.1 清洗透明導電玻璃基板 51
3-3.2 二氧化鈦漿料製備 51
3-3.3 液態電池之二氧化鈦薄膜的製備 52
3-3.4 固態電池之二氧化鈦薄膜的製備 53
3-3.5 電泳在二氧化鈦薄膜上的改質 54
3-3.6 連續離子膜反應沉積法組裝CdSe敏化劑 55
3-3.7 高溫熱處理 57
3-3.8 配製液態電解液並組裝電池 57
3-3.9 配製固態電解質並組裝電池 60
第4章 實驗數據與結果討論 61
4-1 二氧化鈦薄膜特性分析 61
4-2 電泳最佳參數分析 65
4-2.1 電解液濃度和電壓分析 66
4-2.2 電泳循環數分析 72
4-2.3 UV-Visible分析 76
4-3 電泳應用至固態CdSe敏化太陽能電池 78
4-3.1 CdSe層數分析 78
4-3.2 Na2SeSO3前驅液溫度對堵塞二氧化鈦孔洞現象之探討 80
4-4 電泳應用至液態CdSe敏化太陽能電池 86
第5章 結論 92
第6章 未來工作及建議 94
參考文獻 95
參考文獻 1. H. Tsubomura, M. Matsumura, Y, Nomura and T. Amamiya, “Dye-sensitized zinc oxide/aqueous electrolyte/platinum photocell” Nature 261, 402 (1976)
2. B. O’Regan and M. Grätzel, “A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 353, 737 (1991)
3. T. Miyasaka, M. Ikegami and Y. Kijitori,“Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania” J. Electrochem. Soc. 154, A455 (2007)
4. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel,“Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers” J. Am. Chem. Soc 127, 16835 (2005)
5. Shockley, H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells”J. Appl. Phys. 32, 510, (1961)
6. B. O’Regan and M. Grätzel, “A LowCost, HighEfficiency Solar Cell Based on DyeSensitized Colloidal TiO2 Films,”Nature, 353, 737740 (1991).
7. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang,“Nanowire DyeSensitized Solar Cells,” Nat. Mater., 4, 455459 (2005).
8. Md. A. Hossain, J. R. Jennings, Z. Y. Koh, and Q. Wang,“Carrier Generation and Collection in CdS/CdSeSensitized SnO2 Solar Cells Exhibiting Unprecedented Photocurrent Densities,” ACS Nano, 5(4), 31723181 (2011).
9. P. Guo and M. A. Aegerter, “Ru(II) Sensitized Nb2O5 Solar Cell Made by the SolGel Process,”Thin Solid Films, 351, 290294 (1999).
10. O. K. Varghese, M. Paulose1, and C. A. Grimes, “Long Vertically Aligned Titania Nanotubes on Transparent Conducting Oxide for Highly Efficient Solar Cells,” Nat. Nanotechnol., 4, 592597 (2009).
11. X. Feng, K. Shankar, O. K. Varghese, M. Paulose1, T. J. Latempa, and C. A. Grimes,“Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications,” Nano Lett., 8(11), 37813786 (2008).
12. J. Jiu, S. Isoda, F. Wang, and M. Adachi, “DyeSensitized Solar Cells Based on a SingleCrystalline TiO2 Nanorod Film,” J. Phys. Chem. B, 110, 20872092 (2006).
13. J. Ferber and J. Luther, “Computer Simulations of Light Scattering and Absorption in DyeSensitized Solar Cells,” Sol. Energy Mater. Sol. Cells, 54, 265275 (1998).
14. T. Yamaguchi, N. Tobe, D. Matsumoto, and H. Arakawa, “Highly Efficient Plastic Substrate DyeSensitized Solar Cells Using a Compression Method for Preparation of TiO2 Photoelectrodes,” Chem. Commun., 45, 47674769 (2007).
15. H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon, and Y. B. Cheng, “Low Temperature Chemically Sintered NanoCrystalline TiO2 Electrodes for Flexible DyeSensitized Solar Cells,” J. Photochem. Photobiol. AChem., 213, 3036 (2010).
16. S. Ito, P. Chen, P. Comte, Md. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel, “Low Temperature Chemically Sintered NanoCrystalline TiO2 Electrodes for Flexible DyeSensitized Solar Cells,” Prog. Photovolt: Res. Appl., 15, 603612 (2007).
17. Y. Li, J. Hagen, W. Schaffrath, P. Otschik, and D. Haarer, “Titanium Dioxide Films for Photovoltaic Cells Derived From a SolGel Process,” Sol. Energy Mater. Sol. Cells, 56, 167174 (1999).
18. M. Grätzel, “Solar Energy Conversion by DyeSensitized Photovoltaic Cells,” Inorg. Chem. 44, 6841-6851, (2005)
19. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, “A Channel Flow Cell System Specifically Designed to Test the Efficiency of Redox Suttles in Dye Sensitized Solar Cells,” Solar Energy Mater. Solar Cells 70, 85-101 (2001)
20. N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. B 107, 11307 (2003)
21. D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, “Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells: Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells” Nano Lett. 6, 669 (2006)
22. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, J. Am. Chem. Soc. 127, 3456 (2005)
23. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, “ Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy” Chem. Commun., 2972 (2002)
24. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator” Chem. Commun., 374 (2002)
25. N. Mohmeyer, D. Kuang, P. Wang, H. W. Schmidt, S. M. Zakeeruddin and M. Grätzel, “ An efficient organogelator for ionic liquids to prepare stable quasi-solidstate dye-sensitized solar cells” J. Mater. Chem. 16, 2978 (2006)
26. P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik, “Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots,” J. Phys. Chem. B, 110, 2545125454 (2006).
27. H. J. Lee, J. H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Grätzel, and Md. K. Nazeeruddin, “CdSe Quantum DotSensitized Solar Cells Exceeding Efficiency 1% at FullSun Intensity,” J. Phys. Chem. C, 112, 1160011608 (2008).
28. H. J. Lee, P. Chen, S. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Grätzel, and Md. K. Nazeeruddin, “Regenerative PbS and CdS Quantum Dot Sensitized Solar Cells with a Cobalt Complex as Hole Mediator,”Laugmuir, 25(13), 76027608 (2009).
29. H. J. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and Md. K. Nazeeruddin, “Efficient CdSe Quantum DotSensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process,”Nano Lett., 9(12), 42214227 (2009).
30. S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim, and S. I. Seok, “Performance Improvement of Sb2S3Sensitized Solar Cell by Introducing Hole Buffer Layer in Cobalt Complex Electrolyte,”Energy Environ. Sci., 4, 27992802 (2011).
31. Y. L. Lee and C. H. Chang, “Efficient Polysulfide Electrolyte for CdS Quantum DotSensitized Solar Cells,” J. Power Sources, 185, 584588 (2008).
32. B. Miller and A. Heller, “Semiconductor Liquid Junction Solar Cells Based on Anodic Sulphide Films,” Nature, 262, 680681 (1976).
33. G. Milczarek, A. Kasuya, S. Mamykin, T. Arai, K. Shinoda, and K. Tohji, “Optimization of a TwoCompartment Photoelectrochemical Cell for Solar Hydrogen Production,” Int. J. Hydrog. Energy, 28, 919926 (2003).
34. Y. Bessekhouad, M. Mohammedi, and M. Trari, “Hydrogen Photoproduction from Hydrogen Sulfide on Bi2S3 Catalyst,” Sol. Energy Mater. Sol. Cells, 73, 339350 (2002).
35. B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of Recent Progress in SolidState DyeSensitized Solar Cells,”Sol. Energy Mater. Sol. Cells, 90, 549573 (2006).
36. Y. L. Lee, Y. J. Shen, and Y. M. Yang, “A Hybrid PVDFHFP/Nanoparticle Gel Electrolyte for DyeSensitized Solar Cell Applications,” Nanotechnology, 19, 455201 (2008).
37. C. L. Chen, H. Teng, and Y. L. Lee, “Preparation of Highly Efficient GelState DyeSensitized Solar Cells Using Polymer Gel Electrolytes Based on Poly(acrylonitrilecovinyl acetate),” J. Mater. Chem., 21, 628632 (2011).
38. Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, and A. Fujishima, “Fabrication of an Efficient SolidState DyeSensitized Solar Cell,” Langmuir, 19, 35723574 (2003).
39. B. O’Regan, F. Lenzmann, R. Muis, and J. Wienke, “A SolidState DyeSensitized Solar Cell Fabricated with PressureTreated P25TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics,” Chem. Mater., 14, 50235029 (2002).
40. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, “SolidState DyeSensitized Mesoporous TiO2 Solar Cells with High PhotontoElectron Conversion Efficiencies,” Nature, 395, 583585 (1998).
41. R. Plass, S. Pelet, J. Krueger, and M. Grätzel, “Quantum Dot Sensitization of OrganicInorganic Hybrid Solar Cells,” J. Phys. Chem. B, 106, 75787580 (2002).
42. H. J. Snaith, A. J. Moule, C. Klein, K. Meerholz, R. H. Friend, and M. Grätzel, “Efficiency Enhancements in SolidState Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture,”Nano Lett., 7(11), 33723376 (2007).
43. S. J. Moon, Y. Itzhaik, J. H. Yum, S. M. Zakeeruddin, G. Hodes, and M. Grätzel, “Sb2S3Based Mesoscopic Solar Cell using an Organic Hole Conductor,” J. Phys. Chem. Lett., 1, 15241527 (2010).
44. N. Cai, S. J. Moon, L. CeveyHa, T. Moehl, R. HumphryBaker, P. Wang, S. M. Zakeeruddin, and M. Grätzel, “An Organic DπA Dye for Record Efficiency SolidState Sensitized Heterojunction Solar Cells,” Nano Lett., 11, 14521456 (2011).
45. X. Liu, W. Zhang, S. Uchida, L. Cai, B. Liu, and S. Ramakrishna, “An Efficient OrganicDyeSensitized Solar Cell with in situ Polymerized Poly(3,4ethylenedioxythiophene) as a HoleTransporting Material,” Adv. Mater., 22, E150E155 (2010).
46. J. K. Koh, J. Kim, B. Kim, J. H. Kim, and E. Kim, “Highly Efficient, IodineFree DyeSensitized Solar Cells with SolidState Synthesis of Conducting Polymers,”Adv. Mater., 23, 16411646 (2011).
47. J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, Md. K. Nazeeruddin, and M. Grätzel, “HighPerformance Nanostructured InorganicOrganic Heterojunction Solar Cells,” Nano Lett., 10, 26092612 (2010).
48. C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, and K. J. Kim, “Enhanced Performance of a DyeSensitized Solar Cell with an ElectrodepositedPlatinum Counter Electrode,” Electrochim. Acta, 53, 28902896 (2008).
49. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Effect of the Thickness of the Pt Film Coated on a Counter Electrode on the Performance of a DyeSensitized Solar Cell,” J. Electroanal. Chem., 570, 257263 (2004).
50. Y. L. Lee, C. L. Chen, L. W. Chong, C. H. Chen, Y. F. Liu, and C. F. Chi, “A Platinum Counter Electrode with High Electrochemical Activity and High Transparency for DyeSensitized Solar Cells,” Electrochem. Commun., 12, 16621665 (2010).
51. N. Papageorgiou, W. F. Maier, and M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media,” J. Electrochem. Soc., 144(3), 876884 (1997).
52. A. Kay and M. Grätzel, “Low Cost Photovoltaic Modules Based on Dye Sensitized Nanocrystalline Titanium Dioxide and Carbon Powder,” Sol. Energy Mater. Sol. Cells, 44, 99117 (1996).
53. T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. HumphryBaker, P. Comte, P. Péchy, and M. Grätzel, “Highly Efficient DyeSensitized Solar Cells Based on Carbon Black Counter Electrodes,” J. Electrochem. Soc., 153(12), A2255A2261 (2006).
54. K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, and K. Murata, “HighPerformance Carbon Counter Electrode for DyeSensitized Solar Cells,” Sol. Energy Mater. Sol. Cells, 79, 459469 (2003).
55. K. Suzuki, M. Yamaguchi, M. Kumagai, and S. Yanagida, “Application of Carbon Nanotubes to Counter Electrodes of Dyesensitized Solar Cells,” Chem. Lett., 32(1), 2829 (2003).
56. W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, “Efficient DyeSensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes,” ACS Appl. Mater. Interfaces, 1(6), 11451149 (2009).
57. L. Kavan, J. H. Yum, and M. Grätzel, “Optically Transparent Cathode for DyeSensitized Solar Cells Based on Graphene Nanoplatelets,” ACS Nano, 5(1), 165172 (2011).
58. J. D. RoyMayhew, D. J. Bozym, C. Punckt, and I. A. Aksay, “Functionalized Graphene as a Catalytic Counter Electrode in DyeSensitized Solar Cells,” ACS Nano, 4(10), 62036211 (2010).
59. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, and S. Hao, “HighPerformance Polypyrrole Nanoparticles Counter Electrode for DyeSensitized solar cells,” J. Power Sources, 181, 172176 (2008).
60. Q. Li, J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin, and L. Fan, “Application of Microporous Polyaniline Counter Electrode for DyeSensitized Solar Cells,” Electrochem. Commun., 10, 12991302 (2008).
61. S. Ahmad, J. H. Yum, H. J. Butt, Md. K. Nazeeruddin, and M. Grätzel, “Efficient Platinum−Free Counter Electrodes for DyeSensitized Solar Cell Applications,” ChemPhysChem, 11, 28142819 (2010).
62. Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, “I−/I3− Redox Reaction Behavior on Poly(3,4ethylenedioxythiophene) Counter Electrode in DyeSensitized Solar Cells,” J. Photochem. Photobiol. AChem., 164, 153157 (2004).
63. Y. Saito, T. Kitamura, Y. Wada, and S. Yanagida, “Application of Poly(3,4ethylenedioxythiophene) to Counter Electrode in DyeSensitized Solar Cells,” Chem. Lett., 31(10), 10601061 (2002).
64. T. C. Wei, C. C. Wan, and Y. Y. Wang, “Poly(Nvinyl2pyrrolidone) Capped Platinum Nanoclusters on IndiumTin Oxide Glass as Counterelectrode for DyeSensitized Solar Cells,” Appl. Phys. Lett., 88, 103122 (2006).
65. W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, “Transparent Graphene/PEDOT–PSS Composite Films as Counter Electrodes of DyeSensitized Solar Cells,” Electrochem. Commun., 10, 15551558 (2008).
66. B. Fan, X. Mei, K. Sun, and J. Ouyang, “Conducting Polymer/Carbon Nanotube Composite as Counter Electrode of DyeSensitized Solar Cells,” Appl. Phys. Lett., 93, 143103 (2008).
67. K. C. Huang, Y. C. Wang, R. X. Dong, W. C. Tsai, K. W. Tsai, C. C. Wang, Y. H. Chen, R. Vittal, J. J. Lin, and K. C. Ho, “A High Performance DyeSensitized Solar Cell with a Novel Nanocomposite Film of PtNP/MWCNT on the Counter Electrode,” J. Mater. Chem., 20, 40674073 (2010).
68. Y. L. Lee and Y. S. Lo, “Highly Efficient QuantumDotSensitized Solar Cell Based on CoSensitization of CdS/CdSe,” Adv. Funct. Mater., 19, 604609 (2009).
69. Q. Zhang, Y. Zhang, S. Huang, X. Huang, Y. Luo, Q. Meng, and D. Li, “Application of Carbon Counterelectrode on CdS Quantum DotSensitized Solar Cells (QDSSCs),” Electrochem. Commun., 12, 327330 (2010).
70. S. Q. Fan, B. Fang, J. H. Kim, J. J. Kim, J. S. Yu, and J. Ko, Appl. Phys. Lett., 96, 063501 (2010).
71. S. Q. Fan, B. Fang, J. H. Kim, B. Jeong, C. Kim, J. S. Yu, and J. Ko, “Hierarchical Nanostructured Spherical Carbon with Hollow Core/Mesoporous Shell as a Highly Efficient Counter Electrode in CdSe QuantumDotSensitized Solar Cells,” Langmuir, 26(16), 1364413649 (2010).
72. G. Hodes and J. Manassen, “Electrocatalytic Electrodes for the Polysulfide Redox System,” J. Electrochem. Soc., 127(3), 544549 (1980).
73. Z. Yang, C. Y. Chen, C. W. Liu, and H. T. Chang, “Electrocatalytic Sulfur Electrodes for CdS/CdSe Quantum DotSensitized Solar Cells,” Chem. Commun., 46, 54855487 (2010).
74. Z. Yang, C. Y. Chen, C. W. Liu, C. L. Li, and H. T. Chang, “Quantum DotSensitized Solar Cells Featuring CuS/CoS Electrodes Provide 4.1% Efficiency,” Adv. Energy Mater., 1, 259264 (2011).
75. Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, “CdSe Quantum DotSensitized Solar Cell Employing TiO2 Nanotube WorkingElectrode and Cu2S CounterElectrode,” Appl. Phys. Lett., 97, 123107 (2010).
76. M. Deng, S. Huang, Q. Zhang, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “ScreenPrinted Cu2SBased Counter Electrode for QuantumDotSensitized Solar Cell,” Chem. Lett., 39, 11681170 (2010).
77. Z. Tachan, M. Shalom, I. Hod, S. Rühle, S. Tirosh, and A. Zaban, “PbS as a Highly Catalytic Counter Electrode for PolysulfideBased Quantum Dot Solar Cells,” J. Phys. Chem. C, 115, 61626166 (2011).
78. H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, “Dye Sensitised Zinc Oxide: Aqueous Electrolyte: Platinum Photocell,” Nature, 261, 402403 (1976).
79. B. O’Regan and M. Grätzel, “A LowCost, HighEfficiency Solar Cell Based on DyeSensitized Colloidal TiO2 Films,” Nature, 353, 737740 (1991).
80. Md. K. Nazeeruddin, A. Kay, I. Rodicio, R. HumphryBaker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cisX2Bis(2,2bipyridyl4,4dicarboxylate)ruthenium(II) Charge Transfer Sensitizers (X = C1, Br, I, CN, and SCN) on Nanocrystalline TiO2 Electrodes,” J. Am. Chem. Soc., 115, 63826390 (1993).
81. M. Grätzel, “Conversion of Sunlight to Electric Power by Nanocrystalline DyeSensitized Solar Cells,” J. Photochem. Photobiol. AChem., 164, 314 (2004).
82. Md. K. Nazeeruddin, P. Péchy, and M. Grätzel, “Efficient Panchromatic Sensitization of Nanocrystalline TiO2 Films by a Black Dye Based on a TrithiocyanatoRuthenium Complex,” Chem. Commun., 18, 17051706 (1997).
83. Md. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. HumphryBaker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2Based Solar Cells,” J. Am. Chem. Soc., 123, 16131624 (2001).
84. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “DyeSensitized Solar Cells with Conversion Efficiency of 11.1%,” Jpn. J. Appl. Phys., 45(25), L638L640 (2006).
85. Md. K. Nazeeruddin, S. M. Zakeeruddin, R. HumphryBaker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, ChristianH. Fischer, and M. Grätzel, “AcidBase Equilibria of (2,2′Bipyridyl4,4′dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on ChargeTransfer Sensitization of Nanocrystalline Titania,” Inorg. Chem., 38, 62986305 (1999).
86. C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngocle, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient LightHarvesting Ruthenium Sensitizer for ThinFilm DyeSensitized Solar Cells,” ACS Nano, 3(10), 31033109 (2009).
87. Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao, and P. Wang, “DyeSensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2(Hexylthio)thiophene Conjugated Bipyridine,” J. Phys. Chem. C, 113, 62906297 (2009).
88. Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, and P. Wang, “HighEfficiency DyeSensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States,” ACS Nano, 4(10), 60326038 (2010).
89. Yella A.; Lee H. W.; Tsao H. N, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency” SCIENCE, 334(6056), 629-634 (2011)
90. R. Vogel, P. Hoyer, and H. Weller, “QuantumSized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous WideBandgap Semiconductors,” J. Phys. Chem., 98, 3183 (1994).
91. A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots,” Langmuir, 14, 3153 (1998).
92. S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang, and L. Jiang, “High Photostability and Quantum Yield of Nanoporous TiO2 Thin Film Electrodes CoSensitized with Capped Sulfides,” J. Mater. Chem., 12, 14591464 (2002).
93. R. Plass, S. Pelet, J. Krueger, and M. Grätzel, “Quantum Dot Sensitization of OrganicInorganic Hybrid Solar Cells,” J. Phys. Chem. B, 106, 75787580 (2002).
94. P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik, “Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots,” J. Phys. Chem. B, 110, 2545125454 (2006).
95. S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen, and Y. M. Yang, “Quantum DotSensitized Solar Cells: Assembly of CdS Quantum Dots Coupling Techniques of SelfAssembly Monolayer and Chemical Bath Deposition,” Appl. Phys. Lett., 90, 143517 (2007).
96. C. H. Chang and Y. L. Lee, “Chemical Bath Deposition of CdS Quantum Dots onto Mesoscopic TiO2 Films for Application in QuantumDotSensitized Solar Cells,” Appl. Phys. Lett., 91, 053503 (2007).
97. L. J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda, “High Efficiency of CdSe QuantumDotSensitized TiO2 Inverse Opal Solar Cells,” Appl. Phys. Lett., 91, 023116 (2007).
98. Y. L. Lee, B. M. Huang, and H. T. Chien, “Highly Efficient CdSeSensitized TiO2 Photoelectrode for QuantumDotSensitized Solar Cell Applications,” Chem. Mater., 20, 69036905 (2008).
99. Y. L. Lee and Y. S. Lo, “Highly Efficient QuantumDotSensitized Solar Cell Based on CoSensitization of CdS/CdSe,” Adv. Funct. Mater., 19, 604609 (2009).
100. S. Q. Fan, D. Kim, J. J. Kim, D. W. Jung, S. O. Kang, and J. Ko, “Highly Efficient CdSe QuantumDotSensitized TiO2 Photoelectrodes for Solar Cell Applications,” Electrochem. Commun., 11, 13371339 (2009).
101. H. J. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and Md. K. Nazeeruddin, “Efficient CdSe Quantum DotSensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process,” Nano Lett., 9(12), 42214227 (2009).
102. Q. Zhang, Y. Zhang, S. Huang, X. Huang, Y. Luo, Q. Meng, and D. Li, “Application of Carbon Counterelectrode on CdS Quantum DotSensitized Solar Cells (QDSSCs),” Electrochem. Commun., 12, 327330 (2010).
103. S. Q. Fan, B. Fang, J. H. Kim, B. Jeong, C. Kim, J. S. Yu, and J. Ko, “Ordered Multimodal Porous Carbon as Highly Efficient Counter Electrodes in DyeSensitized and QuantumDot Solar Cells,” Langmuir, 26(16), 1364413649 (2010).
104. L. W. Chong, H. T. Chien, and Y. L. Lee, “Assembly of CdSe onto Mesoporous TiO2 Films Induced by a SelfAssembled Monolayer for Quantum DotSensitized Solar Cell Applications,” J. Power Sources, 195, 51095113 (2010).
105. Y. H. Lee, S. H. Im, J. H. Rhee, J. H. Lee, and S. I. Seok, “Performance Enhancement through PostTreatments of CdSSensitized Solar Cells Fabricated by Spray Pyrolysis Deposition,” ACS Appl. Mater. Interfaces, 6, 16481652 (2010).
106. A. Tubtimtae, K. L. Wu, H. Y. Tung, M. W. Lee, and G. J. Wang, “Ag2S Quantum DotSensitized Solar Cells,” Electrochem. Commun., 12, 11581160 (2010).
107. Z. Yang and H. T. Chang, “CdHgTe and CdTe Quantum Dot Solar Cells Displaying an Energy Conversion Efficiency Exceeding 2%,” Sol. Energy Mater. Sol. Cells, 94, 20462051 (2010).
108. V. G. Pedro, X. Xu, I. M. Seró, and J. Bisquert, “Modeling HighEfficiency Quantum Dot Sensitized Solar Cells,” ACS Nano, 4(10), 57835790 (2010).
109. Z. Yu, Q. Zhang, D. Qin, Y. Luo, D. Li, Q. Shen, T. Toyoda, and Q. Meng, “Highly Efficient QuasiSolidState QuantumDotSensitized Solar Cell Based on Hydrogel Electrolytes,” Electrochem. Commun., 12, 17761779 (2010).
110. H. Chen, W. Li, H. Liu, and L. Zhu, “Performance Enhancement of CdSSensitized TiO2 Mesoporous Electrode with Two Different Sizes of CdS Nanoparticles,” Microporous Mesoporous Mat., 138, 235238 (2011).
111. Y. H. Lee, S. H. Im, J. H. Lee, and S. I. Seok, “Porous CdSSensitized Electrochemical Solar Cells,” Electrochim. Acta, 56, 20872091 (2011).
112. B. Fang, M. Kim, S. Q. Fan, J. H. Kim, D. P. Wilkinson, J. Ko, and J. S. Yu, “Facile Synthesis of Open Mesoporous Carbon Nanofibers With Tailored Nanostructure as a Highly Efficient Counter Electrode in CdSe QuantumDotSensitized Solar Cells,” J. Mater. Chem., 21, 87428748 (2011).
113. Z. Yang, C. Y. Chen, C. W. Liu, C. L. Li, and H. T. Chang, Adv. Energy Mater., 1, 259264 (2011).
114. Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Highly Efficient CdS/CdSeSensitized Solar Cells Controlled by the Structural Properties of Compact Porous TiO2 Photoelectrodes,” Phys. Chem. Chem. Phys., 13, 46594667 (2011).
115. X. Huang, S. Huang, Q. Zhang, X. Guo, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “A Flexible Photoelectrode for CdS/CdSe Quantum DotSensitized Solar Cells (QDSSCs),” Chem. Commun., 47, 26642666 (2011).
116. Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, and P. Wang, “HighEfficiency DyeSensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States,” ACS Nano, 4(10), 60326038 (2010).
117. A. Braga, S. Giménez, I. Concina, A. Vomiero, and I. MoraSeró, “Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes,” J. Phys. Chem. Lett., 2, 454460 (2011).
118. S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim, and S. I. Seok, “Performance Improvement of Sb2S3Sensitized Solar Cell by Introducing Hole Buffer Layer in Cobalt Complex Electrolyte,” Energy Environ. Sci., 4, 27992802 (2011).
119. H. J. Im; R. C. Lee; J. W. Lee, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” NANOSCALE., 3, 4088-4093 (2011)
120. Y. Wang and N. Herron, “NanometerSized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties,” J. Phys. Chem., 95, 525532 (1991).
121. W. W. Yu and X. Peng, “Formation of HighQuality CdS and Other IIVI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers,” Angew. Chem. Int. Ed., 41, 2368 (2002).
122. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals,” Chem. Mater., 15, 2854 (2003).
123. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science, 307, 538 (2005).
124. A. J. Nozik, “Multiple Exciton Generation in Semiconductor Quantum Dots,” Chem. Phys. Lett., 457, 311 (2008).
125. R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion,” Phys. Rev. Lett., 92(18), 186601 (2004).
126. A. J. Nozik, “Quantum Dot Solar Cells,” Physica E, 14, 115120 (2002).
127. A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to UltrahighEfficiency Solar Photon Conversion,” Inorg. Chem., 44, 68936899 (2005).
128. R. T. Ross and A. J. Nozik, “Efficiency of HotCarrier Solar Energy Converters,” J. Appl. Phys., 53(5), 38133818 (1982).
129. M. C. Hanna and A. J. Nozik, “Solar Conversion Efficiency of Photovoltaic and Photoelectrolysis Cells with Carrier Multiplication Absorbers,” J. Appl. Phys., 100, 074510 (2006).
130. O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen, and G. Hodes, “Chemical Bath Deposited CdS/CdSeSensitized Porous TiO2 Solar Cells,” J. Photochem. Photobiol. AChem., 181, 306313 (2006).
131. H. J. Lee, J. Bang, J. Park, S. Kim, and S. M. Park, “Multilayered Semiconductor (CdS/CdSe/ZnS)Sensitized TiO2 Mesoporous Solar Cells: All Prepared by Successive Ionic Layer Adsorption and Reaction Processes,” Chem. Mater., 22, 5636–5643 (2010).
132. C. LévyClément, R. TenaZaera, M. A. Ryan, A. Katty, and G. Hodes, “CdSeSensitized pCuSCN/Nanowire nZnO Heterojunctions,” Adv. Mater., 17, 15121515 (2005).
133. N. Guijarro, T. LanaVillarreal, I. MoraSeró, J. Bisquert, and R. Gómez, “CdSe Quantum DotSensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment,” J. Phys. Chem. C, 113, 42084214 (2009).
134. S. Giménez, I. MoraSeró, L. Macor, N. Guijarro, T. LanaVillarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the Performance of Colloidal QuantumDotSensitized solar cells,” Nanotechnology, 20, 295204 (2009).
135. I. MoraSeró, S. Giménez, T. Moehl, F. FabregatSantiago, T. LanaVillarreal, R. Gómez, and J. Bisquert, “Factors Determining the Photovoltaic Performance of a CdSe Quantum Dot Sensitized Solar Cell: the Role of the Linker Molecule and of the Counter Electrode,” Nanotechnology, 19, 424007 (2008).
136. E. MartínezFerrero, I. MoraSeró, J. Albero, S. Giménez, J. Bisquert, and E. Palomares, “Charge Transfer Kinetics in CdSe Quantum Dot Sensitized Solar Cells,” Phys. Chem. Chem. Phys., 12, 28192821 (2010).
137. G. Hodes, “Comparison of Dye and SemiconductorSensitized Porous Nanocrystalline Liquid Junction Solar Cells,” J. Phys. Chem. C, 112, 1777817787 (2008).
138. S. K. Haram, A. J. Bard, “Scanning Electrochemical Microscopy. 42. Studies of the Kinetics and Photoelectrochemistry of Thin Film CdS/Electrolyte Interface” J. Phys. Chem. B 105, 8192 (2001)
139. M. L. Breen, J. T. Woodward, IV, D. K. Schwartz, “Direct Evidence for an Ion-by-Ion Deposition Mechanism in Solution Growth of CdS Thin Films” Chem. Mater. 10, 710 (1998)
140. P. O’Brien, J. McAleese, “Developing an Understanding of the Processes Controlling the Chemical Bath Deposition of ZnS and CdS” J. Mater. Chem. 8, 2309 (1998)
141. J. L. Blackburn, D. C. Selmarten, A. J. Nozik, “Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in-situ Chemical Bath Deposition” J. Phys. Chem. B 107, 14154 (2003)
142. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi and Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature” J. Coll. Interf. Sci. 252, 77 (2002)
143. R. S. Mane, S. J. Roh, O.S. Joo, C. D. Lokhande, S. H. Han, “Improved Performance of Dense TiO2/CdSe Coupled Thin Films by Low Temperature Process” Electrochim. Acta 50, 2453 (2005)
144. I. K. Ding, N. Tetreault, J. Brillet, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Advanced Function Materials. 19, 2431-2436 (2009)
145. A. Salant, M. Shalom,I. Hod, “Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition,” ACS NANO. 4, 5962-5968 (2010)
146. P. Ardalan, Brennan Thomas P., H. Lee, “Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells,” ACS NANO. 5, 1495-1504 (2011)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw