進階搜尋


下載電子全文  
系統識別號 U0026-0108201120100700
論文名稱(中文) 質子交換膜燃料電池的流道設計及實驗驗證
論文名稱(英文) Design of Flow Channel Patten of Proton Exchange Membrane Fuel Cell and Experimental Validation
校院名稱 成功大學
系所名稱(中) 航空太空工程學系專班
系所名稱(英) Department of Aeronautics & Astronautics (on the job class)
學年度 99
學期 2
出版年 100
研究生(中文) 陳建安
研究生(英文) Chen-An Chen
學號 p4796107
學位類別 碩士
語文別 中文
論文頁數 93頁
口試委員 指導教授-鄭金祥
口試委員-顏維謀
口試委員-張克勤
口試委員-江滄柳
中文關鍵字 質子交換膜燃料電池  流道設計 
英文關鍵字 Proton exchange membrane fuel cell  channel design 
學科別分類
中文摘要 摘要
本研究主要是改善蛇型流道末端的氣體濃度不足的問題。因此將流道縮短並設計成改良式流道(一)及改良式流道(二)。改良式流道(一)和改良式流道(二)是將原流道縮短1/2及1/4。藉由實驗獲得平行流道、蛇型流道、改良式流道(一)及改良式流道(二)燃料電池的性能。透過模擬觀察燃料電池內部的電流密度分佈、水的飽和度分佈、溫度分佈及壓力分佈等;並比較燃料電池在不同流道下的差異結果。輸出功率是改良式流道(一) 33.5W最大,其次是蛇型流道33.36W,改良式流道(二)25.26W為第三,第四為平行流道24.53W。電流密度是改良式流道(一) 6930 A/m2最高,其次是蛇型流道6647 A/m2,改良式流道(二) 6251 A/m2為第三,第四為平行流道5549 A/m2。進出口壓力差是改良式流道(一) 1769 N/m2最大,其次市蛇型流道1724 N/m2,改良式流道(二) 800 N/m2為第三,第四為平行流道735 N/m2。改良式流道(一)的輸出功率及電流密度都優於蛇型流道,有明顯的改善蛇型流道在流道末端氣體濃度不足的問題。相對的進出口的壓力差也比較高。改良式流道(二)的輸出功率及電流密度都低於蛇型流道,但在進出口壓力差只有蛇型流道的一半。不論是蛇型流道、改良式流道(一)及改良式流道(二)的燃料電池性能結果都優於平行流道的燃料電池。
英文摘要 Abstract
The aim of this study is to improve the problem of insufficient gas concentrations at the end of channel with the serpentine flow channel design. By using the idea of combining the parallel and the serpentine channel patterns, two new channel patterns, namely, improved channel (1) and improved channel (2), are proposed. The improved channel (1) and the improved channel (2) are built by shortening original serpentine channel by 1/2 and 1/4 of length, and in the mean time introducing the feature of the parallel channels. Experiments of the performance of the fuel cell with the parallel channel, the serpentine channel, the improved channel (1) and the improved channel (2) are conducted. Meanwhile, numerical simulation of the internal distributions of current density, water saturation, temperature, and pressure are carried out. Comparison between the experimental and numerical data under different conditions are performed. It is found that the output power with the improved channel (1) is 33.5W in maximum, followed by the serpentine channel 33.36W, the improved channel (2) 25.26W,and the parallel channel 24.53W. The current density reached by the improved channel (1), the serpentine channel, the improved (2), and the parallel flow channel are 6930,6647,6251, and 5549 A/m2, respectively. In addition, the pressure drop from the inlet to the exit of the fuel cell is 1796 N/m2 for improved channel (1), 1724N/m2 for serpentine channel, 800N/m2 for improved channel (2), and 735N/m2 for the parallel channel. The output power and current density of improved channel (1) are higher than those of the serpentine channel; however, the improved channel (2) is worse that the serpentine channel in terms of the output power and current density. Nevertheless, the improved channel (2) can lead to a very small pressure drop.
論文目次 目錄
摘要 I
AbstractⅡ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅶ
圖目錄 Ⅷ
符號說明 XI
第一章 序論 1
1.1前言 1
1.2背景 2
1.3 文獻回顧 3
1.4 研究目的 7
第二章 燃料電池的簡介 8
2.1 燃料電池的基本原理 8
2.2 燃料電池的種類 9
2.2.1鹼液型燃料電池(Alkaline Fuel Cell,AFC) …………………………9
2.2.2 磷酸型燃料電池 (Phosphoric Acid fuel cell, PAFC ) 10
2.2.3 熔融碳酸鹽型燃料電池 (Melten Carbonate Fuel Cell, MCFC) 10
2.2.4固態氧化物型燃料電池 (Solid Oxide Fuel Cell,SOFC) 11
2.2.5質子交換膜型燃料電池(Proton Exchange Membrane Fuel Cell,PEMFC) 12
第三章 數值模擬 13
3.1 數值理論 13
3.2 基本假設 14
3.2.1多孔隙材質傳輸的統御方程式 14
3.2.2電化學反應及質量與電流間的統御方程式 16
3.3模擬實驗參數設定 19
3.4模擬結果分析 19
第四章 設備與實驗 22
4.1 燃料電池測試系統 22
4.1.1 燃料供應系統 22
4.1.2 增濕及加熱系統 22
4.1.3 料擷取系統 23
4.2 實驗方法 24
4.2.1 實驗設定 25
4.2.2 平行流道實驗結果 25
4.2.3 蛇型流道實驗結果 26
4.2.4 改良式流道(一)及改良式流道(二)實驗結果 26
4.2.5 比較結果 27
第五章 模擬與實驗結果 29
第六章 結果與討論 30
參考文獻 33
自述 93

參考文獻 參考文獻

[1] T. E. Springer, T. A. Zawodzinski, and S. Gattesfeld, “ Polymer Electrolyte Fuel Cell Model, ”Journal of Electrochemical Society,Vol. 138, no. 8, pp. 2334-2342, 1991.
[2] T. E. Springer, T. A. Zawodzinski, and S. Gattesfeld, “ Modeling and Expermental Diagnstics in Polymer Electrolyte Fuel Cells,Journal of Electrochemical Society, Vol. 140, no. 12, pp. 3513-3526, 1991.
[3] D. Bevers, M. Wohr, K. Yasuda, and K. Oguro, “ Simulation of a Polymer Electrolyte Fuel Cell Electrod, ” Journal of Applied Electrochemistry,Vol. 27. pp. 1254-1264, 1997.
[4] V. Guran, H. Liu, and S. Kakac, “ Two-Dimensional Model for Proton Exchange Membrance Fuel Cell, ”AIChE Journal, Vol.44, No.11, pp. 2410-2422, 1998.
[5] S. Shimpalee, W. K. Lee, J. W. Van Zee, and H. Naseri-Neshat, “ Advances In Computational Fluid Dynamics Modeling For PEM Fue cell, ”Proc. of ASME IECEC-2001-10, Savannah, GA. , 2001.
[6] T. Berning, D. M. LU, and N. Djilali, “ Three-dimensional Computational Analysis of Transport Phenomena in A PEM Fuel Cell, ” Journal of Power Source, Vol. 106, pp. 284-294, 2002.
[7] S. Mazumder, and J. V. Cole, “ Rigorous 3-D Mathematical Modeling Of PEM Fuel Cells I. Model predictions without Liquid Water Transport, ”Journal of The Electrochemical Society, Vol. 150, no. 11, pp. A1503-1509, 2003.
[8] A Kazim, P. Forges, and H.T. LIU, “ Effect of Cathode Operating Conditions on Performance of a PEM Fuel Cell With Interdigitated Flow fields, ”Internatioal Journal of Energey Rsearch, Vol. 27, pp.401-414, 2003.
[9] P. T. Nguyen, T. Berning, and N. Djilali, “ Computational Model Of a PEM Fuel Cell with Serpentine Gas Flow Channels, ”journal Of Power Source, Vol. 130, pp. 149-157,2004.
[10] W. sun, B. A. Peppley, and K. Karam, “ Modeling the Influence of GDL
and Flow-Field on the Reaction Distribution in the PEMEFC Cathode
Catalyst Layer, ”Journal of Power Sources, 144, pp. 42-53, 2005.
[11] J. P. Feser, A . K. Prasad, and S. G.Advani, “ On the Relative Influence of Convection In Serpentine Flow Fields of PEM Fuel Cells,”Journal of Power Source,Vol. 161, pp. 404-412, 2006.
[12] S. Shimpalee, U. Beuscher, and J. W. Van Zee, “ Investigation of Gas Diffusion Media Inside PEMFC Using CFD Modeling, ”Journal of Power Sources, Vol. 163, pp. 480-489, 2006.
[13] S. Shimpalee, S. Greenway, and J. W. Van Zee, “ The Impact of channel Path Length On PEMFC flow-field Design, ”Journal of Power Sources, Vol.160, pp. 398-406, 2006.
[14] J. C. Amphlett, B. A. Peppley, E. Halliop, A. Sadiq, “ The Effect of Anode Flow Characteristics and Temperature on the Performance of A Direct Methanol Fuel Cell, ”Journal of Power Source, Vol. 96. pp. 204 -213.
[15] Mallant R.K.A.M., 2003, “PEMFC system:The Need for High Temperature Polymers as a Consequence of PEMFC water and Heat Management, ” Journal of Power Sources, 118, pp. 424-429.
[16] K.T. Adjemian, S. Srinivasan, J. Benziger, A. B. Bocarsly, 2002, “Investigation of PEMFC Operation above 100℃ Eemploying Perfluorosulfonic Acid Silicone Oxide Composite Membrances, ” Journal of Power Sources, 109, pp. 356-364.
[17] N. Djilali, D. Lu. 2002, “Influence of Heat Transfer on Gas and Water Transport in Fuel Cells, ”Int. J. Therm. Sci. 41. pp. 29-40.
[18] 顧志誠, “燃料電池複合式流道設計與膜電極組製程”,國立中央大學能源工程研究所碩士論文,2004.
[19] 周明昌, “呼吸式直接甲醇燃料電池設計之研究”,國立成功學大學航空太空工程研究所碩士論文, 2005.
[20] 曹凱翔, “迴旋型流道與蛇道在質子交換膜燃料電池之三維數值模擬分析”,元智大學機械工程研究所碩士論文, 2007.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw