進階搜尋


下載電子全文  
系統識別號 U0026-0108201122072500
論文名稱(中文) 單側下肢不負重之病人由坐姿撐起至站立時的上肢生物力學模擬分析
論文名稱(英文) Upper Extremities Biomechanics of Single Leg Non-weight Bearing Patients when Pushing up from Sitting to Standing
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 林育全
研究生(英文) Yu-Chuan Lin
學號 p8697113
學位類別 碩士
語文別 英文
論文頁數 83頁
口試委員 指導教授-蘇芳慶
口試委員-周有禮
口試委員-賴國安
口試委員-周伯禧
口試委員-林槐庭
中文關鍵字 坐到站  撐起  不負重  上肢  生物力學 
英文關鍵字 sit-to-stand  push up  non-weight bearing  upper limb  biomechanics 
學科別分類
中文摘要 背景:
單側下肢創傷的病人,通常需要在幾個星期至幾個月的時間裡,患肢不能負重或僅可部份負重。在此情況下,為了完成日常生活中“坐到站”(STS)的動作,便得依賴上肢出力來把身體撐起,這時,上肢可能因為生物力學的改變而導致二度傷害。本研究先聚焦在不同手撐位置、不同手撐高度及對側/同側手(相對於負重下肢)對上肢的影響。目的是要找出對於單側下肢不負重之病人,由坐撐起至站立時的最佳“支撐模式”,以減少上肢的二度傷害。
方法:
本研究有11位年輕男性受試者。本研究中,這種特別的坐到站動作經過標準化,並命名為“單手單腳負重撐起由坐到站”(OOWPS)。影響參數設計包括“Hand”(支撐用手)、“Height”(支撐平台高度)、“PushL”(手支撐位置)及“HFGrade”(手腳作用力比例的分級)。每位受試者被要求在12種參數組合下執行OOWPS。收集的資料包含人體量測資料、人體動作資料、力/力矩資料及肌電圖資料。這些資料會被輸入電腦上肢軀幹肌肉骨骼模型來計算,並輸出關節合力/力矩、肌肉作用力及關節限制力/力矩。這些輸出資料會做多方面分析,包括OOWPS的分期及運動學分析、肌肉對力矩的貢獻度、肌肉應力、關節限制力/力矩、各參數對極大肌肉應力的影響及各參數對極大關節限制力/力矩的影響。
結果:
OOWPS可被分成“Push up”和“Swing”期,和步態類似。“Push up”可被進一步分成“Loading response”、“Mid push up”、“Terminal push up”和“Push off”。分析在“Push up”時各肌肉的角色,發現旋轉肌袖、三頭肌及肘後肌是主要的關節穩定者肌肉。大部份肘關節肌肉的極大應力較肩關節肌肉大,同時,也發現關節穩定者肌肉的極大應力較其他肌肉大。肩關節和肘關節的極大關節限制力沒有明顯差異。肩關節的極大關節限制力矩較肘關節大。對多數肌肉的極大應力而言,“Hand”、“Height”及“HFGrade”有明顯的影響力。對肩關節和肘關節的極大關節限制力/力矩而言,“Height”、“PushL”及“HFGrade”有明顯的影響力。最後,我們決定出OOWPS時的最佳參數組合
結論:
本研究和其他研究不同的是,我們以手作用力來做為OOWPS分期的基準。和其他研究比較發現,OOWPS在矢狀面的身體運動學變化,和其他研究類似。但是,我們發現在冠狀面,有一個特殊的“質量中心(COM)側移”時期,這是其他STS研究所沒有的。另外,我們也強調關節穩定者肌肉的重要性,同時,關節穩定者肌肉也承受較大應力,並可能因此增加受傷率。本研究也發現並猜測,肘關節肌肉相對於肩關節肌肉、肩關節相對於肘關節,可能也都有較高的受傷率。最後,對於單側下肢不負重的病人,要以單手支撐由坐到站時的最佳支撐模式是“使用對側手、H2高度、P1位置及第1級手腳作用力比例”(CH-H2-P1-HFG1)。
英文摘要 Background:
Single-leg non-weight bearing or partial weight bearing for several weeks to months is necessary for patients with single lower limb trauma. In order to complete “sit-to-stand” (STS) tasks in daily life, upper limb(s) have to do more works to “push up” the body, and this may lead to upper limb(s) secondary injury due to changes of biomechanics. This study first works on the influences of different push locations, different push heights, and push with ipsilateral/contralateral upper limb when doing this specific sit-to-stand motion. The purpose is to determine the optimal “push up protocol” from sitting to standing for single-leg non-weight bearing patients which can prevent secondary injuries of upper limb(s).
Methods:
Eleven healthy young males were participated in this study. The specific sit-to-stand motion in this study was standardized and named as “one-hand one-leg weight-bearing push-up sit-to-stand” (OOWPS). Effecting parameters were designed as “Hand” (pushing hand), “Height” (platform height), “PushL” (pushed location) and “HFGrade” (grading of ratio of hand and foot reaction forces). Each subject was requested to perform OOWPS in 12 conditions composed by “Hand”, “Height” and “PushL”. Required data (anthropometric data, motion data, force/moment data and electromyogram (EMG) data) were collected. Data were then input into a computational musculoskeletal upper- limb/trunk model, which can output joint resultant forces/moments, muscle forces and joint constraint forces/moments. Output data were further analyzed in several aspects, including phasing and kinematics of OOWPS, moment contribution of muscles, muscle stress, joint constraint force/moment, effects of parameters on peak muscle stress and effects of parameters on peak joint constraint force/moment.
Results:
OOWPS was phased as “Push up” and “Swing” and was similar to gait. “Push up” was further divided into “Loading response”, “Mid push up”, “Terminal push up” an d “Push off” phases. Muscle roles during “Push up” were identified. Rotator cuff, triceps and anconeus were found as main stabilizers during “Push up”. Almost all cross-elbow muscles had higher peak stresses than cross-shoulder muscles. Stabilizers were also found with higher peak stresses than other muscles around the same joints. Peak constraint forces of shoulder and elbow were similar. Peak constraint moment of shoulder was significantly higher than peak constraint moment of elbow. “Hand”, “Height” and “HFGrade” had significant effects on peak stress of most muscles. “Height”, “PushL” and “HFGrade” had significant effects on peak joint constraint force/moment of shoulder and elbow. Optimal combination of parameters for OOWPS was finally decided.
Conclusions:
In this study, we defined the phases of “Push up” in OOWPS based on hand reaction force, which was different from other STS studies. Comparing with other STS studies, there were similar kinematic changes of body in the sagittal plane in OOWPS. However, in the frontal plane, a specific “center of mass (COM) lateral shifting” phase was identified in OOWPS. We emphasize the importance of joint stabilizers, which bear higher stresses and may have higher injured rate than other muscles. We also suspect that during “Push up”, cross-elbow muscles and shoulder joint may have higher injured rate than cross-shoulder muscles and elbow joint respectively. Finally, we conclude that “contralateral hand, H2 height, P1 location, Grade 1 hand/foot reaction force ratio” (CH-H2-P1-HFG1) is the optimal way for single leg non-weight bearing patients to push up with one hand from sitting to standing.
論文目次 Abstract………………………………………………………………….….…I
中文摘要………………………………………………………………….…III
誌謝…………………..………………………………………………………V
Contents…………………………………………………………………..…VI
Lists of Figures…………………………………………………………….…X
Lists of Tables……………………………………………………………...XIII
Nomenclatures……………………………………………………………...XV
Abbreviations……………………………………………………………..XVII
Chapter 1: Introduction…………………………………………………..…1
1.1 Background…………………………………………………………..…1
1.2 Significance and Specific Aims………………………………………...6
Chapter 2: Materials and Methods………………………………………...7
2.1 Construction of Model………………….……………………………...7
2.1.1 Skeletal Model………………………………..………………….……………..8
2.1.2 Muscular Model………………………………………..………….…………....8
2.1.3 Kinematics………………………………………………………….…………..9
2.1.4 Kinetics……………………………………………………….………………..13
2.1.5 Numerical Analysis…………………………………………….……………...14
2.2 Materials………………………………………………………………15
2.2.1 Subjects……………………………………………………………………….15
2.2.2 Instruments…………………………………………………...…….………….15
2.3 Preparation…………………………………………………….………17
2.3.1 Illustrations…………………………………..…………………..……………17
2.3.2 Steps of Preparation………………………………….………………………..18
2.4 Procedure of Motion…………………………………………………..27
2.5 Collection of Data……………………………………………………..29
2.6 Data Analysis………………………………………………………….32
2.6.1 Phasing……………………………………………………….………………..32
2.6.2 Kinematics……………………………………………………………………..32
2.6.3 Moment Contribution of Muscles versus Phases………………32
2.6.4 Muscle Stresses versus Phases…………………………………………………32
2.6.5 Joint Constraint Forces and Moments versus Phases…32
2.6.6 Effects of Each Parameter on Peak Muscle Stress………33
2.6.7 Effects of Each Parameter on Peak Joint Constraint Force and Moment……..34
Chapter 3: Results……………………………………………….…………35
3.0 Exclusion and Demographic Data of Subjects………………35
3.1 Phases and Kinematics of “Push up” in OOWPS…………….36
3.2 Moment Contribution of Muscles during “Push up” ………………39
3.2.1 Moment contributions in shoulder extension-flexion... 40
3.2.2 Moment contributions in shoulder abduction-adduction………………..….….41
3.2.3 Moment contributions in shoulder external-internal rotation…………..…...…42
3.2.4 Moment contributions in elbow extension-flexion………43
3.2.5 Moment contributions in elbow abduction-adduction……44
3.2.6 Moment contributions in elbow external-internal rotation……………….……45
3.3 Muscle Stress during “Push up” ………………………………………46
3.3.1 Shoulder muscle stresses………………………………………………………46
3.3.2 Elbow muscle stresses…………………………………………………….……47
3.4 Joint Constraint Force and Moment during “Push up” ………48
3.5 Effects of Each Parameter on Peak Muscle Stress…………………49
3.6 Effects of Each Parameter on Peak Joint Constraint Force and Moment............51
Chapter 4: Discussion……………………………………………………..52
4.1 Comparison of “Push up” in OOWPS and Stance Phase in Gait…….52
4.2 Comparison of Phases and Kinematics during OOWPS with Other STS Studies………………………………………………………………..…..55
4.2.1 Sagittal plane…………………………………………..…………………..….55
4.2.2 Frontal plane and transverse plane………………………….……57
4.3 Moment Contributions and Roles of Muscles during “Push up” ….…60
4.4 Muscle Stress during “Push up” ………………………………….…..64
4.5 Joint Constraint Force and Moment during “Push up” ………68
4.6 Effects of Each Parameter on Peak Muscle Stress………………69
4.6.1 “Hand” ………………………………………………………………….…….69
4.6.2 “Height” ………………………………………………………………….……69
4.6.3 “HFGrade” ……………………………………………………………….……69
4.7 Effects of Each Parameter on Peak Joint Constraint Force and Moment...............70
4.7.1 “Height” ………………………………………………………………….…..70
4.7.2 “PushL” ………………………………………………………………….……70
4.7.3 “HFGrade” ……………………………………………………………….……70
4.8 Conclusive Decision of Parameters for OOWPS………………….….71
4.9 Comparison with Other Studies……………………………………....72
4.9.1 Comparison of Foot (Ground) Reaction Force with Other Studies……….…..72
4.9.2 Comparison of Muscle Stress in This Study with EMG in Other Studies….…74
4.10 Limitation and Future Studies……………………..………………..77
4.10.1 Study Design………………………………………………………….…….77
4.10.2 Materials and Methods……………………………………………..………78
4.11 Conclusion…………………………………………………………..79
References…………………………………………………………………..80
參考文獻 1. Anderson DS, Jackson MF, Kropf DS, Soderberg GL. Electromyographic analysis of selected muscles during sitting push-ups. Effects of position and sex. Phys Ther. 64:24-28(1984)
2. Anglin C, Wyss UP. Arm motion and load analysis of sit-to-stand, stand-to-sit, cane walking and lifting. Clin Biomech (Bristol, Avon). 15:441-448(2000)
3. Baer GD, Ashburn AM. Trunk movements in older subjects during sit-to-stand. Arch Phys Med Rehabil. 76:844-849(1995)
4. Bush-Joseph C, Carter TR, Miller MD, Rokito AS, Stuart MJ. Orthopaedic Knowledge Update 7. American Academy of Orthopaedic Surgeons, Rosemont, Illinois:489-511(2002)
5. Chao EYS. Determination of applied forces in linkage systems with known displacements: with special application to biomechanics. Ph.D. dissertation, University of Iowa, Iowa (1971)
6. Chiou JR, Su FC, Chou YL. Biomechanics of Transfer from Sitting to Standing: Effects of Limited Ankle Range on the Hip Joint. JPTA ROC. 18:156-162(1993)
7. Dall PM, Kerr A. Frequency of the sit to stand task: An observational study of free-living adults. Applied Ergonomics. 41:58-61(2010)
8. Demura S, Yamada T. Height of chair seat and movement characteristics in sit-to-stand by young and elderly adults. Percept Mot Skills.104:21-31(2007)
9. Duclos C, Nadeau S, Lecours J. Lateral trunk displacement and stability during sit-to-stand transfer in relation to foot placement in patients with hemiparesis. Neurorehabil Neural Repair. 22:715-722(2008)
10. Etnyre B, Thomas DQ. Event standardization of sit-to-stand movements. Phys Ther. 87:1651-1666(2007)
11. Fung M, Kato S, Barrance PJ, Elias JJ, McFarland EG, Nobuhara K, Chao EYS. Scapular and Clavicular Kinematics during Humeral Elevation: A Cadaver Study. J Shoulder Elbow Surg. 10:278-285(2001)
12. Galli M, Cimolin V, Crivellini M, Campanini I. Quantitative analysis of sit to stand movement: Experimental set-up definition and application to healthy and hemiplegic adults. Gait & Posture. 28:80-85(2008)
13. Garner BA, Pandy MG. The Obstacle-Set Method for Representing Muscle Paths in Musculoskeletal Models. Comput Methods Biomech Biomed Engin.3:1-30(2000)
14. Gilleard W, Crosbie J, Smith R. Rising to stand from a chair: Symmetry, and frontal and transverse plane kinematics and kinetics. Gait & Posture. 27:8-15(2008)
15. Hennington G, Johnson J, Penrose J, Barr K, McMulkin ML, Vander Linden DW. Effect of bench height on sit-to-stand in children without disabilities and children with cerebral palsy. Arch Phys Med Rehabil. 85:70-76(2004)
16. Janssen WGM, Bussmann HBJ, Stam HJ. Determinants of the sit-to-stand movement: a review. Phys Ther. 82:866-879(2002)
17. Karlsson D, Peterson B. Towards a model for force predictions in the human shoulder. J Biomech. 25:189-199(1992)
18. Lai KA, Su FC, Liao TY, Wang SC, Chou YL. Biomechanics of chair rising. Chinese J Med Biolog Eng. 12:343-353(1992)
19. Lecours J, Nadeau S, Gravel D, Teixera-Salmela L. Interactions between foot placement, trunk frontal position, weight-bearing and knee moment asymmetry at seat-off during rising from a chair in healthy controls and persons with hemiparesis. J Rehabil Med. 40:200-207(2008)
20. Lee JH, Chun MH, Jang DH, Ahn JS, Yoo JY. A comparison of young and old using three-dimensional motion analyses of gait, sit-to-stand and upper extremity performance. Aging Clin Exp Res. 19:451-456(2007)
21. Lin HT, Nakamura Y, Su FC, Hashimoto J, Nobuhara K, Chao EYS. Use of virtual, interactive, musculoskeletal system (VIMS) in modeling and analysis of shoulder throwing activities. J Biomech Eng. 127:525-530(2005)
22. Lou SZ, Chou YL, Chou PH, Lin CJ, Chen UC, Su FC. Sit-to-stand at different periods of pregnancy. Clin Biomech. 16:194-198(2001)
23. Maurel W, Thalmann D, Hoffmeyer P, Beylot P, Gingins P, Kalra P, Magnenat Thalmann N. A biomechanical musculoskeletal model of human upper limb for dynamic simulation. 7th International workshop on computer animation and simulation, Poitier, France (1996)
24. Perry J. Gait Analysis: Normal and Pathological Function. SLACK Inc., Thorofare, New Jersey:51-167(1992)
25. Rodosky MW, Andriacchi TP, Andersson GB. The influence of chair height on lower limb mechanics during rising. J Orthop Res. 7:266-271(1989)
26. Schenkman M, Berger RA, Riley PO. Whole-body movements during rising to standing from sitting. Phys Ther. 70:638-651(1990)
27. Seven YB, Akalan NE, Yucesoy CA. Effects of back loading on the biomechanics of sit-to-stand motion in healthy children. Hum Mov Sci. 27:65-79(2008)
28. Sibella F, Galli M, Romei M, Montesano A, Crivellini M. Biomechanical analysis of sit-to-stand movement in normal and obese subjects. Clin Biomech (Bristol, Avon). 18:745-750(2003)
29. SommerIII HJ, Miller NR, Pijanowski GJ. Three-dimensional osteometric scaling and normative modelling of skeletal segments. Journal of Biomechanics. 15:171-180(1982)
30. Su FC, Lai KA, Hong WH. Rising from chair after total knee arthroplasty. Clin Biomech. 13:176-181(1998)
31. Talis VL, Grishin AA, Solopova IA, Oskanyan TL, Belenky VE, Ivanenko YP. Asymmetric leg loading during sit-to-stand, walking and quiet standing in patients after unilateral total hip replacement surgery. Clin Biomech (Bristol, Avon). 23:424-433(2008)
32. Wood JE, Meek SG, Jacobsen SC. Quantitation of human shoulder anatomy for prosthetic arm control-I. Surface modeling. J Biomech. 22:273-292(1989)
33. Yamada T, Demura S. Influence of the relative difference in chair seat height according to different lower thigh length on floor reaction force and lower-limb strength during sit-to-stand movement. J Physiol Anthropol Appl Human Sci. 23: 197-203(2004)
34. Yoshioka S, Nagano A, Hay DC, Fukashiro S. Biomechanical analysis of the relation between movement time and joint moment development during a sit-to-stand task. Biomed Eng Online.22:8-27(2009)
35. Zablotny CM, Nawoczenski DA, Yu B. Comparison between successful and failed sit-to-stand trials of a patient after traumatic brain injury. Arch Phys Med Rehabil. 84:1721-1725(2003)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw