進階搜尋


下載電子全文  
系統識別號 U0026-0108201214564700
論文名稱(中文) 吸附性建材對室內甲醛濃度長期降低性能之研究
論文名稱(英文) The Long Term Effects of Using Sorptive Building Materials to Reduce the Concentrations of Indoor Formaldehyde
校院名稱 成功大學
系所名稱(中) 建築學系碩博士班
系所名稱(英) Department of Architecture
學年度 100
學期 2
出版年 101
研究生(中文) 鄭凱文
研究生(英文) Kai-Wen Chang
學號 n76991271
學位類別 碩士
語文別 中文
論文頁數 146頁
口試委員 指導教授-江哲銘
口試委員-李俊璋
口試委員-蔡耀賢
中文關鍵字 甲醛  吸附  吸附性建材  貫流能力  長期飽和性能  試樣管試驗系統 
英文關鍵字 Formaldehyde  Sorption  Soptive Building Material  Long-term Reduction Performance  Breakthrough Capacity Test System(BTCTS) 
學科別分類
中文摘要 摘要
室內空氣品質為一個人口健康和福祉的重要因素。現今社會人們大部分時間處在室內空間(90%廣義的室內空間),如住宅、辦公、學校和車輛,故室內空氣品質的良窳可直接影響工作效率及生活品質;目前甲醛被廣泛應用於製造各種建材及家具,尤其以尿素甲醛樹脂為黏著劑的合成板製品最為嚴重,並在2004年世界衛生組織管轄下的國際癌症研究總署將甲醛列為人類第一級致癌物,且對於長期暴露在室內空氣汙染而造成健康影響的危害,包含如呼吸系統疾病,過敏和呼吸道刺激。順應近年國際標準規範趨勢,為促進國內使用新型態吸附性建築材料,有效降低減少室內揮發性有機化合物之濃度,吸附性建材迫切需評估驗證之有效特性並為未來改善室內空氣品質的重要課題。
■ 研究方法:
本研究主要探討板狀類的吸附性建築材料,選定兩種建材包含國內木絲板(通過國內綠建材標章)及日本吸附調濕壁板(具備吸附性能之潛力),藉由物理吸附的方式進行降低室內空氣中甲醛污染物質濃度之長期性能評估。本研究試驗條件主要依據ISO 16000-23的標準規範試驗方法(CNS 16000-23於2011年公告),並透過國家性能實驗中心於前期研究已建立之國內吸附性建材檢測系統(Sorptive Building Material Test System, SBMTS),本研究先行透過SBMTS於國內標準試驗環境(25℃、RH 50%)及甲醛濃度0.1 ppm(122 μg/m3)進行長時間試驗(長達28天內),測定建材吸附通量(Fm)、當量通風率(Fv,eq)等及環控箱所測得單位面積吸附總質量(ρAc)評定其性能水準。本研究同步建立試樣管試驗系統(Breakthrough Capacity Test System, BTCTS),經試樣管法進一步檢測建材飽和吸附量(ρAa),根據試驗結果換算建材長期吸附持續性時間之推估。
■ 研究結果
經本研究驗證其回收率符合80%以上,甲醛偵檢器準確度驗證R2=0.987具高度相關性。甲醛供應不同濃度時得到以下結果。
1.小尺寸環控箱法測試木絲板及調濕壁板兩建材皆具有吸附降低甲醛濃度之效果。甲醛供應濃度0.1ppm時木絲板平均吸附通量(Fm)為97.06 μg/m2‧h、調濕壁板平均吸附通量(Fm)為52.61 μg/m2/h。
甲醛供應濃度0.2 ppm時木絲板平均吸附通量(Fm)為207.31 μg/m2/h。降低甲醛濃度之性能為木絲板高於調濕壁板。
2.試樣管法測試結果藉由Langmuir吸附等溫方程式線性迴歸分析可得當甲醛供應濃度0.1 ppm時,木絲板之吸附能力(Ws)為110.88 μg/g、調濕壁板之吸附能力(Ws)為74.84 μg/g。
3.小尺寸環控箱單位面積吸附總質量(ρAc),甲醛供應濃度0.1 ppm(122 μg/m3)下木絲板(預備試驗)共11天為29729.6 μg/m2、木絲板(正式試驗)共25天為58238.22 μg/m2、調濕壁板(正式試驗)共16天為20202.19 μg/m2;甲醛供應濃度0.2 ppm(244 μg/m3)下木絲板共7天為34828.85 μg/m2。
試樣管推估單位面積飽和質量(ρAa),甲醛供應濃度0.1 ppm(122 μg/m3)下木絲板為1275120 μg/m2、調濕壁板為420975 μg/m2,甲醛供應濃度0.2 ppm(244 μg/m3)下木絲板為1328032 μg/m2。
換算長期有效持續性木絲板(預備試驗)可達472天約1.3年,木絲板(0.1 ppm正式試驗)可達547天約1.5年,木絲板(0.2 ppm高濃度)可達267天約0.73年,調濕壁板(0.1 ppm正式試驗)可達333天約0.9年。
4.預計應用吸附性建材達法定裝修面積比例45%以上皆可達最小換氣需求0.5 ACH以上,可降低室內人員長期暴露甲醛濃度下之終生致癌風險。

小尺寸環控箱法輔以試樣管法可實際改善吸附性能試驗時間過長之問題,藉由長期試驗以估算材料的單位面積飽和質量,有效建立並驗證未來國內應用吸附性建材對改善室內空氣品質之長期性能效益。
英文摘要 Abstract
Indoor air quality (IAQ) is an important factor of the health and well-being within a population. Today's society, people often resides in indoor spaces such as residential home, office, schools and vehicles. Because of this, we need to carefully consider the quality of indoor air as it can directly affect the efficiency and condition of life. Formaldehyde has been widely used in the manufacturing of building materials and furniture. In 2004, the International Agency for Research on Cancer (IARC) listed Formaldehyde as Group 1 category: which classified the agent as carcinogenic to humans. Synthetic products made out of urea-formaldehyde resin adhesive are especially more serious. For long-term exposure to indoor air pollution, hazardous health effects, such as respiratory diseases, allergies and respiratory tract irritation can become prevalent. With regards to recent international, promoting the use of a new type of sorptive building materials to reduce the indoor concentration of volatile organic compounds has been deemed necessary. It is crucial to conduct extensive evaluation on new sorptive building materials for its effectiveness. With this in mind, our focus in the future will be set on improving the quality of our indoor air.
■ Research Method
This study investigates the long-term(time period of 28 days) effect of using sorptive building materials to reduce the concentration of indoor formaldehyde. Two types of building material were selected Green Building Materials Label (GBML) products wood fiberboard (WFB) and Japan’s humidity-controlling material for celite siding(CS). Concentration of formaldehyde in indoor air pollutant was reduced via physical adsorption. The test conditions is based on ISO 16000-23, utilizing a small-scale chamber and sample tube equipment system(25℃, RH 50%, HCHO concentration 0.1 ppm). National Performance Laboratory Center, have been established “Sorptive Building Material Test System, SBMTS”, to develop domestic “Breakthrough Capacity Test System, BTCTS”, in accordance with SOP to validation of the test system and provided for sorptive test by two building materials. By measuring the sorption isotherm using the breakthrough test, we can effectively evaluate the long-term reduction performance of sorptive building materials. The expression of result to calculate of sorption flux (Fm), equivalent ventilation rate (Fv,eq), total mass per area of sorption (ρAc), saturation mass per area(ρAa).

The results was verified SBMTS and BTCTS to conform concentrations of HCHO recovery more than 80% by repeatedly sampling.
■ Research Result
1.Test conditions on HCHO 0.1ppm are as below, WFB (total of 25 days) average sorption flux (Fm) is 97.06 μg/m2/h, total mass per area of sorption (ρAc) is 58238.22 μg/m2. CS(total of 16 days) average sorption flux (Fm) is 52.61 μg/m2‧h, total mass per area of sorption (ρAc) is 20202.19 μg/m2.
Test conditions on HCHO 0.2ppm are as below, WFB average sorption flux (Fm) is 207.31 μg/m2/h, total mass per area of sorption (ρAc) is 34828.85 μg/m2.
2.Predicted saturation sorption value Ws calculated as saturation mass per area(ρAa). The test condition on HCHO 0.1 ppm are as below, WFB saturation mass per area(ρAa) is 1275120 μg/m2. CS saturation mass per area(ρAa) is 420975 μg/m2
Test conditions on HCHO 0.2 ppm, WFB saturation mass per area(ρAa) is 1328032 μg/m2.
3.Values for the lifetime capacity of sorptive building materials are as below, WFB (0.1 ppm) estimates of 547 days for about 1.5 years, CS (0.1 ppm) estimates of 333 days for about 0.9 years, WFB (0.2 ppm) estimates of 267 days for about 0.73 years.
4.Applying sorptive building materials is expected to meet the statutory decoration area ratio 45% above can be of minimum ventilation requirements 0.5 ACH. It's can reduce lifetime cancer risk for the long-term exposure to formaldehyde concentrations of indoor personnel.

The sorption saturation value of the sorption capability, which is measured by the long-term reduction performance of sorptive building materials, demonstrate that sorptive building materials such as WFB and CS have a long lasting HCHO-reduction performance.
論文目次 目錄
中英文摘要 I
誌謝 V
表目錄 IX
圖目錄 XI
符號說明 XIII
第一章 緒論 1-1
1-1研究動機與目的 1-1
1-1-1研究動機 1-1
1-1-2研究目的 1-3
1-2研究範圍與流程 1-5
1-2-1研究範圍 1-5
1-2-2研究流程 1-6
1-3研究方法 1-7
第二章 相關理論與文獻探討 2-1
2-1室內空氣品質現況 2-1
2-1-1歷年的室內空氣品質與健康相關發展 2-3
2-1-2國內外政策趨勢 2-7
2-2室內建材揮發性有機化合物 2-12
2-2-1揮發性有機化合物(VOCs)的定義 2-12
2-2-2建材與甲醛 2-13
2-3吸附理論 2-16
2-3-1固體表面的吸附現象原理 2-16
2-3-2吸附的類型及影響因子 2-19
2-3-3吸附等溫線之類型 2-24
2-3-4吸附等溫式 2-27
2-4建材吸附相關文獻 2-31
2-4-1吸附材料的吸附等溫線測定 2-31
2-4-2評估吸附性建材減少室內VOCs之性能 2-35
2-4-3使用貫流能力試驗方法驗證長期吸附性能 2-38
2-5健康風險評估 2-41
2-6小結 2-42
第三章 實驗設計與分析方法 3-1
3-1甲醛吸附性能標準試驗方法 3-1
3-1-1小尺寸環控箱法 3-3
3-1-2試樣管法 3-11
3-2空白試驗與系統穩定度 3-19
3-2-1實驗空白試驗 3-19
3-2-2系統穩定度 3-20
3-3實驗設計與說明 3-21
3-3-1實驗說明 3-21
3-3-2樣本選定 3-25
3-4實驗數據分析方法 3-26
3-4-1實驗數據分析 3-26
3-4-2吸附飽和曲線模型 3-28
3-5小結 3-29
第四章 測試結果與討論 4-1
4-1實驗之品保與品管 4-1
4-1-1甲醛檢量線之建立與製作與準確度、精密度檢測 4-1
4-1-2濃度回收率檢測 4-5
4-1-3甲醛偵檢器(XP-308B)準確度驗證 4-7
4-2建材對甲醛長期吸附試驗結果 4-8
4-2-1環控箱法試驗結果 4-8
4-2-2試樣管法試驗結果 4-17
4-3吸附性建材應用與改善效益 4-24
4-4小結 4-32
第五章 結論與建議 5-1
5-1結論 5-1
5-2後續研究與建議 5-3
參考文獻 Ref-1
附錄一 室內空氣品質法條文內容 Add-1
附錄二 採樣數值計算 Add-5
參考文獻 一、中文部分
1.蘇慧貞、江哲銘、李俊璋,高雄市辦公大樓之室內空氣品質調查與健康危害之評估,2002。
2.江哲銘、李俊璋,室內建材揮發性有機逸散物質檢測標準試驗方法及程序之研究,內政部建築研究所,2001。
3.江哲銘、李彥頤、邵文政、蘇慧貞, 相關裝修變因對辦公空間揮發性有機污染物濃度影響分析Effects of Indoor Materials on Formaldehyde and Volatile Organic Compound Emissions in Office Buildings, 《建築學報》Vol.51, pp.1-23, 中華民國建築學會, 2005。
4.李俊璋,整合生命週期及健康風險評估建構永續健康環境之研究---子計畫二:居住環境中甲醛及揮發性有機物質逸散材質之生命週期與健康風險研究,2004。
5.李慧梅,室內揮發性有機物污染源排放因子之研究,2000。
6.張雍敏,勞工安全衛生簡訊第四十五期,2001。
7.郭廷威、黃正中,中華水電冷凍空調月刊,2008。
8.高文弘、周賢孟,界面化學,黎明書店,頁26-65,1980。
9.趙承琛“界面科學基礎”,復文書局,1987。
10.行政院環保署,室內空氣品質自主管理及改善技術手冊,頁94-96,2010。
11.內政部建築研究所,綠建材解說與評估手冊2011年更新版,頁43-44,2011。

二、日文部分
1.徐 長厚,室内空気汚染濃度低減材のVOCs 濃度低減性能試験に関する研究(その1)-小形Test Chamber 法における活性炭・吸着建材のToluene 濃度低減性能試験,2005。
2.JIS A 1905-1 小形チャンバー法による室内空気汚染濃度低減材の低減性能試験法―第1部:一定ホルムアルデヒド濃度供給法による吸着速度測定,2007。
3.JIS A 1905-2小形チャンバー法による室内空気汚染濃度低減材の低減性能試験法―第2部:ホルムアルデヒド放散建材を用いた吸着速度測定 ,2007。
4.徐 長厚,各種吸着建材を用いた室内VOCs 濃度低減性能試験及び吸着持続性能の検討,2008。
5.徐 長厚、加藤 信介、安宅 勇二,小形 Test Chamber 法における活性炭・吸着建材の Toluene 濃度低減性能試験,日本建築学会学術講演梗概集,2005。
6.安宅 勇二、加藤 信介、朱 清宇、徐 長厚、長谷川 あゆみ,各種建築材料および吸着材の吸着等温線の測定,空気調和・衛生工学会大会学術講演論文集,名古屋,2004。

三、英文部分
1.Kun Chin Huang, Validation and Performance Test of the Reduction Formaldehyde Concentrations for Indoor Environment by Sorptive Building Materials in Taiwan, 2011.
2.NAS. Indoor pollutants. National Research Council/National Academy of Sciences, Committee on Indoor Pollutants. National Academy of Sciences Press, Washington, D.C, 1981.
3.Rohles, F.H., J.A. Woods, and P.R. Morey. Indoor environmental acceptability: Development of a rating scale. ASHRAE Transactions 95(1):23-27, 1989.
4.Sundell J., On the history of indoor air quality and health, Indoor Air, 14 (Suppl 7): 51–58, 2004.
5.Yun Hwa Ko; Republic of Korea’s Current Policy on Indoor Environments; Director of Air Quality Management Bureau, Ministry of Environment, Korea; Sep. 13, 2007
6.ASHRAE Handbook—Fundamentals (SI) Chapter 10.10, 2009.
7.World Health Organization, 1989. "Indoor air quality: organic pollutants." Report on a WHO Meeting, Berlin, 23-27. EURO Reports and Studies 111. Copenhagen, World Health Organization Regional Office for Europe, August 1987.
8.IARC, Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to human Vol 88 Summary of Data Reported and Evaluation, 2004.
9.Godish T. Indoor Air Pollution Control Chelsea (Michigan): Lewis Publishers Inc.Gupta KC, Ulsamer AG, Preuss PW. Formaldehyde in indoor air source and toxicity. Environmental International, 8:349-358, 1982.
10.USEPA Air Pollution Training Institute (APTI) 415-Control of Gaseous Emissions: Chapter 4, 2008.
11.K.S.W.Sing, D.H.Everett, R.A.W .Haul, L.Moscou, R.A.Pierotti, J.Rouquerol, T.Siemieniewska,“Re porting physisorption data for gas/solid system”, Pur e and Appl. Chem. , Vo l.57, No.4, pp.603-619, 1985.
12.Jonas, L. , “Reaction Steps in Gas Sorption by Impregnated Carbon”, Carbon, 16, 115, 1978.
13.IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford, 1997.
14.S. Brunauer, The Adsorption of Gases and Vapors, Princeton University Press, Princeton, 1945.
15.S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic Press, New York, 1982
16.K.S.W Sing, Physisorption of Gases by Carbon Blacks, Carbon, 32,1994
17.Recommendations: Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity, IUPAC Commission on Colloid and Surface Chemistry Including Catalysis, Pure Appl. Chem., 57 (1985) 603; Recommendations for the Characterization of Porous Solids, IUPAC Commission on Colloid and Surface Chemistry, Pure Appl. Chem., 66, 1739, 1994.
18.IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem, 31, 57-638, 1972.
19.M.H. Stenzel, “Remove organics by activated carbon adsorption”, Chemical Engineering Progress, pp. 36-43, 1993.
20.Janghoo Seo,Ssinsuke Kato,Yuji Ataka, et al. Performance test for evaluating the reduction of VOCs in rooms and evaluating the lifetime of sorptive building materials[J].Building and Environment,44(1):207-215, 2009.
21.American Society for Testing and Materials D6646-03. Standard test method for determination of the accelerated hydrogen sulfide breakthrough capacity of granular and pelletized activated carbon, 2008.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw