進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0108201214032400
論文名稱(中文) 以SPM技術研究鋰電池之LiCoO2陰極材料電化學性質
論文名稱(英文) The Investigation of Electrochemical Properties in LiCoO2 Cathode of Li Battery via SPM Techniques
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 王紹宇
研究生(英文) Shao-Yu Wang
學號 N56991015
學位類別 碩士
語文別 中文
論文頁數 81頁
口試委員 指導教授-劉浩志
口試委員-許文東
口試委員-呂正傑
中文關鍵字 鋰電池  掃描探針顯微術  電化學阻抗分析  鋰鈷氧 
英文關鍵字 Li battery  Scanning probe microscopy  Electrochemical impedance spectroscopy  LiCoO2 
學科別分類
中文摘要 本研究旨在建立一套結合掃描探針顯微術與電化學阻抗分析的平台,並針對鋰電池內的LiCoO2鋰鈷氧陰極材料作初步的微區阻抗分析。為了瞭解與比較微區阻抗量測和過去一般阻抗量測結果的不同之處,本實驗的鋰電池組裝方式分為”半開放式電池” 及“正常型式電池”兩種,前者即用來搭配微區阻抗量測;且微區阻抗量測亦分為使用三軸探針座上的Tungsten probe或是使用AFM探針進行量測。
實驗結果發現,使用三軸探針座上的Tungsten probe或AFM探針對半開放式電池作微區阻抗分析時,在Nyquist plot的高頻區都會出現探針與試片之間接觸電阻和接觸電容效應所導致的半圓,而該半圓並不會出現在正常型式電池的量測中。另一方面,使用AFM探針作微區阻抗分析時,低頻區會出現一條反映擴散特性的Warburg阻抗曲線,該曲線並未在使用三軸探針座的量測情況下發現,原因可能是由於AFM探針針尖的電流密度較高,因此對LiCoO2產生更大的離子遷移和極化作用,所以在該微區阻抗分析中較容易觀察到擴散特性。
英文摘要 The major purpose of this study is to establish a platform, which is to use the combination of scanning probe microscopy and electrochemical impedance spectroscopy techniques to measure the micro-region impedance of the LiCoO2 material in the Li battery.
In order to discriminate the impedance characteristics between micro-region and normal ones, we have designed and assembled the “semi-exposed cell” and “typical cell” to execute the EIS measurements. The “semi- exposed cell” is used to measure the micro-region impedance; there are two ways to measure the micro-region impedance, one is performed by manipulator, the other is by AFM.
The experimental results, which are performed by the manipulator or AFM, show an additional semicircle in the high-frequency region in Nyquist plot, and this semicircle is caused by tip-sample contact resistance and contact capacitance.
There is a Warburg impedance characteristic in low-frequency region measured by AFM, though the Warburg characteristic is not found in the manipulator case. We attribute the Warburg characteristic to the high current density in the AFM tip, which induces larger ion-migration and polarization in the LiCoO2 material, so that we can easily find the diffusion effects in this case.
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 ix
表目錄 xii
第1章 序論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機 6
第2章 理論基礎 7
2.1 鋰電池簡介 7
2.1.1 陰極材料 10
2.1.2 陽極材料 14
2.1.3 電解質 15
2.2 電化學阻抗分析法 17
2.2.1 交流法中的複數阻抗 17
2.2.2 等效電路元件 21
2.3 掃描探針顯微術 24
2.3.1 顯微術發展沿革 24
2.3.1.1 光學顯微術(OM) 24
2.3.1.2 電子顯微鏡(EM) 24
2.3.1.3 掃描探針顯微術(SPM) 25
2.3.2 原子力顯微鏡 27
2.3.2.1 基本原理與架構 27
2.3.2.2 接觸式 30
2.3.2.3 非接觸式 31
2.3.2.4 輕敲式 31
2.3.3 掃描阻抗分析顯微術 32
2.3.3.1 基本原理與架構 32
2.3.3.2 金屬探針的使用 33
第3章 實驗方法與流程 37
3.1 實驗藥品 37
3.2 儀器設備 38
3.3 實驗流程 43
3.3.1 實驗架構圖 43
3.3.2 LiCoO2陰極試片之製備 44
3.3.2.1 基板 44
3.3.2.2 前驅液 45
3.3.2.3 旋轉塗佈法步驟 46
3.3.2.4 燒結熱處理 47
3.3.2.5 薄膜表面形貌觀察 47
3.3.3 鋰電池組裝 48
3.3.3.1 正常型式電池 48
3.3.3.2 半開放式電池 49
3.3.4 電化學分析測試 51
3.3.4.1 手套箱設置 51
3.3.4.2 充放電與交流阻抗分析測試 54
第4章 結果與討論 56
4.1 陰極試片表面形貌 56
4.2 交流阻抗圖譜分析 58
4.2.1 正常型式電池 58
4.2.2 半開放式電池 64
4.2.2.1 搭配三軸探針座之量測 64
4.2.2.2 搭配原子力顯微鏡之量測 69
第5章 結論及未來展望 73
5.1 結論 73
5.2 未來展望 74
第6章 參考文獻 76
圖目錄
Fig. 1 1 AFM images and a depth profile of selected 5 x 5 mm area of Li 4
Fig. 1 2 In situ AFM images of n-Sn32Co38C30 electrochemically 4
Fig. 1 3 Lithium intercalation map in LiCoO2. (a) Illustrating the local distribution of lithium diffusivity for a randomly selected cathode area. (b) Electromechanical hysteresis loops extracted from the indicated locations. 5
Fig. 1 4 In situ AFM images of a Sn-foil anode in 1 M LiPF6, EC:DEC (1:2 w/w) recorded at different potentials and the corresponding voltammogram (1st cycle) performed between the OCP (2.7 V) and 0.7 V at 2 mV.[18] 5
Fig. 2 1 Comparison of the different battery technologies in terms of volumetric and gravimetric energy density.[20] 8
Fig. 2 2 The charge/discharge mechanism in “Li batteries” and “Li-ion batteries”. 9
Fig. 2 3 The lattice in LiCoO2. [29] 13
Fig. 2 4 The dissolution/deposition of the Li metal during discharge/charge. 15
Fig. 2 5 The impedance Z plotted as a planar vector using rectangular and polar coordinates.[51] 20
Fig. 2 6 Simulated Nyquist plot of a resistor and a CPE in parallel over the frequency range 1 MHz to 1 mHz ( R = 10 Ω , Q = 0.01 Ω−1sn ). [52] 23
Fig. 2 7 Schematic of a typical AFM.[68] 28
Fig. 2 8 Interatomic force variation versus distance between AFM tip and sample.[5] 29
Fig. 2 9 Schematic of a typical SIM system.[64] 32
Fig. 2 10 Simple equivalent circuit model of the tip/sample contact.[64] 33
Fig. 2 11 The tip of the metal probe for AFM. 34
Fig. 2 12 Force curve testing of the metal probe. 36
Fig. 3 1 MS-700AFM. 38
Fig. 3 2 Ref600. 38
Fig. 3 3 lab master 100. 39
Fig. 3 4 MH-300. 40
Fig. 3 5 DC400. 40
Fig. 3 6 PM490 41
Fig. 3 7 Forced Convection Oven DK-600 41
Fig. 3 8 CH R11B 42
Fig. 3 9 JSM-7001F 42
Fig. 3 10 Experimental flow chart. 43
Fig. 3 11 Schematic representation of Pt-coated Si wafer. 44
Fig. 3 12 The rotator of the spin-coater. 46
Fig. 3 13 Schematic representation of “typical cell” assembling. 49
Fig. 3 14 Schematic representation of “semi-exposed cell” assembling. 50
Fig. 3 15 Schematic representation of the electrochemical testing with manipulator. 50
Fig. 3 16 Schematic representation of the electrochemical testing with AFM. 50
Fig. 3 17 The frame with the OM. 52
Fig. 3 18 Schematic represention of the analyze system. 52
Fig. 3 19 The analysis system with the AFM. 53
Fig. 3 20 The analysis system with the manipulator. 53
Fig. 4 1 The SEM top-view image of the LiCoO2. 56
Fig. 4 2 The SEM cross-sectional image of the LiCoO2. 57
Fig. 4 3 The AFM image of the LiCoO2. 57
Fig. 4 4 EIS data of the “typical cell” measured in three different OCV. 61
Fig. 4 5 The equivalent circuit of the typical cell analysis. 61
Fig. 4 6 Frumkin Impedance Model. [50] 63
Fig. 4 7 Experimental Nyquist plots obtained at the beginning of the deintercalation. [50] 63
Fig. 4 8 (a) EIS data of the “semi-exposed cell” measured in three different OCV by the manipulator; (b) focus on the high-frequency region. 66
Fig. 4 9 The equivalent circuit of the semi-exposed cell analysis with manipulator. 67
Fig. 4 10 Schematic representation of the path of electron in the typical cell. 68
Fig. 4 11 Schematic representation of the path of electron in the semi-exposed cell. 68
Fig. 4 12 (a) EIS data of the “semi-exposed cell” measured in three different OCV by the AFM; (b) focus on the high-frequency region. 71
Fig. 4 13 The equivalent circuit of the semi-exposed cell analysis with AFM. 72
表目錄
Table 2 1常見的鋰電池陰極材料比較表。 11
Table 2 2等效電路元件之相位差值。 19
Table 2 3等效電路元件及其阻抗關係式。 21
Table 2 4金屬探針之懸臂樑相關幾何參數。 35
Table 3 1交流阻抗分析測試之參數設定。 54
Table 4 1正常型式鋰電池在不同開路電壓下所得的各阻抗等效元件模擬參數。 62
Table 4 2半開放式鋰電池搭配三軸探針座量測所得的各阻抗等效元件模擬參數。 67
Table 4 3 半開放式鋰電池搭配AFM量測所得的各阻抗等效元件模擬參數。 72
參考文獻 1. Binnig, G., C.F. Quate, and C. Gerber, ATOMIC FORCE MICROSCOPE. Physical Review Letters, 1986. 56(9): p. 930-933.
2. Binnig, G. and H. Rohrer, SCANNING TUNNELING MICROSCOPY. Helvetica Physica Acta, 1982. 55(6): p. 726-735.
3. Binning, G., et al., SURFACE STUDIES BY SCANNING TUNNELING MICROSCOPY. Physical Review Letters, 1982. 49(1): p. 57-61.
4. Liu, S.Y. and Y.F. Wang, Application of AFM in Microbiology: A Review. Scanning, 2010. 32(2): p. 61-73.
5. Jalili, N. and K. Laxminarayana, A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics, 2004. 14(8): p. 907-945.
6. Parot, P., et al., Past, present and future of atomic force microscopy in life sciences and medicine. Journal of Molecular Recognition, 2007. 20(6): p. 418-431.
7. Gould, S.A.C., et al., THE ATOMIC FORCE MICROSCOPE - A TOOL FOR SCIENCE AND INDUSTRY. Ultramicroscopy, 1990. 33(2): p. 93-98.
8. Aurbach, D. and Y. Cohen, In situ micromorphological studies of Li electrodes by atomic force microscopy in a glove box system. Electrochemical and Solid State Letters, 1999. 2(1): p. 16-18.
9. Tian, Y., A. Timmons, and J.R. Dahn, In Situ AFM Measurements of the Expansion of Nanostructured Sn-Co-C Films Reacting with Lithium. Journal of the Electrochemical Society, 2009. 156(3): p. A187-A191.
10. Beaulieu, L.Y., et al., The electrochemical reaction of lithium with tin studied by in situ AFM. Journal of the Electrochemical Society, 2003. 150(4): p. A419-A424.
11. Beaulieu, L.Y., et al., Reaction of Li with alloy thin films studied by in situ AFM. Journal of the Electrochemical Society, 2003. 150(11): p. A1457-A1464.
12. Lewis, R.B., et al., In situ AFM measurements of the expansion and contraction of amorphous Sn-Co-C films reacting with lithium. Journal of the Electrochemical Society, 2007. 154(3): p. A213-A216.
13. Morozovska, A.N., et al., Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms. Journal of Applied Physics, 2010. 108(5).
14. Balke, N., et al., Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotechnology, 2010. 5(10): p. 749-754.
15. Chung, D.W., et al., Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films. Journal of the Electrochemical Society, 2011. 158(10): p. A1083-A1089.
16. Balke, N., et al., Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution. Nano Letters, 2010. 10(9): p. 3420-3425.
17. Leroy, S., et al., Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. Surface and Interface Analysis, 2005. 37(10): p. 773-781.
18. Lucas, I.T., E. Pollak, and R. Kostecki, In situ AFM studies of SEI formation at a Sn electrode. Electrochemistry Communications, 2009. 11(11): p. 2157-2160.
19. Hajek, J., French Patent, 1949.
20. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
21. Julien, C. and G.-A. Nazri, Solid State Batteries:Materials Design and Optimization1994: Kluwer Academic Publishers.
22. Mizushima, K., et al., LIXCOO2 "(OLESS-THANXLESS-THAN-OR-EQUAL-TO1) - A NEW CATHODE MATERIAL FOR BATTERIES OF HIGH-ENERGY DENSITY. Materials Research Bulletin, 1980. 15(6): p. 783-789.
23. Delmas, C., Mater. Sci. Eng, 1980.
24. Rabou, L. and A. Roskam, CYCLE-LIFE IMPROVEMENT OF LI/LICOO2 BATTERIES. Journal of Power Sources, 1995. 54(2): p. 316-318.
25. Antaya, M., et al., PREPARATION AND CHARACTERIZATION OF LICOO2 THIN-FILMS BY LASER ABLATION DEPOSITION. Journal of the Electrochemical Society, 1993. 140(3): p. 575-578.
26. Yazami, R., et al., HIGH-PERFORMANCE LICOO2 POSITIVE ELECTRODE MATERIAL. Journal of Power Sources, 1995. 54(2): p. 389-392.
27. Han, K.S., et al., Simultaneous and direct fabrication of lithium cobalt oxide film and powder using soft solution processing at 100 degrees C. Electrochemical and Solid State Letters, 1999. 2(2): p. 63-66.
28. Ni, C.T. and K.Z. Fung, Effect of chitosan on deposition of LiCoO2 thin film for Li-ion batteries. Solid State Ionics, 2009. 180(11-13): p. 900-903.
29. Takahashi, Y., et al., Anisotropic Electrical Conductivity in LiCoO2 Single Crystal. Journal of Solid State Chemistry, 2002. 164(1): p. 1-4.
30. Winter, M. and J.O. Besenhard, Lithiated Carbons, in Handbook of Battery Materials2011, Wiley-VCH Verlag GmbH & Co. KGaA. p. 433-478.
31. Winter, M., et al., Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials, 1998. 10(10): p. 725-763.
32. Juttner, K., ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) OF CORROSION PROCESSES ON INHOMOGENEOUS SURFACES. Electrochimica Acta, 1990. 35(10): p. 1501-1508.
33. Mansfeld, F., ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) AS A NEW TOOL FOR INVESTIGATING METHODS OF CORROSION PROTECTION. Electrochimica Acta, 1990. 35(10): p. 1533-1544.
34. Liu, C., Q. Bi, and A. Matthews, EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution. Corrosion Science, 2001. 43(10): p. 1953-1961.
35. Liu, C., et al., An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling. Corrosion Science, 2003. 45(6): p. 1243-1256.
36. Breur, H.J.A., et al., Electrochemical impedance study on the formation of biological iron phosphate layers. Electrochimica Acta, 2002. 47(13-14): p. 2289-2295.
37. Krishnan, C.V. and M. Garnett, Electrochemical impedance measurements for studying biological oscillations. Abstracts of Papers of the American Chemical Society, 2005. 230: p. U573-U574.
38. Ismail, A.H., et al., An electrochemical impedance spectroscopy (EIS) assay measuring the calcification inhibition capacity in biological fluids. Biosensors & Bioelectronics, 2011. 26(12): p. 4702-4707.
39. Nobili, F., et al., An AC impedance spectroscopic study of LixCoO2 at different temperatures. Journal of Physical Chemistry B, 2002. 106(15): p. 3909-3915.
40. Nobili, F., et al., An ac impedance spectroscopic study of Mg-doped LiCoO2 at different temperatures: electronic and ionic transport properties. Electrochimica Acta, 2005. 50(11): p. 2307-2313.
41. Wang, B., et al., Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes. Journal of the Electrochemical Society, 1996. 143(10): p. 3203-3213.
42. Barsoukov, E., et al., Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy. Solid State Ionics, 2003. 161(1-2): p. 19-29.
43. Qiu, X.-Y., et al., Electrochemical and electronic properties of LiCoO2 cathode investigated by galvanostatic cycling and EIS. Physical Chemistry Chemical Physics, 2012. 14(8): p. 2617-2630.
44. Sato, H., et al., Electrochemical characterization of thin-film LiCoO2 electrodes in propylene carbonate solutions. Journal of Power Sources, 1997. 68(2): p. 540-544.
45. Dokko, K., et al., Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. Journal of the Electrochemical Society, 2001. 148(5): p. A422-A426.
46. Xia, H., L. Lu, and G. Ceder, Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. Journal of Power Sources, 2006. 159(2): p. 1422-1427.
47. Zhuang, Q.C., et al., LiCoO2 electrode/electrolyte interface of Li-ion batteries investigated by electrochemical impedance spectroscopy. Science in China Series B-Chemistry, 2007. 50(6): p. 776-783.
48. Itagaki, M., et al., LiCoO2 electrode/electrolyte interface of Li-ion rechargeable batteries investigated by in situ electrochemical impedance spectroscopy. Journal of Power Sources, 2005. 148: p. 78-84.
49. Tian, L., et al., Mechanism of intercalation and deintercalation of lithium ions in graphene nanosheets. Chinese Science Bulletin, 2011. 56(30): p. 3204-3212.
50. Levi, M.D., et al., Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: Simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. Journal of the Electrochemical Society, 1999. 146(4): p. 1279-1289.
51. Barsoukov, E. and J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications2005: Wiley-Interscience.
52. Yuan, X.-Z., et al., Electrochemical Impedance Spectroscopy in PEM Fuel Cells2010: Springerr.
53. Fonthal, F., et al., AC impedance analysis of Au/porous silicon contacts. Microelectronic Engineering, 2006. 83(11-12): p. 2381-2385.
54. Domaradzki, J. and K. Nitsch, Electrical characterization of semiconducting V and Pd-doped TiO2 thin films on silicon by impedance spectroscopy. Thin Solid Films, 2007. 515(7-8): p. 3745-3752.
55. Mulder, W.H., et al., TAFEL CURRENT AT FRACTAL ELECTRODES - CONNECTION WITH ADMITTANCE SPECTRA. Journal of Electroanalytical Chemistry, 1990. 285(1-2): p. 103-115.
56. Kim, C.-H., S.-I. Pyun, and J.-H. Kim, An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations. Electrochimica Acta, 2003. 48(23): p. 3455-3463.
57. Schiller, C.A. and W. Strunz, The evaluation of experimental dielectric data of barrier coatings by means of different models. Electrochimica Acta, 2001. 46(24–25): p. 3619-3625.
58. Jorcin, J.-B., et al., CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta, 2006. 51(8–9): p. 1473-1479.
59. Oldham, K.B., The RC time “constant” at a disk electrode. Electrochemistry Communications, 2004. 6(2): p. 210-214.
60. Rotsch, C. and M. Radmacher, Mapping local electrostatic forces with the atomic force microscope. Langmuir, 1997. 13(10): p. 2825-2832.
61. Muller, D.J. and A. Engel, The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophysical Journal, 1997. 73(3): p. 1633-1644.
62. Florin, E.L., et al., ATOMIC-FORCE MICROSCOPE WITH MAGNETIC FORCE MODULATION. Review of Scientific Instruments, 1994. 65(3): p. 639-643.
63. Saenz, J.J., et al., OBSERVATION OF MAGNETIC FORCES BY THE ATOMIC FORCE MICROSCOPE. Journal of Applied Physics, 1987. 62(10): p. 4293-4295.
64. O'Hayre, R., et al., Quantitative impedance measurement using atomic force microscopy. Journal of Applied Physics, 2004. 96(6): p. 3540-3549.
65. Kittel, A., et al., Near-field heat transfer in a scanning thermal microscope. Physical Review Letters, 2005. 95(22).
66. Lefevre, S. and S. Volz, 3 omega-scanning thermal microscope. Review of Scientific Instruments, 2005. 76(3).
67. Oesterschulze, E., et al., Thermal imaging of thin films by scanning thermal microscope. Journal of Vacuum Science & Technology B, 1996. 14(2): p. 832-837.
68. Sebastian, A., A. Gannepalli, and M.V. Salapaka, A review of the systems approach to the analysis of dynamic-mode atomic force microscopy. Ieee Transactions on Control Systems Technology, 2007. 15(5): p. 952-959.
69. Arutunow, A., K. Darowicki, and A. Zielinski, Atomic force microscopy based approach to local impedance measurements of grain interiors and grain boundaries of sensitized AISI 304 stainless steel. Electrochimica Acta, 2011. 56(5): p. 2372-2377.
70. Croce, F., et al., An electrochemical impedance spectroscopic study of the transport properties of LiNi0.75Co0.25O2. Electrochemistry Communications, 1999. 1(12): p. 605-608.
71. Molenda, J., A. Stokłosa, and T. Ba̧k, Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties. Solid State Ionics, 1989. 36(1–2): p. 53-58.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw