進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0108201021492300
論文名稱(中文) 應用關聯式法則發展博物館學習之推薦系統
論文名稱(英文) Applying association rule for developing a recommendation system in museum learning
校院名稱 成功大學
系所名稱(中) 工程科學系專班
系所名稱(英) Department of Engineering Science (on the job class)
學年度 98
學期 2
出版年 99
研究生(中文) 李俊毅
研究生(英文) Chun-Yi Lee
學號 n9796106
學位類別 碩士
語文別 中文
論文頁數 71頁
口試委員 指導教授-黃悅民
口試委員-陳鴻仁
口試委員-鄭淑真
口試委員-劉建宏
中文關鍵字 博物館學習  關聯式法則  使用者滿意度  資訊負載  徧小平方分析法 
英文關鍵字 Museum learning  Association rules  User satiation  Information load  PLS 
學科別分類
中文摘要 博物館因為扮演著文化傳遞的重要角色,所以很早就被視為社會教育的一環,但其教育價值,完全取決於社會大眾參觀後的學習成果。因此,博物館對於參觀者來說,是一個良好又開放的學習場所,但是往往由於每次展覽的主題不一樣,或是展出的文物眾多,不熟悉的民眾常常走馬看花,不知將觀賞的重點落在哪裡,導致喪失了許多與文物交流的機會,尤其來自於外國的文物,更加令人感到陌生。本研究開發一套推薦系統來提供給初次到博物館或對展覽主題感到陌生的參觀者,能快速而有效率的找到觀賞的重點,增加學習的好奇心和提升觀賞的興趣。
本研究首先蒐集國內外相關研究文獻,討論在博物館學習時的設計重點,接著介紹整個博物館推薦系統的系統概念,並將系統開發完成。為了驗證本系統,我們設計一個實驗評估本系統對於使用者參觀博物館的滿意度是否有顯著的提升,因為這通常代表著參觀者對博物館之旅的學習興趣多寡。實驗的步驟分為二個階段:第一階段收集所有使用者觀賞行為所產生的瀏覽紀錄做為資料庫的基底資料,再利用關聯式法則的演算法來進行資料挖掘,篩選出最合適的物品,產生推薦的結果;第二階段則是參觀者使用已有推薦資料的行動設備進行文物導覽,過程中系統將會收集參觀者的瀏覽紀錄、問卷及訪談紀錄,來進行實驗分析。實驗完成之後,由於收集的問卷數量較少,我們採用徧小平方分析法(PLS)來進行信效度統計與分析,該分析法主要針對小量樣本設計,能有效的表達出得出系統是否能顯著改善參觀者對博物館導覽的滿意度。最後的研究成果如下:
(1) 根據參觀者的喜好來提供參觀文物的建議,能提升參觀者對博物館展覽的滿意度。
(2) 不同參觀者的年齡對操作推薦系統的意願有所不同。
(3) 參觀者在對展覽一無所知的情況下,會樂於使用導覽系統的推薦內容,做為他們觀賞文物的重點。
英文摘要 Museums play an important role in transmission of culture, so it has long been regarded as part of community education. But its educational value depends entirely on the learning outcomes of people after visit. Therefore, the museum for visitors, it is a good and open learning spaces. But the museum's exhibition theme of view is not fixed, many people do not know the focus of view, resulting in many lost opportunities for cultural exchange, particularly in the artifacts from overseas.
This study developed a recommendation system to provide for the first time to the museum or the exhibition theme of unfamiliar visitors can quickly and efficiently find the focus of view, enhance the learning of curiosity and interest in viewing. The experiment process collect all the users viewing record with the handheld mobile devices as the basic database, then using association rules algorithm to mining data, and selected the most suitable items to visitor to complete the recommendation actions.
Experiment was divided into two stages: the first stage is collected and mining visitor browsing history, until a recommendation results; the second phase is downloaded suggestion results to mobile devices, and then collected questionnaire data and interview records after the visitor』s action recommendation.
According to the experimental result, we used user satisfaction assessment model for assessing the system for users satisfaction have marked improvement at the museums, which usually represents the visitors to the Museum of the amount of interest in learning. Our final results are as follows:
(1) According to the visitor preferences to visit the artifacts to provide recommendations to enhance the visitors』 satisfaction in the museum exhibitions.
(2) The age of visitors will be affect the operation will of the recommendation system.
(3) Visitors will be happy to using the recommendation system if Visitors to are not familiar with the museum exhibition contents.
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 V
圖目錄 VI
第一章 緒論 7
1.1 研究動機與目的 7
1.2 研究方法 8
1.3 研究流程 9
第二章 文獻探討 11
2.1 博物館學習 11
2.2 終身學習與非正式學習 13
2.3 資訊負載 14
2.4 推薦系統 16
2.5 資料探勘與關聯式法則 21
2.6 電腦自我效能 25
2.7 使用者滿意度 28
第三章 博物館推薦系統實作 31
3.1 系統架構 31
3.2 系統設計 33
3.3 系統特色 40
第四章 實驗設計及結果分析 41
4.1 實驗設計 41
4.2 問卷設計 47
4.3 信效度分析 53
4.4 實驗結果分析 55
第五章 結論及建議 59
參考文獻 61
英文文獻 61
中文文獻 64
附錄A. 使用者滿意度問卷 67
附錄B. 使用者訪談紀錄 70
參考文獻 英文文獻
1. Ajzen, I. 1991. The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
2. Ajzen, I., & Fishbein, M. 1975. Belief, attitude, intention, and behavior: an introduction to theory and research. MA: Addison-Wesley.
3. Balabanovic, M., & Shohan, Y. (1997). Fab: content-based, collaborative recommendation. Communications of the ACM, 40(3), 66-72.
4. Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review, 84(2), 191-215.
5. Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122-147.
6. Bandura, A. (1986). Social foundations of thought and action: a social-cognitive theory. Englewood Cliffs: Prentice-Hall.
7. Bandura, A. (1991). Social cognitive theory of self-regulation. Organizational Behavior and Human Decision Process, 50(2), 248-287.
8. Chin, W. W. (1998). The partial least squares approach to structural equation modeling, in R. A. Marcoulides (Ed.), Modern methods for business research, Mahwah, NJ: Lawrence Erlbaum Associates, 295-236.
9. Chin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares, in R. Hoyle (Ed.), Statistical Strategies for Small Sample Research, Sage Publications, 307-341.
10. Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modelling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic mail emotion/adoption study. Information Systems Research, 14(2), 189-217.
11. Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: development of a measure and initial test. MIS Quarterly, 19(2), 189-211.
12. Compeau, D. R., & Higgins, C.A. (1995). Application of social cognitive theory to training for computer skills. Information Systems Research, 6(2), 118-143.
13. Cropley, A. J. (1980). Towards a system of lifelong education: some practical considerations. Hamburg: UNESCO Institute for Education.
14. Cyert, R. M., & March, J. G. (1963). A behavioral theory of the firm. Englewood Cliffs: Prentice-Hall.
15. Davis, F.D. 1986. A technology acceptance model for empirically testing new end-user information systems: Theory and results. Sloan School of Management: Massachusetts Institute of Technology.
16. Davis, F.D. 1989. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly,13(3), 319-339.
17. Delone, W. H., & Mclean, E. R. (1992). Information system success: the quest for the dependent variable. Information Systems Research, 3(1), 60-95.
18. DeLone, W.H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems, 19(4), 9-30.
19. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equations models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
20. Galletta, D. F., & Lederer, A. L. (1989). Some cautions on the measurement of user information satisfaction. Decision Sciences, 20(3), 419-434.
21. Gelderman, M. (1997). The relation between user satisfaction, usage of information systems and performance. Information and Management, 34(1), 11-18.
22. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate Data Analysis (6th ed.). New Jersey: Prentice-Hall.
23. Hein, G. (2006). Museum education. In: Sharon Macdonald a companion to museum studies. Oxford: Blackwell.
24. Herbert A. S. 1969. Models of Thoughts. New Haven: Yale University Press.
25. Ives, B., Olson M. H., & Baroudi, J. J. (1983). The measurement of user information satisfaction. Communications of the ACM, 26(10), 785-793.
26. Marakas, G. M., Yi, M. Y., & Johnson, R. D. (1998). The multilevel and multifaced character of computer self-efficacy: toward clarification of the construct and an integrative framework for research. Information Systems Research, 9(2), 126-163.
27. Mary, J. R., & Joel, R. (1986). The impact of the information explosion on library users: overload or opportunity?. Journal of Academic Librarianship, 12(5), 304-307.
28. Melone, N. P. (1990). A theoretical assessment of the user-satisfaction construct in information systems research. Management Science, 36(1), 76-91.
29. Mobasher. B., Dai. H., Luo. T., & Nakagawa. M. (2001). Effective personalization based on association rule discovery from web usage data. The 3 rd ACM Workshop on Web Information and Data Management, Atlanta, USA.
30. Mulvenna, M. D., Anand, S. S., & Büchner, A. G. (2000). Personalization on the net using web mining: introduction. Communications of the ACM, 43(8), 122-125.
31. Nunnally, J. C. (1978). Psychometric Theory (2nd ed.). New York: McGraw-Hill.
32. Oliver, R. L. (1981). Measurement and evaluation of satisfaction processes in retail settings. Journal of Retailing, 57(3), 25-48.
33. Pearson, S. W., & Bailey, J. E. (1980). Measurement of computer user satisfaction. ACM SIGMETRICS performance evaluation review, 9(1), 59-68.
34. Pearson, S. W., & Bailey, J. E. (1983). Development of a tool for measuring and analyzing computer user satisfaction. Management Science, 29(5), 530-545.
35. Pirouz, D. M. (2006). An overview of partial least squares. Retrieved February 19,2008, from http://www.dantepirouz.com/research/pls/PLS.pdf.
36. Raban, D. R., & Rafaeli, S. (2007). Investigating ownership and the willingness to share information online. Computers in Human Behavior, 23(5), 2367-2382.
37. Resnick, P., & Varian, H. R. (1997). Recommendationer Systems. Communications of the ACM, 40(3), 56-58.
38. Richard, L. H. (1995) .Countering information overload: the role of the librarian. Reference Librarian, 23(49), 305-333.
39. Ringle, C. M., Wende, S., & Will, A. (2005). SmartPLS 2.0 (beta). Retrieved September 14, 2009 from http://www.smartpls.de.
40. Robert, M. L. (1989). Minimizing information overload: the ranking of electronic messages. Journal of Information Science, 15(3), 179-189.
41. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of recommendation algorithms for e-commerce. Proceedings of the ACM E-Commerce Conference, 158-167.
42. Schafer, J. B., Konstan, J., & Riedl, J. (1999). Recommendationer system in e-commerce. Proceedings of the 1st ACM conference on Electronic Commerce, Denver, USA.
43. Shardanand, U., & Maes, P. (1995). Social Information filtering: algorithms for automating 「Word of Mouth」. Denver, Colorado, United States.
44. Smith, M. (1988). Developing youth work: informal education, mutual aid and popular practice. Milton Keynes: Open University Press.
45. Treacy, M. (1985). An empirical examination of a causal model of user information satisfaction. Proceedings of the 6th International Conference on Information Systems, 285-297.
46. Venkatesh, V., Morris, M.G., Davis, G.B., & Davis, F.D. 2003. User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425.
47. Wixom, B.H., & Todd, P.A. 2005. A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85-102.
中文文獻
1. 吳文雄(民91)。電腦技能學習者過去的績效、目標認同、電腦自我效能及電腦績效因果關係之驗證-社會認知理論與目標設定理論的整合。師大學報,47(1),39-54。
2. 吳錦毅(民96)。離島地區國中教師接受創新程度、資訊素養、電腦焦慮與電腦自我效能之相關研究。國立台東大學教育學系碩士論文,已出版。台東縣。
3. 宋曜廷、張國恩、於文正(民95)。行動載具在博物館學習的應用:促進「人-機-境」互動的設計。博物館學季刊,20(1),17-31。
4. 林政行(民76)。博物館與學習。博物館學季刊,1(3),17-20。
5. 林政弘、張沛華(民94)。我國博物館經營管理之探討。台北市:教育部。
6. 林勝義(民86)。博物館功能與民眾之終身學習。博物館學季刊,11(4),7-11。
7. 邱永祥(民92)。運用類神經網路與資料探勘技術於網路教學課程推薦之研究。朝陽科技大學資訊管理系碩士論文,已出版。台中縣。
8. 姚登元(民95)。電腦自我效能對 ERP 系統使用績效影響之研究。國立中央大學企業管理學系碩士論文,已出版。桃園縣。
9. 秦裕傑(民85)。現代博物館。台北市:財團法人世界宗教博物館發展基金會。
10. 翁崇雄(民96)。問答系統使用者滿意度評量模式之建構。行政院國家科學委員會專題研究計畫成果報告(編號:NSC 95-2416-H-002-047-)。台北市:國立臺灣大學資訊管理學系暨研究所。
11. 張哲銘(民92)。以使用者偏好分類為基礎之網際資源推薦系統。國立台灣大學資訊管理研究所碩士論文,已出版。台北市。
12. 陳乃林(民87)。終生學習論析。成人教育雙月刊,41,36-41。
13. 陳佳玲(民98)。探討影響讀者推薦系統滿意度之因素: 以建立圖書館讀者社群為例。國立中央大學資訊工程學系碩士論文,已出版。桃園縣。
14. 麥孟生(民89)。個人心理類型、自我效能及態度對電腦學習成效之影響。國立中央大學資訊管理學系碩士論文,已出版。桃園縣。
15. 黃郁雯(民92)。電腦自我效能、電腦經驗及他人支持三者與電腦態度及電腦焦慮之關係。國立政治大學心理學系碩士論文,已出版。台北市。
16. 黃富順(民86)。終生學習理念的意義與發展。成人教育雙月刊,35,6-15。
17. 蔡秀美(民85)。終生學習社會的成長與規劃。台北市:師大書苑。
18. 蕭喬茹(民95)。國立歷史博物館PDA行動數位導覽解說效果之研究。靜宜大學觀光事業學系暨研究所碩士論文,已出版。台北市。
19. 蕭瑞棠(民93)。博物館環境:另一種學習理念的初探。博物館學季刊,18(1),63-71。
20. 顏鴻森(民92)。古早中國鎖具之美。台南市:中華古機械文教基金會。
21. 羅建銘(民90)。協同過濾於網站推薦之研究。國立台北科技大學商業自動化與管理研究所碩士論文,已出版。台北市。
22. 蘇伯方(民93)。即時傳訊軟體採用模式之研究。國立中山大學傳播管理研究所,已出版。高雄市。
23. 蘇諼(民89)。談資訊超載對圖書資訊專業的影響。中國圖書館學會會報,65,67-74。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw