進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0107201913525700
論文名稱(中文) 以電化學沉積製備CuInSe2奈米柱應用於ITO/CuInSe2二極體之研究
論文名稱(英文) Study of ITO/CuInSe2 diode characteristics with electrodeposited CuInSe2 nanorod
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 107
學期 2
出版年 108
研究生(中文) 劉國煒
研究生(英文) Kuo-Wei Liu
學號 Q16064189
學位類別 碩士
語文別 中文
論文頁數 112頁
口試委員 指導教授-洪茂峰
口試委員-王永和
口試委員-王納富
口試委員-蔡有仁
口試委員-黃建榮
中文關鍵字 陽極氧化鋁模板  二硒化銅銦奈米柱  電鍍  二極體 
英文關鍵字 AAO template  CuInSe2 nanorods  electrodeposition  diode 
學科別分類
中文摘要 本研究利用薄膜式陽極氧化鋁模板輔助電沉積陣列式CuInSe2 (CISe)奈米柱於具韌性之p型矽基板,並在CISe上方濺鍍上高導電及透光率的ITO氧化銦錫形成具整流特性之金半接面二極體,期望能應用在CISe太陽電池。氧化鋁模板製備是在草酸溶液當中進行,陽極氧化採用兩階段的步階式電壓調降,模板以磷酸蝕刻擴孔並順利移除底部阻擋層,製作出的AAO模板高度為500nm、平均孔洞直徑60-70nm。CISe奈米柱是藉由調整pH值、電鍍溫度以及RTA熱退火的參數,成功製備出接近理想計量比1:1:2,晶粒大小34.59 nm之類單晶CISe奈米柱。ITO薄膜則以濺鍍參數的微調,包含基板溫度、通氧流量,製備出低電阻率1.02*10-3Ω-cm、高穿透率91.68%之ITO薄膜。實驗初也量測各層薄膜之歐姆接觸,並且嘗試製作傳統薄膜式CISe於鉬基板以用來驗證ITO/CISe之整流,最後製備出具備整流特性之ITO/CISe奈米柱二極體,其電特性在-1V為-0.165mA/cm2,1V為0.35 mA/cm2,開關電流比值為2.12。
英文摘要 SUMMARY
In this study, a thin-film anodized aluminum template was used to assist the electrodeposited CuInSe2 nanorods(NRs) on a p-type silicon substrate, and a highly conductive and transmitting ITO contact was sputtered over the CISe NRs to form a rectifying property. The M-S junction diodes are expected to be applied to CISe solar cells.
The fabrication of alumina template is in an oxalic acid solution. The anodization is carried out by two-step voltage reduction. The template was etched with phosphoric acid and the bottom barrier layer was removed successfully. The AAO template height was 500 nm and the average pore diameter was about 60-70 nm. By adjusting the pH value, electroplating temperature and RTA annealing parameters, the The mono-like CISe NRs are fabricated successfully with an ideal stoichiometric ratio of 1:1:2. The grain size of CISe NRs reach 34.59 nm. The ITO film was prepared by fine-tuning the sputtering parameters, including the substrate temperature and the oxygen flow rate. The ITO film has a low resistivity of 1.03*10-3Ω-cm and a high transmittance of 91.68%. At the beginning of the experiment, the ohmic contact of each layer of device was also checked. We also attempted to fabricate a conventional thin film CISe on a molybdenum substrate to verify the rectification of ITO/CISe. Finally, the ITO/CISe NRs diode having a rectifying characteristic with the reverse current density -0.165 mA/cm2 at -1V, the forward current density 0.35 mA/cm2 at 1V. The on/off ratio of diode is 2.12.
論文目次 摘要 I
SUMMARY II
誌謝 IX
目錄 XI
表目錄 XIII
圖目錄 XIV
第一章 緒論 1
1-1前言 1
1-2太陽能電池簡介 4
1-2-1 CuInSe2太陽能電池介紹 7
1-2-2奈米柱太陽能電池 10
1-3陣列式奈米柱 11
1-3-1奈米結構材料介紹 11
1-3-2奈米柱製備 13
1-3-3陽極氧化鋁模板結構與特色 14
1-3-4陽極氧化鋁輔助填孔成柱介紹 16
1-3-5 CuInSe2奈米柱電化學沉積介紹 17
1-4 研究動機 20
第二章 理論基礎與文獻探討 21
2-1 ITO透明導電膜 21
2-1-1 ITO材料特性簡介 21
2-1-2 ITO製備方法介紹 23
2-2陽極氧化鋁模板 26
2-2-1陽極氧化鋁反應機制 26
2-2-2孔洞形成過程 27
2-2-3薄膜式與鋁片式陽極氧化鋁模板 29
2-3二硒化銅銦材料 31
2-3-1二硒化銅銦材料特性介紹 31
2-3-2二硒化銅銦材料製備方式介紹 33
2-3-3二硒化銅銦材料化學組成比例 35
2-4 電化學沉積介紹 37
2-4-1電化學沉積及系統介紹 37
2-4-2電化學沉積晶體之結晶成長過程介紹 39
2-4-3影響電鍍主要因素介紹 40
2-5基礎半導體理論 42
2-5-1 金屬-半導體接面理論 42
2-5-2 太陽能電池基本工作原理 48
第三章 實驗方法與儀器介紹 51
3-1 實驗流程 51
3-1-1薄膜實驗流程圖 51
3-1-2奈米柱實驗流程圖 52
3-1-3實驗步驟介紹 54
3-2實驗藥品及參數介紹 58
3-2-1實驗藥品及供應商介紹 58
3-2-2奈米柱實驗參數介紹 60
3-2-3薄膜實驗參數介紹 62
3-3實驗儀器介紹 63
3-3-1 熱蒸鍍系統 (Thermal Evaporation deposition) 63
3-3-2 共濺鍍系統(Co-Sputter System) 64
3-3-3 X光繞射儀(X-Ray Diffractometer; XRD) 65
3-3-4場發射掃描式電子顯微鏡(Field Emission-Scanning Electron Microscope, FE-SEM) 67
3-3-5能量分析光譜儀(Energy Dispersive Spectrometer ; EDS) 68
3-3-6 UV-VIS 紫外-可見分光光度法 (Ultraviolet–visible spectroscopy) 69
第四章 結果與討論 70
4-1實驗架構 70
4-2 ITO薄膜參數調變 71
4-2-1 通氧流量調變 72
4-2-2 基板溫度調變 74
4-2-3平面式CISe整流接觸 76
4-3薄膜式陽極氧化鋁模板製作 78
4-4 CuInSe2奈米柱製程參數調變 80
4-4-1 pH值調變 81
4-4-2電鍍溫度調變 87
4-4-3 退火溫度調變 92
4-4-4 KCN表面處理 96
4-5 CuInSe2奈米柱材料與元件結構分析 98
4-5-1 奈米柱微區形貌分析(TEM、SAD) 98
4-5-2 奈米柱CuInSe2元件各層接觸量測 99
4-5-3 奈米柱CuInSe2元件整流特性量測 101
第五章 結論 105
第六章 未來展望 108
參考文獻 109
參考文獻 [1] Carol,綠色能源的最大潛力股─太陽能,2016年1月5日。
[2] A. G. Martin , H. Yoshihiro, D. D. Ewan, H. L. Dean, H. Jochen, Y. Masahiro and W. H. Anita, "Solar cell efficiency tables (Version 53)," Progress in Photovoltaics: Research and Applications, vol. 27, no. 1, pp. 3-12, 25 12 2018.
[3] R. B. K. Mohd., K. G. Pramod, P. M, A. Sultan, K. S. Pramod, S. Rahul, B. B. and H. K. Zishan, "Natural and environment favourable Dye Used as Light Sensitizer in Dye Sensitized Solar Cell: A Critical Review," Journal of Materials Science & Surface Engineering, vol. 5, no. 8, pp. 722-728, 2017.
[4] 粘群、粘金重,薄膜太陽能電池研究進展簡介,2009。
[5] 楊徳仁,太陽能電池材料,五南圖書出版股份有限公司,2008。
[6] 江建志、蔡松雨、劉振邦,銅銦鎵硒(CIGS)薄膜太陽能電池,ITRI工業技術研究院,新竹縣,2016。
[7] E. W., E. A., S.-B. P., G. M., P. C., K. J., L.-S. M., R. T., E. N., Z. S. and K. F., "New cadmium-free buffer layers as heterojunction partners on Cu(In,Ga)(S,Se)/sub 2/ thin film solar cells," in Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036), Anchorage, AK, USA, 2000.
[8] B. J. Stanbery, "Copper Indium Selenides and Related Materials for Photovoltaic Devices," Critical Reviews in Solid State and Materials Sciences, vol. 27, no. 2, pp. 73-117, 2010.
[9] 化學工業日報,轉換效率達世界最高23.35%之CIS薄膜太陽電池,2019。
[10] 馬遠榮,低維奈米材料,2004年10月6日。
[11] T. Hiroyuki and A. Hajime, "Control of GaN nanorod diameter by changing growth temperature during molecular-beam epitaxy," Journal of Crystal Growth, vol. 383, no. 15, pp. 57-62, 11 2013.
[12] I. Shunsuke, K. Akihiko and K. Katsumi, "Selective growth of GaN nanocolumns on predeposited Al patterns by rf-plasma-assisted molecular-beam epitaxy," in Special Issue: 7th International Conference on Nitride Semiconductors (ICNS-7), Las Vegas, 2008.
[13] W. R. S. and E. W. C., "VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH," Applied Physics Letters, vol. 4, no. 5, pp. 89-90, 1964.
[14] S. M.S., P. A.L. and G. R., "Fabrication of High-Density, High Aspect Ratio, Large-Area Bismuth Telluride Nanowire Arrays by Electrodeposition into Porous Anodic Alumina Templates," Advanced Materials, vol. 14, no. 9, pp. 665-667, 2002.
[15] M. Hideki and F. Kenji, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science, vol. 268, no. 5216, pp. 1466-1468, 9 6 1995.
[16] 黃銘揚,矽基板製備陽極氧化鋁核殼結構單晶二硒化銅銦二極體及光感測器應用,國立成功大學碩士論文,2018。
[17] T. Nevin, Ö. Sadullah, K. Necmettin, Y. Hayrettin and Z. Ö. Zafer, "Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions," Applied Physics A, vol. 95, no. 3, pp. 781-787, 6 2009.
[18] S. Shin, B. S. Kim, K. M. Kim, B. H. Kong, H. K. Cho and H. H. Cho, "Tuning the morphology of copper nanowires by controlling the growth," Journal of Materials Chemistry, no. 44, pp. 17967-17971, 2011.
[19] L. Matt, E. G. Lori, R. Aleksandra, K. Tevye, L. Jan and Y. Peidong, "ZnO-Al2O3 and ZnO-TiO2 Core-Shell Nanowire Dye-Sensitized Solar Cells," American Chemical Society, pp. 22652-22663, 2006.
[20] 戴婉如,利用陽極氧化鋁模板製備CuInSe2核殼結構,國立成功大學碩士論文,2017。
[21] O. Bierwagen, "Indium oxide—a transparent, wide-band gapsemiconductor for (opto) electronic applications," Semiconductor Science and Technology, vol. 30, no. 2, pp. 1-16, 2015.
[22] Z. Qiao, FABRICATION AND STUDY OF ITO THIN FILMS, Duisburg: Doctoral dissertation of duisburg-essen university, 2003, pp. 1-157.
[23] W. Hsu, C. M. Sutter-Fella, M. Hettick, L. Cheng, S. Chan, Y. Chen, Y. Zeng, M. Zheng, H.-P. Wang, C.-C. Chiang and A. Javey, "Electron-Selective TiO2 Contact for Cu(In,Ga)Se2 Solar Cells," Scientific Reports, vol. 5, no. 16028, pp. 1-6, 2015.
[24] R. Joshi, V. Singh and J. McClure, "Characteristics of indium tin oxide films deposited by r.f. magnetron sputtering," Thin Solid Films, vol. 257, no. 1, pp. 32-35, 15 2 1995.
[25] 方慈慧,利用網版印刷製備ITO薄膜之研究與其應用,國立成功大學碩士論文,2014。
[26] F. Li, L. Zhang and R. M. Metzger, "On the Growth of Highly Ordered Pores in Anodized," Chemistry of Materials, pp. 2470-2480, 1998.
[27] G. Thompson, "Porous anodic alumina: fabrication, characterization and applications," Thin Solid Films, vol. 297, no. 1-2, pp. 192-201, 1 4 1997.
[28] J. Nelson and R. Oriani, "Stress generation during anodic oxidation of titanium and aluminum," Corrosion Science, vol. 34, no. 2, pp. 307-326, 2 1993.
[29] J. L. Gray, J. S. Richard. and Y. J. Lee, NUMERICAL MODELING OF CuInSe2 AND CdTe SOLAR CELLS, Purdue University, 1994, pp. 6-7.
[30] C. Guillén and J. Herrero, "Structure, morphology and photoelectrochemical activity of CuInSe2 thin films as determined by the characteristics of evaporated metallic precursors," Solar Energy Materials and Solar Cells, vol. 73, no. 2, pp. 141-149, 2002.
[31] J. Müller, J. Nowoczin and H. Schmitt, "Composition, structure and optical properties of sputtered thin films of CuInSe2," Thin Solid Films, vol. 496, no. 2, pp. 364-370, 2 2006.
[32] M. Estela Calixto, K. D. Dobson, B. E. McCandless and R. W. Birkmire, "Controlling Growth Chemistry and Morphology of Single-Bath Electrodeposited Cu ( In , Ga ) Se2 Thin Films for Photovoltaic Application," Journal of the Electrochemical Society, vol. 153, no. 6, pp. G521-G528, 2006.
[33] A. Brenner, Electrodeposition of Alloys: Principles and Practice, Elsevier, 2013, pp. 1-734.
[34] 劉庭宇,電流模式與界面活性劑對超臨界電鍍鎳鍍層之影響探討,臺北科技大學碩士論文,2011。
[35] D. Pletcher and F. C. Walsh, Industrial Electrochemistry, Springer, Dordrecht, 1993.
[36] 胡正明,半導體元件-在積體電路上的應用,台北市:台灣培生教育出版股份有限公司,2016。
[37] 羅姆半導體集團,什麼是二極體?蕭特基二極體,2016。
[38] 施敏、李明逵,半導體元件物理與製作技術-第三版,新竹市:國立交通大學出版社,2013。
[39] 李常鉉,以陽極氧化鋁模板在矽基材上輔助成長奈米結構材料,國立交通大學材料科學與工程系所碩士論文,2005。
[40] B. D. Cullity, Elements of X-ray diffraction, Addison-Wesley Pub. Co, 1956.
[41] 林麗娟,X光繞射原理及其應用,工程材料,編號86,1994。
[42] M. Bender, W. H. Seelig, C. Daube, H. Frankenberger, B. Ocker and J. Stollenwerk, "Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films," Thin Solid Films, vol. 326, no. 1-2, pp. 72-77, 4 8 1998.
[43] O. Tuna, Y. Selamet, G. Aygun and L. Ozyuzer, "High quality ITO thin films grown by dc and RF sputtering without oxygen," Journal of Physics D: Applied Physics, vol. 43, no. 5, 21 1 2010.
[44] C. Huang, T. H. Meen, M. Lai and W.-R. Chen, "Formation of CuInSe2 thin films on flexible substrates by electrodeposition (ED) technique," Solar Energy Materials and Solar Cells, vol. 82, no. 4, 30 5 2004.
[45] 彭偉倫,氧化銦錫透明電極應用於氮化鎵發光二極體,2004。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-06-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-06-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw