進階搜尋


 
系統識別號 U0026-0107201314455100
論文名稱(中文) 體表與內臟器官間神經聯繫徑路的探討
論文名稱(英文) Investigation of the neural connection between somatic tissue and visceral organ
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 101
學期 2
出版年 102
研究生(中文) 陳俊彥
研究生(英文) Chun-Yen Chen
學號 s58941581
學位類別 博士
語文別 英文
論文頁數 63頁
口試委員 共同指導教授-簡基憲
指導教授-許鍾瑜
召集委員-張永賢
口試委員-蔡玉娟
口試委員-黃勇三
中文關鍵字 轉移痛  針灸  內臟體表反射 
英文關鍵字 referred pain  acupuncture  somatovisceral reflex 
學科別分類
中文摘要 神經系統依據支配的位置不同可粗分為本體與臟器兩大系統,又依功能上的不同可分為感覺與運動兩種系統,因此產生了體感覺(somatic sensory)、體運動(somatic motor)、內臟感覺(visceral sensory)、內臟運動(visceral motor)四種系統。在之前的文獻中已經分別的定義出這四個系統的神經傳導路徑,體感覺可經由脊髓-丘腦徑(spinothalamic tract)或是後柱-內側蹄系徑(posterior column-medial lemniscal tract)傳入中樞神經系統,體運動主要經由皮質脊髓徑(corticospinal tract)傳出,而本體神經系統的感覺與運動之間還有著直接的聯系稱之為脊髓反射(spinal reflex)。內臟感覺則經由脊髓網狀組織徑(spinoreticular tract)、脊髓-丘腦徑、後柱-內側蹄系徑、迷走及舌咽神經傳入中樞神經系統,內臟運動則是由交感(sympathetic)及副交感(parasympathetic)系統所調控,內臟感覺與運動之間的反射則是可由內臟感覺直接調控內臟的運動,也就是自律神經系統(autonomic system)。然而目前的文獻對於本體與內臟系統之間的神經聯系卻沒有太多的研究,西方醫學臨床上觀察到的轉移痛(referred pain)以及傳統中國醫學中的針灸(acupuncture)都表明了本體與內臟之間應有神經上的聯系存在,但是這兩者間的交會與切確的路徑都沒有詳細的了解。之前的研究利用神經性的血漿滲漏證實了子宮與腹股溝之間應存在神經上的聯系,但卻沒有辦法確定兩者之間是怎麼樣的聯系。本論文利用fos蛋白的表現以及親神經性病毒做為神經追蹤劑,分別標定腹股溝區及子宮之間的神經支配,發現本體感覺與內臟運動之間在腦幹的孤立束核(nucleus of solitary tract)、迷走背運動神經核(dorsal motor nucleus of vagus)及下丘腦室旁核(paraventricular hypothalamic nucleus)的同一顆神經細胞上有所交會,因此推導出兩條可能的體-內臟反射路徑,一條是體-副交感路徑(somato-parasympathetic pathway),另一條是體-交感路徑(somato-sympathetic pathway),這兩條反射路徑同樣是針灸可能的神經路徑。另外我們發現本體感覺與內臟感覺交會在背側神經節(dorsal root ganglion)及孤立束核上,卻沒有在脊髓背側角上,所以我們假設轉移痛可能是經由背側神經節直接傳入孤立束核再向上傳遞到丘腦。本研究建立了三條本體與內臟神經系統的可能徑路,對神經系統有進一步的了解。
英文摘要 The nerve system based on different innervation can be divided into somatic and visceral system. The nerve system based different function also can be divided as sensory and motor system. Therefore, there are somatic sensory, somatic motor, visceral sensory and visceral motor systems. The major two pathways of somatic sensory system are spinothalamic tract and posterior column – medial lemniscal tract. The somatic motor innervation is from cortex to skeletal muscle via corticospinal tract. The somatic sensory and motor systems have direct neuronal connection called spinal reflex between each other. The visceral sensory system translates visceral afferent through spinothalamic tract, spinoreticular tract, vagus nerve and glossopharyngeal nerve. The visceral motor system regulates the function of visceral organs by activating sympathetic and parasympathetic systems. The autonomic system is the reflex from visceral sensory afferent directly activate visceral motor efferent. However, it is still not clear whether the somatic and visceral systems have neuronal connection. The previous study using neurogenic plasma extravasation method showed that uterine pain referred to the groin region through a neuronal mechanism (Wesselmann and Lai, 1997). But, the relay center of this pathway is still not clearly identified. Our study proposes to investigate the neuronal connection between specific somatic point and visceral organ. In the present study, bee venom was injected in the groin region to induce central Fos expression to map the sensory innervation of groin region. Pseudorabies virus (PrV), a transneuronal tracer, was injected in the uterus to identify the innervation of the uterus. Immunohistochemistry staining revealed that the fos expression and PrV infected double labeled neurons in the nucleus of solitary tract (NTS), the dorsal motor nucleus of vagus (DMX), and the paraventricular hypothalamic nucleus (PVN). These results suggest a somato-parasympathetic neuronal connection (groin-spinal dorsal horn-NTS/DMX-uterus) and a somato-sympathetic neuronal connection (groin-spinal dorsal horn-NTS-PVN-uterus). These two neuronal connections could be the pre-requisites to the neuronal basis of the somatovisceral reflex and also the neuronal mechanism of acupuncture. On the other hand, Fos expression and PrV infected double labeled neurons were mainly found in the T11, T12, T13, L1, S1 dorsal root ganglia, the nucleus of solitary tract (NTS), the other nuclei of brainstem, but not in the spinal dorsal horn. These results suggest the peripheral processes of the dichotomizing DRG neurons receiving sensory afferents either from the uterus or the groin region and the central process projects to the NTS. This morphological evidence demonstrates that the neuronal substrate of referred pain is the dichotomizing DRG neurons (the first order sensory neurons) and the NTS (the second order sensory neurons). These connections between somatic and visceral systems provide more understanding about the interaction of the nerve system.
論文目次 Contents
Chinese abstract ……………………………………………I
English abstract ………………………………...……….III
Contents ……………………………………………….VI
List of tables……………………………………………VII
List of figures……………………………………………VIII
Abbreviations…………………………………………X
Introduction……………………………………………1
Material and method………………………………14
Results ………………………………………………….18
Discussion …………………………………………….21
Figures and tables ……………………….................35
Reference ……………………………………………..53
參考文獻 Reference
1. Al-Chaer, E. D., Feng, Y., and Willis, W. D., 1998. A role for the dorsal column in nociceptive visceral input into the thalamus of primates. J Neurophysiol 79, 3143-3150.
2. Altschuler, S. M., Ferenci, D. A., Lynn, R. B., and Miselis, R. R., 1991. Representation of the cecum in the lateral dorsal motor nucleus of the vagus nerve and commissural subnucleus of the nucleus tractus solitarii in rat. J Comp Neurol 304, 261-274.
3. Appia, F., Ewart, W. R., Pittam, B. S., and Wingate, D. L., 1986. Convergence of sensory information from abdominal viscera in the rat brain stem. Am J Physiol 251, G169-175.
4. Arvidsson, J., and Pfaller, K., 1990. Central projections of C4-C8 dorsal root ganglia in the rat studied by anterograde transport of WGA-HRP. J Comp Neurol 292, 349-362.
5. Ballegaard, S., Jensen, G., Pedersen, F., and Nissen, V. H., 1986. Acupuncture in severe, stable angina pectoris: a randomized trial. Acta Med Scand 220, 307-313.
6. Bao, Y. X., Yu, G. R., Lu, H. H., Zhen, D. S., Cheng, B. H., and Pan, C. Q., 1982. Acupuncture in acute myocardial infarction. Chin Med J (Engl) 95, 824-828.
7. Berkley, K. J., Robbins, A., and Sato, Y., 1988. Afferent fibers supplying the uterus in the rat. J Neurophysiol 59, 142-163.
8. Bolser, D. C., Hobbs, S. F., Chandler, M. J., Ammons, W. S., Brennan, T. J., and Foreman, R. D., 1991. Convergence of phrenic and cardiopulmonary spinal afferent information on cervical and thoracic spinothalamic tract neurons in the monkey: implications for referred pain from the diaphragm and heart. J Neurophysiol 65, 1042-1054.
9. Brinkman, J., Bush, B. M., and Porter, R., 1978. Deficient influence of peripheral stimuli on precentral neurones in monkeys with dorsal column lesions. J Physiol 276, 27-48.
10. Brumovsky, P. R., and Gebhart, G. F., 2010. Visceral organ cross-sensitization — An integrated perspective. Autonomic Neuroscience 153, 106-115.
11. Burton, H., 1968. Somatic sensory properties of caudal bulbar reticular neurons in the cat (Felis domestica). Brain Res 11, 357-372.
12. Calaresu, F. R., and Henry, J. L., 1970. The mechanism of the cardio-acceleration elicited by electrical stimulation of the parahypoglossal area in the cat. J Physiol 210, 107-120.
13. Cardona, F., 1950. [Study of the medullary pyramidal tracts in cerebral hemiplegia due to capsular lesions]. Riv Patol Nerv Ment 71, 216-224.
14. Carstens, E., and Trevino, D. L., 1978. Anatomical and physiological properties of ipsilaterally projecting spinothalamic neurons in the second cervical segment of the cat's spinal cord. J Comp Neurol 182, 167-184.
15. Cervero, F., 1983. Somatic and visceral inputs to the thoracic spinal cord of the cat: effects of noxious stimulation of the biliary system. J Physiol 337, 51-67.
16. Cervero, F., 1985. Visceral nociception: peripheral and central aspects of visceral nociceptive systems. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 308, 325-337.
17. Cervero, F., 1995. Visceral pain: mechanisms of peripheral and central sensitization. Ann Med 27, 235-239.
18. Cervero, F., and Connell, L. A., 1984. Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat. J Comp Neurol 230, 88-98.
19. Cervero, F., Connell, L. A., and Lawson, S. N., 1984. Somatic and visceral primary afferents in the lower thoracic dorsal root ganglia of the cat. J Comp Neurol 228, 422-431.
20. Cervero, F., and Laird, J. M., 1999. Visceral pain. Lancet 353, 2145-2148.
21. Chaban, V., Christensen, A., Wakamatsu, M., McDonald, M., Rapkin, A., McDonald, J., and Micevych, P., 2007. The same dorsal root ganglion neurons innervate uterus and colon in the rat. Neuroreport 18, 209-212.
22. Chang, H. Y., Mashimo, H., and Goyal, R. K., 2003. Musings on the wanderer: what's new in our understanding of vago-vagal reflex? IV. Current concepts of vagal efferent projections to the gut. Am J Physiol Gastrointest Liver Physiol 284, G357-366.
23. Chao, D. M., Shen, L. L., Tjen, A. L. S., Pitsillides, K. F., Li, P., and Longhurst, J. C., 1999. Naloxone reverses inhibitory effect of electroacupuncture on sympathetic cardiovascular reflex responses. Am J Physiol 276, H2127-2134.
24. Chen, Y., Song, B., Jin, X. Y., Xiong, E. Q., and Zhang, J. H., 2005. Possible mechanism of referred pain in the perineum and pelvis associated with the prostate in rats. J Urol 174, 2405-2408.
25. Chernigovskii, V. N., and Musiashchikova, S. S., 1969. [Participation of the ventral posterior-lateral nucleus of the cat's thalamus in the transmission of afferent visceral signals]. Izv Akad Nauk SSSR Biol 1, 5-19.
26. Chien, C. H., Shieh, J. Y., Liao, M. H., Ling, E. A., and Wen, C. Y., 1998. Neuronal connections between the auricular skin and the sympathetic pre- and postganglionic neurons of the dog as studied by using pseudorabies virus. Neurosci Res 30, 169-175.
27. Christianson, J. A., Liang, R., Ustinova, E. E., Davis, B. M., Fraser, M. O., and Pezzone, M. A., 2007. Convergence of bladder and colon sensory innervation occurs at the primary afferent level. Pain 128, 235-243.
28. Cliffer, K. D., and Giesler, G. J., Jr., 1989. Postsynaptic dorsal column pathway of the rat. III. Distribution of ascending afferent fibers. J Neurosci 9, 3146-3168.
29. Collins, J. J., Lin, C. E., Berthoud, H. R., and Papka, R. E., 1999. Vagal afferents from the uterus and cervix provide direct connections to the brainstem. Cell Tissue Res 295, 43-54.
30. Coote, J. H., and Macleod, V. H., 1974. Evidence for the involvement in the baroreceptor reflex of a descending inhibitory pathway. J Physiol 241, 477-496.
31. Craig, A. D., 1991. Spinal distribution of ascending lamina I axons anterogradely labeled with Phaseolus vulgaris leucoagglutinin (PHA-L) in the cat. J Comp Neurol 313, 377-393.
32. Craig, A. D., Jr., Linington, A. J., and Kniffki, K. D., 1989. Cells of origin of spinothalamic tract projections to the medial and lateral thalamus in the cat. J Comp Neurol 289, 568-585.
33. Curran, T., and Morgan, J. I., 1995. Fos: an immediate-early transcription factor in neurons. J Neurobiol 26, 403-412.
34. Danilov, A. B., and Vein, A. M., 1996. [The nociceptive flexor reflex: a method for studying the brain mechanisms of pain control]. Zh Nevrol Psikhiatr Im S S Korsakova 96, 107-111.
35. Dawson, N. J., Schmid, H., and Pierau, F. K., 1992. Pre-spinal convergence between thoracic and visceral nerves of the rat. Neurosci Lett 138, 149-152.
36. de Medeiros, M. A., Canteras, N. S., Suchecki, D., and Mello, L. E., 2003. Analgesia and c-Fos expression in the periaqueductal gray induced by electroacupuncture at the Zusanli point in rats. Brain Res 973, 196-204.
37. DeGroat, W. C., and Saum, W. R., 1976. Synaptic transmission in parasympathetic ganglia in the urinary bladder of the cat. J Physiol 256, 137-158.
38. Dmitriev, V. D., 1957. [Morphological and physiological analysis of compensatory mechanisms of sensory and motor functions following injuries of the spinal cord]. Arkh Patol 19, 50-57.
39. Ellrich, J., Andersen, O. K., Messlinger, K., and Arendt-Nielsen, L., 1999. Convergence of meningeal and facial afferents onto trigeminal brainstem neurons: an electrophysiological study in rat and man. Pain 82, 229-237.
40. Esteves, F., Lima, D., and Coimbra, A., 1993. Structural types of spinal cord marginal (lamina I) neurons projecting to the nucleus of the tractus solitarius in the rat. Somatosens Mot Res 10, 203-216.
41. Foreman, R. D., Blair, R. W., and Weber, R. N., 1984. Viscerosomatic convergence onto T2-T4 spinoreticular, spinoreticular-spinothalamic, and spinothalamic tract neurons in the cat. Exp Neurol 85, 597-619.
42. Gebhart, G. F., and Ness, T. J., 1991. Central mechanisms of visceral pain. Can J Physiol Pharmacol 69, 627-634.
43. Gerendai, I., Toth, I. E., Kocsis, K., Boldogkoi, Z., Medveczky, I., and Halasz, B., 2001. Transneuronal labelling of nerve cells in the CNS of female rat from the mammary gland by viral tracing technique. Neuroscience 108, 103-118.
44. Ghanima, A., Bennis, M., and Rampin, O., 2002. c-Fos expression as endogenous marker of lumbosacral spinal neuron activity in response to vaginocervical-stimulation. Brain Res Brain Res Protoc 9, 1-8.
45. Giamberardino, M. A., Berkley, K. J., Iezzi, S., deBigontina, P., and Vecchiet, L., 1997. Pain threshold variations in somatic wall tissues as a function of menstrual cycle, segmental site and tissue depth in non-dysmenorrheic women, dysmenorrheic women and men. Pain 71, 187-197.
46. Goldman, P. L., Collins, W. F., Taub, A., and Fitzmartin, J., 1972. Evoked bulbar reticular unit activity following delta fiber stimulation of peripheral somatosensory nerve in cat. Exp Neurol 37, 597-606.
47. Gray, T. S., Hazlett, J. C., and Martin, G. F., 1981. Organization of projections from the gracile, medial cuneate and lateral nuclei in the North American opossum. Horseradish peroxidase study of the cells projecting to the cerebellum, thalamus and spinal cord. Brain Behav Evol 18, 140-156.
48. Groenewegen, H. J., Boesten, A. J., and Voogd, J., 1975. The dorsal column nuclear projections to the nucleus ventralis posterior lateralis thalami and the inferior olive in the cat: an autoradiographic study. J Comp Neurol 162, 505-517.
49. Guevara-Guzman, R., Buzo, E., Larrazolo, A., de la Riva, C., Da Costa, A. P., and Kendrick, K. M., 2001. Vaginocervical stimulation-induced release of classical neurotransmitters and nitric oxide in the nucleus of the solitary tract varies as a function of the oestrus cycle. Brain Res 898, 303-313.
50. Herman, M. A., Niedringhaus, M., Alayan, A., Verbalis, J. G., Sahibzada, N., and Gillis, R. A., 2008. Characterization of noradrenergic transmission at the dorsal motor nucleus of the vagus involved in reflex control of fundus tone. Am J Physiol Regul Integr Comp Physiol 294, R720-729.
51. Ho, M., Huang, L. C., Chang, Y. Y., Chen, H. Y., Chang, W. C., Yang, T. C., Tsai, H. D. C. I. N. T. J. O. G. S., and author reply, P., 2009. Electroacupuncture reduces uterine artery blood flow impedance in infertile women. Taiwanese journal of obstetrics & gynecology 48, 148-151.
52. Hobbs, S. F., Chandler, M. J., Bolser, D. C., and Foreman, R. D., 1992. Segmental organization of visceral and somatic input onto C3-T6 spinothalamic tract cells of the monkey. J Neurophysiol 68, 1575-1588.
53. Hosoya, Y., Sugiura, Y., Okado, N., Loewy, A. D., and Kohno, K., 1991. Descending input from the hypothalamic paraventricular nucleus to sympathetic preganglionic neurons in the rat. Exp Brain Res 85, 10-20.
54. Hubscher, C. H., and Berkley, K. J., 1994. Responses of neurons in caudal solitary nucleus of female rats to stimulation of vagina, cervix, uterine horn and colon. Brain Res 664, 1-8.
55. Hui, K. K., Nixon, E. E., Vangel, M. G., Liu, J., Marina, O., Napadow, V., Hodge, S. M., Rosen, B. R., Makris, N., and Kennedy, D. N., 2007. Characterization of the "deqi" response in acupuncture. BMC Complement Altern Med 7, 33.
56. Kawamura, K., and Chiba, M., 1979. Cortical neurons projecting to the pontine nuclei in the cat. An experimental study with the horseradish peroxidase technique. Exp Brain Res 35, 269-285.
57. Keast, J. R., and De Groat, W. C., 1992. Segmental distribution and peptide content of primary afferent neurons innervating the urogenital organs and colon of male rats. J Comp Neurol 319, 615-623.
58. Kim, J. S., Enquist, L. W., and Card, J. P., 1999. Circuit-specific coinfection of neurons in the rat central nervous system with two pseudorabies virus recombinants. J Virol 73, 9521-9531.
59. Kim, M. H., Park, Y. C., and Namgung, U., 2012. Acupuncture-stimulated activation of sensory neurons. J Acupunct Meridian Stud 5, 148-155.
60. Kuo, D. C., Krauthamer, G. M., and Yamasaki, D. S., 1981. The organization of visceral sensory neurons in thoracic dorsal root ganglia (DRG) of the cat studied by horseradish peroxidase (HRP) reaction using the cryostat. Brain Res 208, 187-191.
61. Kuo, D. C., Oravitz, J. J., and DeGroat, W. C., 1984. Tracing of afferent and efferent pathways in the left inferior cardiac nerve of the cat using retrograde and transganglionic transport of horseradish peroxidase. Brain Res 321, 111-118.
62. Lassek, A. M., 1948. The human pyramidal tract; reaction of individual axons in selected cases with acute cerebral lesions. J Neuropathol Exp Neurol 7, 89-93.
63. Laurberg, S., and Sorensen, K. E., 1985. Cervical dorsal root ganglion cells with collaterals to both shoulder skin and the diaphragm. A fluorescent double labelling study in the rat. A model for referred pain? Brain Res 331, 160-163.
64. Lee, J. H., and Beitz, A. J., 1993. The distribution of brain-stem and spinal cord nuclei associated with different frequencies of electroacupuncture analgesia. Pain 52, 11-28.
65. Lee, J. W., and Erskine, M. S., 2000. Pseudorabies virus tracing of neural pathways between the uterine cervix and CNS: effects of survival time, estrogen treatment, rhizotomy, and pelvic nerve transection. J Comp Neurol 418, 484-503.
66. Li, J., Micevych, P., McDonald, J., Rapkin, A., and Chaban, V., 2008. Inflammation in the uterus induces phosphorylated extracellular signal-regulated kinase and substance P immunoreactivity in dorsal root ganglia neurons innervating both uterus and colon in rats. J Neurosci Res 86, 2746-2752.
67. Li, P., and Longhurst, J. C., 2010. Neural mechanism of electroacupuncture's hypotensive effects. Autonomic neuroscience : basic & clinical 157, 24-30.
68. Li, P., Pitsillides, K. F., Rendig, S. V., Pan, H. L., and Longhurst, J. C., 1998. Reversal of reflex-induced myocardial ischemia by median nerve stimulation: a feline model of electroacupuncture. Circulation 97, 1186-1194.
69. Liu, T., 2011. [Rethinking on Ashi points]. Zhongguo Zhen Jiu 31, 929-931.
70. Llewelyn, M. B., Azami, J., and Roberts, M. H., 1986. Brainstem mechanisms of antinociception. Effects of electrical stimulation and injection of morphine into the nucleus raphe magnus. Neuropharmacology 25, 727-735.
71. Luo, C., Chen, J., Li, H. L., and Li, J. S., 1998. Spatial and temporal expression of c-Fos protein in the spinal cord of anesthetized rat induced by subcutaneous bee venom injection. Brain Res 806, 175-185.
72. Marson, L., 1995. Central nervous system neurons identified after injection of pseudorabies virus into the rat clitoris. Neurosci Lett 190, 41-44.
73. Marson, L., Platt, K. B., and McKenna, K. E., 1993. Central nervous system innervation of the penis as revealed by the transneuronal transport of pseudorabies virus. Neuroscience 55, 263-280.
74. Martinez, V., Wang, L., and Tache, Y., 2006. Proximal colon distension induces Fos expression in the brain and inhibits gastric emptying through capsaicin-sensitive pathways in conscious rats. Brain Res 1086, 168-180.
75. McCrea, D. A., 1986. Spinal cord circuitry and motor reflexes. Exerc Sport Sci Rev 14, 105-141.
76. Melzack, R., and Belanger, E., 1989. Labour pain: correlations with menstrual pain and acute low-back pain before and during pregnancy. Pain 36, 225-229.
77. Monnikes, H., Ruter, J., Konig, M., Grote, C., Kobelt, P., Klapp, B. F., Arnold, R., Wiedenmann, B., and Tebbe, J. J., 2003. Differential induction of c-fos expression in brain nuclei by noxious and non-noxious colonic distension: role of afferent C-fibers and 5-HT3 receptors. Brain Res 966, 253-264.
78. Moore, R. Y., Speh, J. C., and Card, J. P., 1995. The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J Comp Neurol 352, 351-366.
79. Nadelhaft, I., Vera, P. L., Card, J. P., and Miselis, R. R., 1992. Central nervous system neurons labelled following the injection of pseudorabies virus into the rat urinary bladder. Neurosci Lett 143, 271-274.
80. Nance, D. M., Burns, J., Klein, C. M., and Burden, H. W., 1988. Afferent fibers in the reproductive system and pelvic viscera of female rats: anterograde tracing and immunocytochemical studies. Brain Res Bull 21, 701-709.
81. Ness, T. J., and Gebhart, G. F., 1990. Visceral pain: a review of experimental studies. Pain 41, 167-234.
82. Niel, J. P., Gonella, J., and Roman, C., 1980. [Horseradish peroxidase localization of the cell bodies of the sympathetic and parasympathetic neurones controlling the lower oesophageal sphincter in the cat (author's transl)]. J Physiol (Paris) 76, 591-599.
83. Norgren, R., 1978. Projections from the nucleus of the solitary tract in the rat. Neuroscience 3, 207-218.
84. Oliveras, J. L., Redjemi, F., Guilbaud, G., and Besson, J. M., 1975. Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat. Pain 1, 139-145.
85. Ortega-Villalobos, M., Garcia-Bazan, M., Solano-Flores, L. P., Ninomiya-Alarcon, J. G., Guevara-Guzman, R., and Wayner, M. J., 1990. Vagus nerve afferent and efferent innervation of the rat uterus: an electrophysiological and HRP study. Brain Res Bull 25, 365-371.
86. Otake, K., Reis, D. J., and Ruggiero, D. A., 1994. Afferents to the midline thalamus issue collaterals to the nucleus tractus solitarii: an anatomical basis for thalamic and visceral reflex integration. J Neurosci 14, 5694-5707.
87. Pan, B., Castro-Lopes, J. M., and Coimbra, A., 1994. C-fos expression in the hypothalamo-pituitary system induced by electroacupuncture or noxious stimulation. Neuroreport 5, 1649-1652.
88. Pan, B., Castro-Lopes, J. M., and Coimbra, A., 1999. Central afferent pathways conveying nociceptive input to the hypothalamic paraventricular nucleus as revealed by a combination of retrograde labeling and c-fos activation. J Comp Neurol 413, 129-145.
89. Papka, R. E., Williams, S., Miller, K. E., Copelin, T., and Puri, P., 1998. CNS location of uterine-related neurons revealed by trans-synaptic tracing with pseudorabies virus and their relation to estrogen receptor-immunoreactive neurons. Neuroscience 84, 935-952.
90. Park, M., Kim, J., Bae, Y., Son, B., Park, Y., Lee, B., Cho, K., Kim, D., Sung, E., and Yoon, Y. W., 1997. CNS innervation of the urinary bladder demonstrated by immunohistochemical study for c-fos and pseudorabies virus. J Korean Med Sci 12, 340-352.
91. Patisaul, H. B., Melby, M., Whitten, P. L., and Young, L. J., 2002. Genistein affects ER beta- but not ER alpha-dependent gene expression in the hypothalamus. Endocrinology 143, 2189-2197.
92. Paton, J. F., Boscan, P., Pickering, A. E., and Nalivaiko, E., 2005. The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Res Brain Res Rev 49, 555-565.
93. Peng, L., 2002. Neural mechanisms of the effect of acupuncture on cardiovascular diseases. International Congress Series 1238, 71-77.
94. Peters, L. C., Kristal, M. B., and Komisaruk, B. R., 1987. Sensory innervation of the external and internal genitalia of the female rat. Brain Res 408, 199-204.
95. Pierau, F. K., Fellmer, G., and Taylor, D. C., 1984. Somato-visceral convergence in cat dorsal root ganglion neurones demonstrated by double-labelling with fluorescent tracers. Brain Res 321, 63-70.
96. Pinto, M., Lima, D., and Tavares, I., 2006. Correlation of noxious evoked c-fos expression in areas of the somatosensory system during chronic pain: involvement of spino-medullary and intra-medullary connections. Neurosci Lett 409, 100-105.
97. Ralston, D. D., and Ralston, H. J., 3rd, 1985. The terminations of corticospinal tract axons in the macaque monkey. J Comp Neurol 242, 325-337.
98. Richter, A., Herlitz, J., and Hjalmarson, A., 1991. Effect of acupuncture in patients with angina pectoris. Eur Heart J 12, 175-178.
99. Rinaman, L., Card, J. P., Schwaber, J. S., and Miselis, R. R., 1989. Ultrastructural demonstration of a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat. J Neurosci 9, 1985-1996.
100. Roh, D. H., Kim, H. W., Yoon, S. Y., Kang, S. Y., Kwon, Y. B., Cho, K. H., Han, H. J., Ryu, Y. H., Choi, S. M., Lee, H. J., Beitz, A. J., and Lee, J. H., 2006. Bee venom injection significantly reduces nociceptive behavior in the mouse formalin test via capsaicin-insensitive afferents. J Pain 7, 500-512.
101. Rothermel, M., Schobel, N., Damann, N., Klupp, B. G., Mettenleiter, T. C., Hatt, H., and Wetzel, C. H., 2007. Anterograde transsynaptic tracing in the murine somatosensory system using Pseudorabies virus (PrV): a "live-cell"-tracing tool for analysis of identified neurons in vitro. J Neurovirol 13, 579-585.
102. Sameda, H., Takahashi, Y., Takahashi, K., Chiba, T., Ohtori, S., and Moriya, H., 2003. Dorsal root ganglion neurones with dichotomising afferent fibres to both the lumbar disc and the groin skin. A possible neuronal mechanism underlying referred groin pain in lower lumbar disc diseases. J Bone Joint Surg Br 85, 600-603.
103. Sato, A., 1995. Somatovisceral reflexes. J Manipulative Physiol Ther 18, 597-602.
104. Sato, A., and Schmidt, R. F., 1971. Spinal and supraspinal components of the reflex discharges into lumbar and thoracic white rami. J Physiol 212, 839-850.
105. Sessle, B. J., Hu, J. W., Amano, N., and Zhong, G., 1986. Convergence of cutaneous, tooth pulp, visceral, neck and muscle afferents onto nociceptive and non-nociceptive neurones in trigeminal subnucleus caudalis (medullary dorsal horn) and its implications for referred pain. Pain 27, 219-235.
106. Sinclair, D. C., Weddell, G., and Feindel, W. H., 1948. Referred pain and associated phenomena. Brain 71, 184-211.
107. Sinniger, V., Porcher, C., Mouchet, P., Juhem, A., and Bonaz, B., 2004. c-fos and CRF receptor gene transcription in the brain of acetic acid-induced somato-visceral pain in rats. Pain 110, 738-750.
108. Spary, E. J., Maqbool, A., and Batten, T. F., 2008. Expression and localisation of somatostatin receptor subtypes sst1-sst5 in areas of the rat medulla oblongata involved in autonomic regulation. J Chem Neuroanat 35, 49-66.
109. Spyer, K. M., 1975. Organisation of baroreceptor pathways in the brain stem. Brain Res 87, 221-226.
110. Streefland, C., Maes, F. W., and Bohus, B., 1998. Autonomic brainstem projections to the pancreas: a retrograde transneuronal viral tracing study in the rat. J Auton Nerv Syst 74, 71-81.
111. Sugiura, Y., Terui, N., and Hosoya, Y., 1989. Difference in distribution of central terminals between visceral and somatic unmyelinated (C) primary afferent fibers. J Neurophysiol 62, 834-840.
112. Sun, X. Y., and Yao, T., 1985. [Inhibitory effect of electric needling on the defence reaction produced by hypothalamic stimulation in awake rabbits]. Sheng Li Xue Bao 37, 15-23.
113. Swanson, L. W., and Kuypers, H. G., 1980. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194, 555-570.
114. Takahashi, M., and Yokota, T., 1983. Convergence of cardiac and cutaneous afferents onto neurons in the dorsal horn of the spinal cord in the cat. Neurosci Lett 38, 251-256.
115. Takahashi, Y., and Nakajima, Y., 1996. Dermatomes in the rat limbs as determined by antidromic stimulation of sensory C-fibers in spinal nerves. Pain 67, 197-202.
116. Takahashi, Y., Ohtori, S., and Takahashi, K., 2010. Dorsoventral organization of sensory nerves in the lumbar spine as indicated by double labeling of dorsal root ganglion neurons. J Orthop Sci 15, 578-583.
117. Tavares, I., Lima, D., and Coimbra, A., 1993. Neurons in the superficial dorsal horn of the rat spinal cord projecting to the medullary ventrolateral reticular formation express c-fos after noxious stimulation of the skin. Brain Res 623, 278-286.
118. Taylor, D. C., Pierau, F. K., and Schmid, H., 1983. The use of fluorescent tracers in the peripheral sensory nervous system. J Neurosci Methods 8, 211-224.
119. Ter Horst, G. J., de Boer, P., Luiten, P. G., and van Willigen, J. D., 1989. Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat. Neuroscience 31, 785-797.
120. Ter Horst, G. J., Meijler, W. J., Korf, J., and Kemper, R. H., 2001. Trigeminal nociception-induced cerebral Fos expression in the conscious rat. Cephalalgia 21, 963-975.
121. Traub, R. J., Allen, B., Humphrey, E., and Ruda, M. A., 1990. Analysis of calcitonin gene-related peptide-like immunoreactivity in the cat dorsal spinal cord and dorsal root ganglia provide evidence for a multisegmental projection of nociceptive C-fiber primary afferents. J Comp Neurol 302, 562-574.
122. Traub, R. J., Silva, E., Gebhart, G. F., and Solodkin, A., 1996. Noxious colorectal distention induced-c-Fos protein in limbic brain structures in the rat. Neurosci Lett 215, 165-168.
123. Travagli, R. A., Hermann, G. E., Browning, K. N., and Rogers, R. C., 2006. Brainstem circuits regulating gastric function. Annu Rev Physiol 68, 279-305.
124. Trzebski, A., Lipski, J., Majcherczyk, S., Szulczyk, P., and Chruscielewski, L., 1975. Central organization and interaction of the carotid baroreceptor and chemoreceptor sympathetic reflex. Brain Res 87, 227-237.
125. Uchida, S., Kagitani, F., and Hotta, H., 2008. Mechanism of the reflex inhibition of heart rate elicited by acupuncture-like stimulation in anesthetized rats. Autonomic neuroscience : basic & clinical 143, 12-19.
126. Van Hees, J., and Gybels, J., 1981. C nociceptor activity in human nerve during painful and non painful skin stimulation. J Neurol Neurosurg Psychiatry 44, 600-607.
127. Vizzard, M. A., Brisson, M., and de Groat, W. C., 2000. Transneuronal labeling of neurons in the adult rat central nervous system following inoculation of pseudorabies virus into the colon. Cell Tissue Res 299, 9-26.
128. Vizzard, M. A., Erickson, V. L., Card, J. P., Roppolo, J. R., and de Groat, W. C., 1995. Transneuronal labeling of neurons in the adult rat brainstem and spinal cord after injection of pseudorabies virus into the urethra. J Comp Neurol 355, 629-640.
129. Wakai, K., Ohtori, S., Yamashita, M., Yamauchi, K., Inoue, G., Suzuki, M., Orita, S., Eguchi, Y., Ochiai, N., Kishida, S., Takaso, M., Fukui, Y., Hayashi, Y., Aoki, Y., Kuniyoshi, K., Nakamura, J., Ishikawa, T., Arai, G., Miyagi, M., Kamoda, H., and Takahashi, K., 2010. Primary sensory neurons with dichotomizing axons projecting to the facet joint and the low back muscle in rats. J Orthop Sci 15, 402-406.
130. Wang, L., Martinez, V., Larauche, M., and Tache, Y., 2009. Proximal colon distension induces Fos expression in oxytocin-, vasopressin-, CRF- and catecholamines-containing neurons in rat brain. Brain Res 1247, 79-91.
131. Weiss, M. L., and Chowdhury, S. I., 1998. The renal afferent pathways in the rat: a pseudorabies virus study. Brain Res 812, 227-241.
132. Wesselmann, U., and Lai, J., 1997. Mechanisms of referred visceral pain: uterine inflammation in the adult virgin rat results in neurogenic plasma extravasation in the skin. Pain 73, 309-317.
133. Whitnall, M. H., 1988. Distributions of pro-vasopressin expressing and pro-vasopressin deficient CRH neurons in the paraventricular hypothalamic nucleus of colchicine-treated normal and adrenalectomized rats. J Comp Neurol 275, 13-28.
134. Wiesel, O., Toth, I. E., Boldogkoi, Z., Hornyak, A., Bokor, V., Halasz, B., and Gerendai, I., 2004. Comparison of transsynaptic viral labeling of central nervous system structures from the uterine horn in virgin, pregnant, and lactating rats. Microsc Res Tech 63, 244-252.
135. Williamson, R. T., 1893. The Direct Pyramidal Tracts of the Spinal Cord. Br Med J 1, 946-947.
136. World Health Organization. Regional Office for the Western Pacific., 1993. Standard acupuncture nomenclature : a brief explanation of 361 classical acupuncture point names and their multilingual comparative list. WHO Regional Office for the Western Pacific, Manila.
137. Xu, R. D., and Li, H., 2005. [Conception of Ashi points]. Zhongguo Zhen Jiu 25, 281-283.
138. Yang, G. F., Ji, C. N., and Yuan, S. Q., 2012. [Modern medical explanation on Ashi points]. Zhongguo Zhen Jiu 32, 180-182.
139. Zhuo, M., and Gebhart, G. F., 1990. Characterization of descending inhibition and facilitation from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat. Pain 42, 337-350.
140. Zhuo, M., and Gebhart, G. F., 1992. Characterization of descending facilitation and inhibition of spinal nociceptive transmission from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat. J Neurophysiol 67, 1599-1614.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-07-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-07-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw