進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0107202022513300
論文名稱(中文) 利用半導體雷射的週期一動態產生應用於光達上的頻率調製連續波光訊號
論文名稱(英文) Generation of frequency-modulated continuous-wave optical signals using period-one dynamics of semiconductor lasers for lidar applications
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 108
學期 2
出版年 109
研究生(中文) 吳政穎
研究生(英文) Zheng-Ying Wu
學號 L76071231
學位類別 碩士
語文別 中文
論文頁數 51頁
口試委員 指導教授-黃勝廣
口試委員-魏明達
口試委員-曾碩彥
口試委員-魏嘉建
中文關鍵字 FMCW光達  光注入系統  週期一動態 
英文關鍵字 FMCW lidar  optical injection system  period one dynamic 
學科別分類
中文摘要 光達(Lidar)這項技術一直以來被運用在許多科技產品上,像是機載光達藉由光達得知飛機與地面的距離,測量大範圍的地形起伏或是森林面積;在掃地機器人方面,也利用了雷射光達計算與物體的距離避免機器人撞到和控制轉彎;而在近期,自駕車的概念逐漸萌起,越來越多公司開始研究如何發展低成本、誤差低的光達系統。而在眾多光達系統中,又因價格低、功率符合安全規範且偵測距離遠的調頻連續波光達(FMCW Lidar)佔有較大的優勢,關於其相關研究也隨之而來。在早期的研究中,為了產生線性啁啾之訊號,常使用直接調制的方式來改變雷射的輸出頻率,然而因其線性程度不理想,在測距上造成嚴重的誤差,往往需要額外的儀器來修正,使得光達系統太過複雜。近期的研究中則是使用了可調式雷射來產生啁啾訊號,但其成本過高難以實現於自駕車上。此篇論文展示了光注入系統,利用週期一的動態特性配合外部調制的方式,產生線性啁啾光訊號,並且藉由第N階的調制邊帶,達到N倍頻的效果,進而提升光達的分析能力。
英文摘要 Lidar has become more and more important recently. In FMCW lidar, how to generate linear chirped signal is an important issue. Besides, to improve range resolution, a chirped signal with large bandwidth is required. In this paper, four times chirped bandwidth is achieved using optical injection system and external modulation. The error of range testing is around 1~2%, witch shows great accuracy and stability in this system.
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 v
第一章 前言 1
1.1 研究背景與動機 1
1.2 LiDAR種類 3
1.2.1 脈衝光達 3
1.2.2 AMCW光達 4
1.2.3 FMCW光達 5
1.3 論文架構 10
第二章 半導體雷射之非線性動態 11
2.1 非線性機制 11
2.2 光注入系統 11
2.3 光注入系統動態地圖 14
第三章 FMCW產生 19
3.1 實驗架構 19
3.2 梳狀訊號 20
3.3 鎖住範圍 23
第四章 結果與討論 26
4.1 AWG訊號分析 26
4.2 實驗架構 29
4.3 測距結果 31
4.3.1 中心頻率10GHz 31
4.3.2 中心頻率15GHz 38
4.3.3 測距誤差 41
4.4 訊號分析 44
第五章 總結 48
參考文獻 49

參考文獻 [1]G.G.Goyer, R.Watson, “The Laser and its Application to Meteorology,” Bull Am Meteorol Soc. Vol.44, pp.564-570, 1963.
[2]Matt A. King, “The GPS Contribution to the Error Budget of Surface Elevations Derived From Airborne LIDAR,” IEEE Trans Geosci Remote Sens. Vol.47, pp.874-883, 2009.
[3]M. B. Rivas, J. A. Maslanik, P. Axelrad, “Bistatic Scattering of GPS Signals Off Arctic Sea Ice,” IEEE Trans Geosci Remote Sens. Vol.48, pp.1548-1553, 2010.
[4]O. Wijk, H.I. Christensen, “Triangulation-Based Fusion of Sonar Data with Application in Robot Pose Tracking,” IEEE Trans. Robot. Vol.16, pp.740-752, 2000.
[5]C. Hewitt, I. Politis, T. Amanatidis, A. Sarkar, “Assessing Public Perception of Self-Driving Cars: the Autonomous Vehicle Acceptance Model,” IUI’19, pp.518-527, 2019.
[6]F. Y Lin, J. M. Liu, “Chaotic Lidar,” IEEE J Quantum Electron. Vol.10, pp.991-997, 2004.
[7]J. Lee, Y. Jin Kim, K. Lee, S. Lee, S. W Kim, “Time-of-flight measurement with femtosecond light pulses,” Nature Photonics. Vol. 4, pp.716-720, 2010.
[8]H. Sarbolandi, M. Plack, A. Kolb, “Pulse Based Time-of-Flight Range Sensing,” Sensors. 2018.
[9]S.B. Gokturk, H. Yalcin, C. Bamji, “A Time-Of-Flight Depth Sensor - System Description, Issues and Solutions,” IEEE CVPRW’04. 2004.
[10]R. Lange, P. Seitz, “Solid-State Time-of-Flight Range Camera,” IEEE J Quantum Electron. pp.390-397, 2001.
[11]P. Feneyrou, L. Leviandier, “Frequency-modulated multifunction lidar for anemometry, range finding, and velocimetry–1. Theory and signal processing,” Appl. Opt. Vol. 56, pp. 9663-9675, 2017.
[12]C. J. Karlsson, Fredrik Å. A. Olsson, “Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance,” Appl. Opt. Vol. 38, pp. 3376-3386, 1999.
[13]S. Royo, M. Ballesta, “An Overview of Lidar Imaging Systems for Autonomous Vehicles,” Appl. Sci. 2019.
[14]B. Behroozpour, P. A. M. Sandborn , M. C. Wu , B. E. Boser, “Lidar System Architectures and Circuits,” IEEE Commun Mag. pp.135-142, 2017.
[15]S. Gao, M. O’Sullivan, R. Hui, “Complex-optical-field lidar system for range and vector velocity measurement,” Opt. Exp, Vol.20, pp.25867–25875, 2012.
[16]P. M. Woodward, “Probability and Information Theory, with Applications to Radar,” Pergamon Press, 1953.
[17]K. Iiyama, L. T. Wang, K. Hayashi, “Linearizing Optical Frequency-Sweep of a Laser Diode for FMCW Reflectometry,” IEEE. J. Light. Technol. Vol. 14, pp.173-178, 1996.
[18]D. Uttam, B. Culshaw, “Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique,” IEEE. J. Light. Technol. Vol. 3, pp.971-977, 1985.
[19]K. Numata, J. R. Chen, S. T. Wu, “Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser,” Opt. Exp. Vol. 20, pp14235-14243, 2012.
[20]T. Kim, P. Bhargava, V. Stojanovic, “Optimal Spectral Estimation and System Trade-Off in Long-Distance Frequency-Modulated Continuous-Wave Lidar,” IEEE. ICASSP. pp1583-1587, 2018.
[21]A. P. Mayor, V. Wulfmeyer, P. Weibring, “Development of an eye-safe solid-state tunable laser transmitter in the 1.4–1.5 μm wavelength region based on Cr4+:YAG crystal for lidar applications,” Appl. Opt. Vol. 47, pp.1522-1534, 2008.
[22]T.B. Simpson, J.M. Liu, K. F. Huang, K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, Vol 9, pp.765-783, 1997.
[23]Lyu, Y., Yang, T., Lu, Z., Guo, C., Ge, C., Wang, Z., Jia, D., Yin, H., “External Modulation Method for Generating Accurate Linear Optical FMCW,” IEEE Photonics Technology Letters, Vol. 29, 2017.
[24]L. E. Larson, J.-M. Liu, L. S. Tsimring, Digital Communications Using Chaos and Nonlinear Dynamics, Springer, United States of America, pp. 285-294, 2006.
[25]Y. Okajima, S.K. Hwang, J.M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Optics Communications. Vol.219, pp.357-364, 2003.
[26]S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz Intrinsic Bandwidth for Direct Modulation in 1.3-μm Semiconductor Lasers Subject to Strong Injection Locking,” IEEE. Photon. Technol. Lett. Vol. 16, pp.972-974, 2004.
[27]G. Yabre, J. L. Bihan, “Reduction of Nonlinear Distortion in Directly Modulated Semiconductor Lasers by Coherent Light Injection,” IEEE J Quantum Electron. Vol. 33, pp.1132-1140, 1997.
[28]Y. H. Hung, C.H. Chu, S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. Vol. 38, pp.1482-1484, 2013.
[29]S. K. Hwang, S. C. Chan, S.C. Hsieh, C. Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. Vol.284, pp.3581-3589, 2011.
[30]J. M. Liu, H. F. Chen, S. Tang, “Synchronized chaotic optical communications at high bit rates,” IEEE J Quantum Electron. Vol. 38, pp.1184-1196, 2002.
[31]S.K. Hwang, J.M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. Vol. 183, pp.195-205, 2000.
[32]Y. H. Hung, S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express. Vol.23, pp.6520-6532, 2015.
[33]T. J. Ahn, D. Y. Kim, “Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and Hilbert transformation,” Opt. Express. Vol.46, pp.2394-2400, 2007.
[34]F. Wei, B. Lu, J. Wang, D. Xu, Z. Pan, D. Chen, H. Cai, R. Qu, “Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking,” Opt. Express. Vol.23, pp.4970-4980, 2015.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw