系統識別號 U0026-0107201312202600
論文名稱(中文) 混合有限差分/殘差修正法於脈衝雷射加工熱傳分析
論文名稱(英文) Application of Finite Difference/ Residual Correction Method to Pulse Laser Heating Process
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 劉英涵
研究生(英文) Ying-Han Liu
學號 n16014182
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-陳朝光
中文關鍵字 最大值原理  有限差分法  殘差修正法  脈衝雷射加工 
英文關鍵字 maximum principle  finite difference method  residual correction method  pulse laser heating 
中文摘要 本研究以微分方程式最大值原理為主要觀念,建構理論,來求解微分方程式之較大、較小近似解,及數值解的誤差範圍,而用於探討的問題為脈衝雷射應用於皮膚的熱傳現象,在熱對流的邊界下,利用有限差分法來離散暫態熱傳方程式,再搭配殘差修正法,可求得相對於物體溫度場分佈之正確解的近似上下限。
英文摘要 The maximum principle of the differential equation is used as the main concept to form the complete structure in this study. Based on this, the upper and lower approximate solutions of the exact solution and their error range can be obtained. This study focused on the heating process of a pulse laser. Under boundary conditions of convection, the transient heat transfer equation is discretized by using the finite difference method. Then, the approximate solution of the workpiece temperature field distribution can be obtained by residual correction. The upper and lower approximate solutions is achieved and the error range can be analyzed.
Finite difference method is used in the early period. It is simple to operate and has good accuracy in low-order equations. A good point for residual correction method is analyzing the error according to the mean value of the upper and lower approximate solutions. It can effectively deal with the defects resulting from increasing the numbers of grids or approximate functions when using traditional numerical methods. This methodology can reduce the computing time, save the memory, and promote the numerical accuracy outstandingly. Predictably, it will achieve high academic value and practicability in numerical research in the future.
In this dissertation, an application of tissue treatment by using pulse laser is simulated and the heat transfer distributions of the surface and interior are demonstrated. At first, using one dimensional equation to simulate. Then using tow dimensional equation in order to close to the real situation. Let heat transfer distributions can be used in treatment by adjusting parameters of pulse laser intensity. Therefore, the proposed heat transfer distribution can be used as a prior simulation of clinical treatment.
論文目次 摘要 I
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
符號表 X
第一章 緒論 1
1.1 研究動機及其背景 1
1.1.1 殘差修正法 1
1.1.2 雷射加工 3
1.1.3 皮膚組織 9
1.2 文獻回顧 11
1.2.1 殘差修正法 11
1.2.2 脈衝雷射加工 13
1.3 本文架構 15
第二章 最大值原理及其單調性 16
2.1 前言 16
2.2 一維最大值原理及其單調性 17
2.2.1 一維最大值原理之基礎理論 17
2.2.2 邊界值問題之單調性 18
2.2.3 初始值問題之單調性 21
2.2.4 非線性問題之單調性 24
2.3 偏微分方程最大值原理及其單調性 25
2.3.1 橢圓型方程最大值原理 26
2.3.2 橢圓型偏微分方程式之單調性 26
第三章 使用有限差分法於殘差修正法步驟 30
3.1 有限差分法 30
3.2 微分方程最大值原理與有限差分法之關聯 33
3.3 殘差修正法 37
3.4 殘差修正法之解題步驟 40
第四章 實例分析 43
4.1 前言 43
4.2 一維暫態熱傳問題 44
4.3 二維暫態熱傳問題 59
第五章 結論與建議 73
5.1 結論 73
5.2 建議及展望 75
參考文獻 76
自述. 80
參考文獻 Ahlbrg, J.H., Nilson, E.N., and Walsh, J.L., The Theory of Splines and Their Application, Academic Press, 1967.
Aparecido, J.B., and Cotta, R.M., “Improved One-Dimensional Fin Solutions,” Heat Transfer Engineering, vol. 11, no. 1, pp. 49-59, 1990.
Aziz, A., and Nguyen, H., “Two-dimension performance of convecting-radiating fins of different profile shapes,” Warme- und Stoffubertragung, vol. 28, pp.481-487, 1993
Aziz, A., and Lunardini. V. J., “Multidimensional Steady Conduction in Convecting, Radiation, and Convecting-Radiating Fins and Fin Assemblies,” Heat transfer Engineering, vol. 16, no.3, pp.32-63, 1995
Arauzo, I., Campo, A., and Cortes, C., “Quick Estimate of the Heat Transfer Characteristics of Annular Fins of Hyperbolic Profile with the Power Series Method,” Applied Thermal Engineering, vol. 25, pp. 623-634, 2005.
Basto, M., Semiao, V., and Calheiros, F.L., “Numerical Study of Modified Adomian’s Method Applied to Burgers Equation,” Journal of Computational and Applied Mathematics, vol. 206, pp. 927-949, 2007.
Bulgakov, A.V., and Bulgakova, N.M., “Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma,” Quantum Electronics, vol. 29, pp. 433-437, 1999.
Coakley, P.S., A High-Order B-Spline Based Panel Method for Unsteady, Nonlinear, Three-Dimensional Free Surface Flows, Ph. D. Dissertation, University of California, Berkeley, Dept. of Naval Architecture and Offshore Engineering, May 1995.
Chiu, C.H., and Chen, C.K., “A Decomposition Method for Solving the Convective Longitudinal Fins with Variable Thermal Conductivity,” International Journal of Heat and Mass Transfer, vol. 45, pp. 2067-2075, 2002.
Chang, C.L., and Lee, Z.Y., “Applying the Double Side Method of Weighted Residual for Solving Circle Plate Large Deformation Problems,” Applied Mathematics and Computation, vol. 141, pp. 477-490, 2003.
Chang, C.L., and Lee, Z.Y., “Applying the Double Side Method to Solution Nonlinear Pendulum Problem,” Applied Mathematics and Computation, vol. 149, pp. 613-624, 2004.
De Boor, C., A Practical Guide to Splines, Springer-Verlag, New York, 1978.
Greville, T. N. E., Theory and Applications of Spline Functions, Academic Press, New York, 1969.
Jang, B., “Exact Solutions to One Dimensional Non-Homogeneous Parabolic Problems by the Homogeneous Adomian Decomposition Method,” Applied Mathematics and Computation, vol. 186, pp. 969-979, 2007.
Klaus, Finite Element Methods with B-Splines, Society for Industrial and Applied Mathematics, Philadelphia, 2003.
Layeni, O.P., “Remark on Modifications of Adomian Decomposition Method,” Applied Mathematics and Computation, vol. 197, pp. 167-171, 2008.
Mokheimer and Esmail, M.A., “Performance of Annular Fins with Different Profiles Subject to Variable Heat Coefficient,” International Journal of Heat and Mass Transfer, vol. 45, pp. 3631-3642, 2002.
Mohamed El-Gamel, ”Sinc and the numerical solution of fifth-order boundary value problems,” Applied Mathematics and Computation, vol. 187, pp. 1417-1433, 2007
Mladen Mestrovic, “The modified decomposition method for eighth-order boundary value problems,” Applied Mathematics and Computation, vol. 188, pp. 1437-1444, 2007
Protter, M.H., and Weinberger, H.F., Maximum Principles in Differential Equations, Prentice-Hall, New Jersey, 1967.
Rubin, S.G., and Graves, R.A., “Viscous Flow Solution with a Cubic Spline Approximation,” Computers and Fluids, vol. 1, no.5, pp. 1-36, 1975.
Rubin, S.G., and Khosla, P.K., “Higher-Order Numerical Solution Using Cubic Splines,” AIAA Journal, vol. 14, pp. 851-858, 1976.
Rubin, S.G., and Khosla, P.K., “Polynomial Interpolation Methods for Viscous Flow Calculation,” Journal of Computational Physics, vol. 24, pp. 217-244, 1977.
Schneider, P.J., Conduction Heat Transfer, Addison-Wisely, Cambridge, 1955.
Schryer, N.L., A Tutorial on Garlerkin’s Method, Using B-Splines, for Solving Differential Equations, Bell Laboratories, New Jersey, 1976.
Sperb, R.P., Maximum Principles and Their Applications, Academic Press, New York, 1981.
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-15起公開。

  • 如您有疑問,請聯絡圖書館