進階搜尋


 
系統識別號 U0026-0108201211245800
論文名稱(中文) 聚賴胺酸與酪胺酸無規性共聚胺酸:自組裝與其奈米載體及包覆體應用
論文名稱(英文) Poly(L-lysine)-r-Poly(L-tyrosine) Random Copolypeptides: Self-Assembly and Their Applications as Nanocarriers and Nanoencapsulants
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 呂承勳
研究生(英文) Chen-Hsun Lu
學號 n36991184
學位類別 碩士
語文別 中文
論文頁數 68頁
口試委員 指導教授-詹正雄
口試委員-陳東煌
口試委員-侯聖樹
口試委員-王勝仕
中文關鍵字 無規性共聚物  聚胺基酸  複合奈米粒子  奈米金  自組裝  液胞  微胞 
英文關鍵字 polypeptide  composite nanoparticles  nanogold  self-assemble  vesicle  micelle 
學科別分類
中文摘要 合成不同親疏水比例及不同分子量的聚賴胺酸與酪胺酸無規性共聚胺酸 (poly(L-lysine)-r-poly(L-tyrosine), (KY)),在水溶液下,共聚胺酸會自組裝形成結構。藉由穿透式電子顯微鏡(Transmission Electron Microscopy)檢測,發現在不同分子量下,分別會形成液胞及微胞。透過動態光散射分析儀(Dynamic Light Scattering)量測,聚胺酸形成的奈米粒子粒徑在40到120奈米之間,與穿透式電子顯微鏡所觀測的粒徑相符。經圓二色光譜儀(Circular Dichroism)檢測,不同親疏水比例聚胺酸具有不同的二級結構。經照射紫外線的聚胺酸奈米粒子,其酪胺酸會二聚化(dimerization)形成交聯,使奈米粒子更加穩定,並且不影響粒徑大小。除此之外,利用酪胺酸與四氯金酸的反應,也會使聚胺酸奈米粒子被交聯。交聯過程中,tyrosinate ion 將電子傳給金屬離子後,形成tyrosyl radical,最後tyrosyl radical二聚化形成雙酪胺酸。雙酪胺酸可利用UV/Vis及螢光光譜儀進行檢測:UV/Vis檢測下,雙酪胺酸會在320到350奈米產生吸收;而由螢光光譜儀檢測,在325奈米的激發光下,雙酪胺酸在410到430奈米具有螢光。肌紅蛋白(myoglobin)可以被包覆在聚胺酸液胞內。利用加入四氯金酸,可以製備出包覆肌紅蛋白的奈米金/聚胺酸複合液胞。由穿透式電子顯微鏡及小角度X光繞射儀(Small Angle X-ray Scattering)確定,內核(core)及外層(shell)分別是由肌紅蛋白及奈米金/聚胺酸構成。DLS顯示,包覆肌紅蛋白的奈米金/聚胺酸複合奈米液胞的粒徑約78奈米。聚胺酸奈米粒子及奈米金/聚胺酸複合奈米粒子,在觸媒、生物標靶(biomarkers)、藥物載體(drug carriers)、仿生性包覆體(biomimetic encapsulants)及功能性奈米反應器(functional nanobioreactors)等方面深具潛力。
英文摘要 poly(L-lysine)-r-poly(L-tyrosine) (KY) amphiphilic random copolypeptides with different hydrophilic-to-hydrophobic ratios and molecular weights were synthesized. Transmission electron microscopy (TEM) analysis revealed that KY copolypeptides self-assembled to form vesicles or micelles in solution, depending on KY molecular weight. Dynamic light scattering (DLS) confirmed that the hydrodynamic diameters of KY nanoparticles were ranged between 40 and 120 nm, consistent with those determined by TEM characterization. Circular dichroism measurements showed that the secondary structure adopted by KY was determined by the Lysine to Tyrosine ratio. KY nanoparticles can be stabilized via dimerization of tyrosine residues under UV irradiation. In addition, KY nanoparticles also can be cross-linked at basic pH by the reduction process between tyrosine and gold precursor. In this process, the tyrosinate ion donated an electron to the metal ion through the formation of a tyrosyl radical, which is eventually dimerized to form dityrosine during the reaction. The relative composition of gold in the peptide/gold shell can be tuned by varying the tyrosine to lysine ratio in the copolypeptide. DLS analysis showed that dimerization of tyrosine did not cause the change of KY nanoparticle size. The cross-link of KY nanoparticles through the dimerization of tyrosine was confirmed by UV/Vis and fluorescence analysis. UV/Vis analysis confirmed that the presence of dityrosine as evidenced by the absorbance band between 320 and 350 nm. Fluorescence analysis revealed that the emission band of dityrosine between 410 and 430 nm upon excitation at 325 nm. The model protein, myoglobin, was encapsulated in KY vesicles and the protein-loaded gold/polypeptide composite vesicles was prepared after adding gold precursor. TEM and Small-angle X-ray scattering(SAXS) analysis confirmed that the core and shell comprised of myoglobin and gold/polypeptide analysis revealed the size of the protein-loaded gold/polypeptide composite vesicles was about 78 nm. With the unique feature of the copolypeptides, these as-prepared polypeptide and polypeptide/metal composite nanoparticles will be useful as catalysts, biomarkers, drug carriers, biomimetic encapsulants, and functional nanobioreactors.
論文目次 第一章 緒論 1
第二章 文獻回顧 3
2.1 胺基酸聚合 3
2.1.1 NCAs合成 3
2.1.2 NCAs開環聚合 4
2.2 聚胺酸雙親性高分子 5
2.2.1 聚胺基酸高分子類型 5
2.2.2 應答機制 9
2.2.3 應用 13
2.3 交聯反應 14
第三章 實驗 16
3.1 實驗藥品 16
3.2 實驗儀器 17
3.3 PLL-r-PLY合成 23
3.3.1 乾燥溶劑 23
3.3.2 合成起始劑 23
3.3.3 製備 NCA 24
3.3.4 聚合反應 25
3.3.5 移除保護基 26
3.4 PLL-r-PLY奈米粒子製備 27
3.4.1 DLS樣本製備 27
3.4.2 TEM樣品製備 28
3.4.3 SAXs樣品製備 28
3.5 奈米金/聚胺酸複合奈米粒子製備 28
3.5.1 奈米金/聚胺酸複合奈米粒子 28
3.5.2 包覆肌紅蛋白的奈米金/聚胺酸複合奈米粒子 28
第四章 結果與討論 30
4.1 無規共聚胺基酸樣品分析鑑定 30
4.1.1 使用GPC鑑定PLL-r-PLY分子量 30
4.1.2 NMR分析PLL-r-PLY組成 31
4.2 PLL-r-PLY的臨界聚集濃度量測 34
4.3 PLL-r-PLY自組裝粒徑及結構檢測 35
4.3.1 酪胺酸交聯成雙酪胺酸的方法 35
4.3.2 交聯後奈米粒子的粒徑及構型 37
4.3.3 離子強度對自組裝粒徑影響 46
4.4 利用CD進行PLL-r-PLY進行二級結構的檢測 48
4.5 聚胺酸與四氯金酸形成有機/無機複合粒子 52
4.5.1 奈米金/聚胺酸複合奈米粒子 53
4.5.2 包覆肌紅蛋白的奈米金/聚胺酸複合奈米液胞 57
第五章 結論 64
參考文獻 65
參考文獻 1. Bangham, A.D., Standish, M.M. & Watkins, J.C. Diffusion of Univalent Ions across Lamellae of Swollen Phospholipids. Journal of Molecular Biology 13, 238-& (1965).
2. Discher, B.M. et al. Polymersomes: Tough Vesicles Made from Diblock Copolymers. Science 284, 1143-1146 (1999).
3. Discher, D.E. & Eisenberg, A. Polymer Vesicles. Science 297, 967-973 (2002).
4. Opsteen, J.A., Cornelissen, J. & van Hest, J.C.M. Block Copolymer Vesicles. Pure and Applied Chemistry 76, 1309-1319 (2004).
5. Bermudez, H., Brannan, A.K., Hammer, D.A., Bates, F.S. & Discher, D.E. Molecular Weight Dependence of Polymersome Membrane Structure, Elasticity, and Stability. Macromolecules 35, 8203-8208 (2002).
6. Dimova, R., Seifert, U., Pouligny, B., Forster, S. & Dobereiner, H.G. Hyperviscous Diblock Copolymer Vesicles. European Physical Journal E 7, 241-250 (2002).
7. Lee, J.C.M., Santore, M., Bates, F.S. & Discher, D.E. From Membranes to Melts, Rouse to Reptation: Diffusion in Polymersome Versus Lipid Bilayers. Macromolecules 35, 323-326 (2002).
8. Daly, W.H. & Poché, D. The Preparation of N-Carboxyanhydrides of Α-Amino Acids Using Bis(Trichloromethyl)Carbonate. Tetrahedron Letters 29, 5859-5862 (1988).
9. Deming, T.J. Polypeptide Materials: New Synthetic Methods and Applications. Advanced Materials 9, 299-311 (1997).
10. Deming, T.J. Living Polymerization of Α-Amino Acid-N-Carboxyanhydrides. Journal of Polymer Science Part A: Polymer Chemistry 38, 3011-3018 (2000).
11. Fujita, K., Kimura, S., Imanishi, Y., Rump, E. & Ringsdorf, H. Supramolecular Assembly Using Helical Peptides. Advances in Biophysics 34, 127-137 (1997).
12. Kimura, S., Kim, D.-H., Sugiyama, J. & Imanishi, Y. Vesicular Self-Assembly of a Helical Peptide in Water. Langmuir 15, 4461-4463 (1999).
13. Chécot, F., Rodríguez-Hernández, J., Gnanou, Y. & Lecommandoux, S. Ph-Responsive Micelles and Vesicles Nanocapsules Based on Polypeptide Diblock Copolymers. Biomolecular Engineering 24, 81-85 (2007).
14. Knoop, R.J.I. et al. Stimuli Responsive Peptide Conjugated Polymer Nanoparticles. Macromolecules 43, 4126-4132 (2010).
15. Lübbert, A. et al. Nonspherical Assemblies Generated from Polystyrene-B-Poly(L-Lysine) Polyelectrolyte Block Copolymers. Langmuir 21, 6582-6589 (2005).
16. Tian, Z., Li, H., Wang, M., Zhang, A. & Feng, Z.-G. Vesicular and Tubular Structures Prepared from Self-Assembly of Novel Amphiphilic Aba Triblock Copolymers in Aqueous Solutions. Journal of Polymer Science Part A: Polymer Chemistry 46, 1042-1050 (2008).
17. Kwon, G. et al. Block Copolymer Micelles for Drug Delivery: Loading and Release of Doxorubicin. Journal of Controlled Release 48, 195-201 (1997).
18. Kwon, G. et al. Micelles Based on Ab Block Copolymers of Poly(Ethylene Oxide) and Poly(.Beta.-Benzyl L-Aspartate). Langmuir 9, 945-949 (1993).
19. Lavasanifar, A., Samuel, J. & Kwon, G.S. Poly(Ethylene Oxide)-Block-Poly(L-Amino Acid) Micelles for Drug Delivery. Advanced Drug Delivery Reviews 54, 169-190 (2002).
20. Yokoyama, M. et al. Preparation of Micelle-Forming Polymer-Drug Conjugates. Bioconjugate Chemistry 3, 295-301 (1992).
21. Yokoyama, M. et al. Characterization of Physical Entrapment and Chemical Conjugation of Adriamycin in Polymeric Micelles and Their Design for in Vivo Delivery to a Solid Tumor. Journal of Controlled Release 50, 79-92 (1998).
22. Cheon, J.-B., Jeong, Y.-I. & Cho, C.-S. Effects of Temperature on Diblock Copolymer Micelle Composed of Poly(Γ-Benzyl L-Glutamate) and Poly(N-Isopropylacrylamide). Polymer 40, 2041-2050 (1999).
23. Cho, C.S. et al. Conformational Transition of Nanoparticles Composed of Poly(Γ-Benzyl L-Glutamate) as the Core and Poly(Ethylene Oxide) as the Shell. Polymer 40, 6769-6775 (1999).
24. Cai, C., Zhu, W., Chen, T., Lin, J. & Tian, X. Synthesis and Self-Assembly Behavior of Amphiphilic Polypeptide-Based Brush-Coil Block Copolymers. Journal of Polymer Science Part A: Polymer Chemistry 47, 5967-5978 (2009).
25. Sinaga, A., Hatton, T.A. & Tam, K.C. Poly(Acrylic Acid)-Block-Poly(L-Valine):  Evaluation of Β-Sheet Formation and Its Stability Using Circular Dichroism Technique. Biomacromolecules 8, 2801-2808 (2007).
26. Carlsen, A. & Lecommandoux, S. Self-Assembly of Polypeptide-Based Block Copolymer Amphiphiles. Current Opinion in Colloid & Interface Science 14, 329-339 (2009).
27. Chécot, F., Lecommandoux, S., Gnanou, Y. & Klok, H.-A. Water-Soluble Stimuli-Responsive Vesicles from Peptide-Based Diblock Copolymers. Angewandte Chemie International Edition 41, 1339-1343 (2002).
28. Huang, C.-J. & Chang, F.-C. Polypeptide Diblock Copolymers: Syntheses and Properties of Poly(N-Isopropylacrylamide)-B-Polylysine. Macromolecules 41, 7041-7052 (2008).
29. Sun, J., Shi, Q., Chen, X., Guo, J. & Jing, X. Self-Assembly of a Hydrophobic Polypeptide Containing a Short Hydrophilic Middle Segment: Vesicles to Large Compound Micelles. Macromolecular Chemistry and Physics 209, 1129-1136 (2008).
30. Yang, Z., Yuan, J. & Cheng, S. Self-Assembling of Biocompatible Bab Amphiphilic Triblock Copolymers Pll(Z)–Peg–Pll(Z) in Aqueous Medium. European Polymer Journal 41, 267-274 (2005).
31. Holowka, E.P., Pochan, D.J. & Deming, T.J. Charged Polypeptide Vesicles with Controllable Diameter. Journal of the American Chemical Society 127, 12423-12428 (2005).
32. Sun, J. et al. Direct Formation of Giant Vesicles from Synthetic Polypeptides. Langmuir 23, 8308-8315 (2007).
33. Holowka, E.P., Sun, V.Z., Kamei, D.T. & Deming, T.J. Polyarginine Segments in Block Copolypeptides Drive Both Vesicular Assembly and Intracellular Delivery. Nat Mater 6, 52-57 (2007).
34. Bellomo, E.G., Wyrsta, M.D., Pakstis, L., Pochan, D.J. & Deming, T.J. Stimuli-Responsive Polypeptide Vesicles by Conformation-Specific Assembly. Nat Mater 3, 244-248 (2004).
35. Schatz, C., Louguet, S., Le Meins, J.-F. & Lecommandoux, S. Polysaccharide-Block-Polypeptide Copolymer Vesicles: Towards Synthetic Viral Capsids. Angewandte Chemie International Edition 48, 2572-2575 (2009).
36. Upadhyay, K.K. et al. Biomimetic Doxorubicin Loaded Polymersomes from Hyaluronan-Block-Poly(Γ-Benzyl Glutamate) Copolymers. Biomacromolecules 10, 2802-2808 (2009).
37. Gebhardt, K.E., Ahn, S., Venkatachalam, G. & Savin, D.A. Role of Secondary Structure Changes on the Morphology of Polypeptide-Based Block Copolymer Vesicles. Journal of Colloid and Interface Science 317, 70-76 (2008).
38. Kukula, H., Schlaad, H., Antonietti, M. & Förster, S. The Formation of Polymer Vesicles or “Peptosomes” by Polybutadiene-Block-Poly(L-Glutamate)S in Dilute Aqueous Solution. Journal of the American Chemical Society 124, 1658-1663 (2002).
39. Lin, J. et al. Drug Releasing Behavior of Hybrid Micelles Containing Polypeptide Triblock Copolymer. Biomaterials 30, 108-117 (2009).
40. Agut, W., Brûlet, A., Taton, D. & Lecommandoux, S. Thermoresponsive Micelles from Jeffamine-B-Poly(L-Glutamic Acid) Double Hydrophilic Block Copolymers. Langmuir 23, 11526-11533 (2007).
41. Iatrou, H. et al. Architecturally Induced Multiresponsive Vesicles from Well-Defined Polypeptides. Formation of Gene Vehicles. Biomacromolecules 8, 2173-2181 (2007).
42. Deng, L. et al. Synthesis of Well-Defined Poly(N-Isopropylacrylamide)-B-Poly(L-Glutamic Acid) by a Versatile Approach and Micellization. Journal of Colloid and Interface Science 323, 169-175 (2008).
43. Rao, J., Luo, Z., Ge, Z., Liu, H. & Liu, S. “Schizophrenic” Micellization Associated with Coil-to-Helix Transitions Based on Polypeptide Hybrid Double Hydrophilic Rod–Coil Diblock Copolymer. Biomacromolecules 8, 3871-3878 (2007).
44. Rodríguez-Hernández, J. & Lecommandoux, S. Reversible inside−out Micellization of Ph-Responsive and Water-Soluble Vesicles Based on Polypeptide Diblock Copolymers. Journal of the American Chemical Society 127, 2026-2027 (2005).
45. Sun, J. et al. Formation of Reversible Shell Cross-Linked Micelles from the Biodegradable Amphiphilic Diblock Copolymer Poly(L-Cysteine)-Block-Poly(L-Lactide). Langmuir 24, 10099-10106 (2008).
46. Ding, J.X. et al. Preparation of Photo-Cross-Linked Ph-Responsive Polypeptide Nanogels as Potential Carriers for Controlled Drug Delivery. Journal of Materials Chemistry 21, 11383-11391 (2011).
47. Huang, Y.C., Yang, Y.S., Lai, T.Y. & Jan, J.S. Lysine-Block-Tyrosine Block Copolypeptides: Self-Assembly, Cross-Linking, and Conjugation of Targeted Ligand for Drug Encapsulation. Polymer 53, 913-922 (2012).
48. Si, S., Bhattacharjee, R.R., Banerjee, A. & Mandal, T.K. A Mechanistic and Kinetic Study of the Formation of Metal Nanoparticles by Using Synthetic Tyrosine-Based Oligopeptides. Chemistry-a European Journal 12, 1256-1265 (2006).

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw