進階搜尋


 
系統識別號 U0026-0105201210352800
論文名稱(中文) 研究凝血酶調節素在單核球及巨噬細胞的功能
論文名稱(英文) Study on the function of thrombomodulin in monocyte/macrophage
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 100
學期 2
出版年 101
研究生(中文) 馬志遠
研究生(英文) Chih-Yuan Ma
學號 S58961599
學位類別 博士
語文別 英文
論文頁數 86頁
口試委員 指導教授-吳華林
口試委員-施桂月
口試委員-吳昭良
口試委員-張文粲
口試委員-林淑華
口試委員-洪文俊
中文關鍵字 敗血症  凝血酶調節素  單核球  巨噬細胞 
英文關鍵字 sepsis  thrombomodulin  monocyte  macrophage 
學科別分類
中文摘要 敗血症起因於宿主對於細菌感染產生極高的發炎反應,進而造成器官衰竭和死亡。凝血酶調節素屬於第一型穿膜醣蛋白,能夠與凝血酶結合並活化蛋白質C,進而終止凝血反應。文獻指出單核球及巨噬細胞能夠表現凝血酶調節素,但對於凝血酶調節素在單核球及巨噬細胞中的功能並不清楚。在此研究中,我們利用核糖核酸干擾技術以及特定組織基因剔除小鼠來研究凝血酶調節素在單核球及巨噬細胞中所扮演的角色。我們發現在單核球中的凝血酶調節素能夠透過其類凝集素區域與革蘭氏陰性菌細胞壁中的脂多醣結合,並且抑制凝血酶調節素在人類單核球中的表現,可以減弱脂多醣所引起的發炎激素產生以及訊息傳遞。此外,凝血酶調節素與脂多醣在細胞表面上結合並且與CD14/類鐸受體4/骨髓分化因子-2形成複合體。我們亦發現抑制單核球中凝血酶調節素的表現會降低革蘭氏陰性菌克雷白氏肺炎桿菌所引起的細胞激素產生,顯示單核球中的凝血酶調節素對於革蘭氏陰性菌所引起的發炎反應扮演著重要的角色。為了研究單核球中的凝血酶調節素在體內的功能,我們建立了特定在髓細胞剔除凝血酶調節素的小鼠,並且發現在髓細胞缺乏凝血酶調節素的小鼠在刺激克雷白氏肺炎桿菌及闌尾結紮穿刺術後,發炎反應以及細菌擴散等敗血症狀能夠有效的被抑制,並且具有較高的存活率,而其被抑制的細菌擴散是因為早期嗜中性白血球的浸潤增加所造成。我們也觀察到缺乏凝血酶調節素的巨噬細胞具有較高的化學趨性,起因於趨化素受體在缺乏凝血酶調節素的巨噬細胞中表現增加,進而造成與細胞遷移相關的訊息傳遞增強以及增加纖維性肌動蛋白聚合的能力。我們亦發現在缺乏凝血酶調節素的巨噬細胞中巨噬細胞甘露醣受體以及介質白素-10的表現也會增加,顯示其具有M2巨噬細胞的特性。此外,黑色素瘤的生長會在髓細胞缺乏凝血酶調節素的小鼠中有增加的趨勢,且此現象與巨噬細胞的滲透能力增加有關。因此,綜合以上的結果,凝血酶調節素不僅能參與在脂多醣及革蘭氏陰性菌所引起的發炎反應,也會調控巨噬細胞的化學趨性能力,進而影響黑色素瘤的生長。
英文摘要 Sepsis results from host hyperinflammatory response to bacterial infection, causing multiple organ failure and high mortality. Thrombomodulin (TM), a type I transmembrane glycoprotein, functions as an anticoagulant factor by forming complex with thrombin. TM-thrombin complex further activates protein C to terminate blood coagulation. Although the expression of TM in monocytes and macrophages has been found, the function of monocytic TM is still unclear. In this study, we used the RNA interference technique and tissue-specific knockout mice to investigate the role of TM in monocytes and macrophages in vitro and in vivo. We found that monocytic membrane-bound TM interacted with Gram-negative bacterial cell wall component, lipopolysaccharide (LPS), through its lectin-like domain, and TM knockdown in human monocytic cells attenuated LPS-induced cytokine production and signaling pathways. Furthermore, monocytic TM bound to LPS on cell surface and interacted with CD14/Toll-like receptor 4/myeloid differentiation factor-2 complex. We also found that monocytic TM knockdown reduced cytokine production induced by Gram-negative bacteria Klebsiella pneumoniae, suggesting that monocytic TM plays an important role in Gram-negative bacteria-induced inflammation. To investigate the role of monocytic TM in vivo, the myeloid-specific TM-deficient mice were established and were found to display improved survival that resulted from the attenuation of septic syndrome, including reduced systemic inflammatory response and resistance to bacterial dissemination, after K. pneumoniae infection or cecal ligation and puncture surgery. The inhibition of bacterial dissemination in mice with a deficiency of myeloid TM may be caused by the early increase in neutrophil infiltration. Increased macrophage chemotactic ability, resulting from elevated activation of migration-related signaling pathways and F-actin polymerization, was also observed in TM-deficient macrophages isolated from LysMcre/TMflox/flox mice. Up-regulated expression of chemokine receptors in TM-deficient macrophages may be the cause of enhanced chemotaxis. Notably, TM-deficient macrophages displayed M2-like polarization, since up-regulated expression of macrophage mannose receptor and interleukin-10 was found in TM-deficient macrophages. Enhanced melanoma tumor growth in LysMcre/TMflox/flox mice may result from the increase in macrophage infiltration. In conclusion, these data suggest that TM not only participates in LPS- and Gram-negative bacteria-induced inflammation but also regulates macrophage chemotaxis in melanoma tumor growth.
論文目次 1.中文摘要 1
2.Abstract 3
3.Acknowledgement 5
4.List of tables 8
5.List of figures 9
6.Abbreviations 11
7.Introduction 13
I.Thrombomodulin (TM) 13
II.Monocyte and macrophage 14
III.Macrophage-related diseases 15
IV.TM in monocyte and macrophage 16
8.Objective of this study 17
9.Materials and methods 18
I.Cell culture 18
II.Biotinylated LPS pull-down assay 19
III.Preparation of lentivirus-delivered shRNA and
transduction 20
IV.Measurement of cytokines and vascular endothelial
growth factor (VEGF) 21
V.LPS-induced signaling pathways 22
VI.Generation of myeloid-specific TM-deficient mice
(LysMcre/TMflox/flox mice) 23
VII.Co-immunoprecipitation and immunofluorescence
assays 24
VIII.Flow cytometry 26
IX.Experimental sepsis models 28
X.Chemotaxis 29
XI.Analysis of migration-related signaling pathways
and F-actin polymerization 29
XII.Reverse transcription-PCR (RT-PCR) 30
XIII.Measurement of melanoma tumor growth and
angiogenesis 31
XIV.Statistical analyses 31
10.Results 32
I.LPS binds to the lectin-like domain of the
monocytic membrane-bound TM 32
II.TM knockdown in human monocytic cells suppresses
LPS-induced signaling pathways and cytokine
production 33
III.Monocytic TM knockdown specifically reduces LPS-
and Gram-negative bacteria-induced cytokine
production 34
IV.Establishment of myeloid-specific TM-deficient
mice 35
V.Monocytic TM interacts with the CD14/TLR4/MD-2
complex and facilitates LPS binding to cell
surfaces 36
VI.Improved survival and reduced septic syndrome are
observed in LysMcre/TMflox/flox mice after K.
pneumoniae or CLP stimulation 38
VII.Increased chemotactic ability is observed in TM-
deficient macrophages 40
VIII.Migration-related signaling pathways and
F-actin polymerization are elevated in
TM-deficient macrophages 41
IX.TM-deficient macrophages display up-regulated
expression of chemokine receptors 42
X.MMR expression and IL-10 secretion are increased
in TM-deficient macrophages 43
XI.Growth, angiogenesis, and macrophage content in
melanoma tumor of LysMcre/TMflox/flox mice are
enhanced 44
11.Discussion 46
12.References 52
13.Tables 59
14.Figures 60
15.Publication list 83
16.Appendix I. The domain structure of TM. 85
17.Curriculum vitae 86
參考文獻 1. Weiler H, Isermann BH. Thrombomodulin. J Thromb Haemost.
2003;1:1515-1524
2. Esmon CT, Owen WG. Identification of an endothelial cell
cofactor for thrombin-catalyzed activation of protein c.
Proc Natl Acad Sci U S A. 1981;78:2249-2252
3. Owen WG, Esmon CT. Functional properties of an
endothelial cell cofactor for thrombin-catalyzed
activation of protein c. J Biol Chem. 1981;256:5532-5535
4. Dittman WA, Majerus PW. Structure and function of
thrombomodulin: A natural anticoagulant. Blood.
1990;75:329-336
5. McCachren SS, Diggs J, Weinberg JB, Dittman WA.
Thrombomodulin expression by human blood monocytes and by
human synovial tissue lining macrophages. Blood.
1991;78:3128-3132
6. Conway EM, Nowakowski B, Steiner-Mosonyi M. Human
neutrophils synthesize thrombomodulin that does not
promote thrombin-dependent protein c activation. Blood.
1992;80:1254-1263
7. Raife TJ, Lager DJ, Madison KC, Piette WW, Howard EJ,
Sturm MT, Chen Y, Lentz SR. Thrombomodulin expression by
human keratinocytes. Induction of cofactor activity
during epidermal differentiation. J Clin Invest.
1994;93:1846-1851
8. Healy AM, Rayburn HB, Rosenberg RD, Weiler H. Absence of
the blood-clotting regulator thrombomodulin causes
embryonic lethality in mice before development of a
functional cardiovascular system. Proc Natl Acad Sci U S
A. 1995;92:850-854
9. Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken
H, De Vriese A, Weitz JI, Weiler H, Hellings PW,
Schaeffer P, Herbert JM, Collen D, Theilmeier G. The
lectin-like domain of thrombomodulin confers protection
from neutrophil-mediated tissue damage by suppressing
adhesion molecule expression via nuclear factor kappab
and mitogen-activated protein kinase pathways. J Exp Med.
2002;196:565-577
10.Van de Wouwer M, Plaisance S, De Vriese A, Waelkens E,
Collen D, Persson J, Daha MR, Conway EM. The lectin-like
domain of thrombomodulin interferes with complement
activation and protects against arthritis. J Thromb
Haemost. 2006;4:1813-1824
11.Shi CS, Shi GY, Hsiao SM, Kao YC, Kuo KL, Ma CY, Kuo CH,
Chang BI, Chang CF, Lin CH, Wong CH, Wu HL. Lectin-like
domain of thrombomodulin binds to its specific ligand
lewis y antigen and neutralizes lipopolysaccharide-
induced inflammatory response. Blood. 2008;112:3661-3670
12.Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu
HL. Thrombomodulin-mediated cell adhesion: Involvement of
its lectin-like domain. J Biol Chem. 2003;278:46750-46759
13.Kao YC, Wu LW, Shi CS, Chu CH, Huang CW, Kuo CP, Sheu HM,
Shi GY, Wu HL. Downregulation of thrombomodulin, a novel
target of snail, induces tumorigenesis through
epithelial-mesenchymal transition. Mol Cell Biol.
2010;30:4767-4785
14.Shi CS, Shi GY, Chang YS, Han HS, Kuo CH, Liu C, Huang
HC, Chang YJ, Chen PS, Wu HL. Evidence of human
thrombomodulin domain as a novel angiogenic factor.
Circulation. 2005;111:1627-1636
15.Wei HJ, Li YH, Shi GY, Liu SL, Chang PC, Kuo CH, Wu HL.
Thrombomodulin domains attenuate atherosclerosis by
inhibiting thrombin-induced endothelial cell activation.
Cardiovascular research. 2011;92:317-327
16.Mosser DM, Edwards JP. Exploring the full spectrum of
macrophage activation. Nat Rev Immunol. 2008;8:958-969
17.Medzhitov R. Toll-like receptors and innate immunity. Nat
Rev Immunol. 2001;1:135-145
18.Trinchieri G, Sher A. Cooperation of toll-like receptor
signals in innate immune defence. Nat Rev Immunol.
2007;7:179-190
19.Robinson MJ, Sancho D, Slack EC, LeibundGut-Landmann S,
Reis e Sousa C. Myeloid c-type lectins in innate
immunity. Nat Immunol. 2006;7:1258-1265
20.Mantovani A, Sozzani S, Locati M, Allavena P, Sica
ACINTIM, author reply P. Macrophage polarization: Tumor-
associated macrophages as a paradigm for polarized m2
mononuclear phagocytes. Trends in immunology.
2002;23:549-555
21.Gordon S. Alternative activation of macrophages. Nat Rev
Immunol. 2003;3:23-35
22.Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A,
Locati M. The chemokine system in diverse forms of
macrophage activation and polarization. Trends in
immunology. 2004;25:677-686
23.Gordon S, Martinez FO. Alternative activation of
macrophages: Mechanism and functions. Immunity.
2010;32:593-604
24.Lawrence T, Natoli G. Transcriptional regulation of
macrophage polarization: Enabling diversity with
identity. Nat Rev Immunol. 2011;11:750-761
25.Solinas G, Germano G, Mantovani A, Allavena P. Tumor-
associated macrophages (tam) as major players of the
cancer-related inflammation. Journal of leukocyte
biology. 2009;86:1065-1073
26.van der Poll T, Opal SM. Host-pathogen interactions in
sepsis. Lancet Infect Dis. 2008;8:32-43
27.Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro
MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A.
Macrophage polarization in tumour progression. Seminars
in cancer biology. 2008;18:349-355
28.Hansson GK, Hermansson A. The immune system in
atherosclerosis. Nat Immunol. 2011;12:204-212
29.Singer AJ, Clark RA. Cutaneous wound healing. The New
England journal of medicine. 1999;341:738-746
30.Cohen J. The immunopathogenesis of sepsis. Nature.
2002;420:885-891
31.Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors,
mediators, and mechanisms involved in bacterial sepsis
and septic shock. Clinical microbiology reviews.
2003;16:379-414
32.Torisu H, Ono M, Kiryu H, Furue M, Ohmoto Y, Nakayama J,
Nishioka Y, Sone S, Kuwano M. Macrophage infiltration
correlates with tumor stage and angiogenesis in human
malignant melanoma: Possible involvement of tnfalpha and
il-1alpha. International journal of cancer. Journal
international du cancer. 2000;85:182-188
33.Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J,
Harris AL. Association of macrophage infiltration with
angiogenesis and prognosis in invasive breast carcinoma.
Cancer research. 1996;56:4625-4629
34.Hanada T, Nakagawa M, Emoto A, Nomura T, Nasu N, Nomura
Y. Prognostic value of tumor-associated macrophage count
in human bladder cancer. International journal of urology
: official journal of the Japanese Urological
Association. 2000;7:263-269
35.Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H,
Ito Y, Inamura T, Ikezaki K, Fukui M, Iwaki T, Kuwano M.
Macrophage infiltration and heme oxygenase-1 expression
correlate with angiogenesis in human gliomas. Clinical
cancer research : an official journal of the American
Association for Cancer Research. 1999;5:1107-1113
36.Salvesen HB, Akslen LA. Significance of tumour-associated
macrophages, vascular endothelial growth factor and
thrombospondin-1 expression for tumour angiogenesis and
prognosis in endometrial carcinomas. International
journal of cancer. Journal international du cancer.
1999;84:538-543
37.Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of
myeloid cells in the promotion of tumour angiogenesis.
Nat Rev Cancer. 2008;8:618-631
38.Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW.
Monocyte/macrophage infiltration in tumors: Modulators of
angiogenesis. Journal of leukocyte biology. 2006;80:1183-
1196
39.Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S,
Zammataro L, Pasqualini F, Nebuloni M, Chiabrando C,
Mantovani A, Allavena P. Tumor-conditioned macrophages
secrete migration-stimulating factor: A new marker for
m2-polarization, influencing tumor cell motility. J
Immunol. 2010;185:642-652
40.Rocha VZ, Libby P. Obesity, inflammation, and
atherosclerosis. Nat Rev Cardiol. 2009;6:399-409
41.Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata
M. Decreased atherosclerosis in mice deficient in both
macrophage colony-stimulating factor (op) and
apolipoprotein e. Proc Natl Acad Sci U S A. 1995;92:8264-
8268
42.Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion
formation in ccr2-/- mice reveals a role for chemokines
in the initiation of atherosclerosis. Nature.
1998;394:894-897
43.Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P,
Rollins BJ. Absence of monocyte chemoattractant protein-1
reduces atherosclerosis in low density lipoprotein
receptor-deficient mice. Molecular cell. 1998;2:275-281
44.Combadiere C, Potteaux S, Gao JL, Esposito B, Casanova S,
Lee EJ, Debre P, Tedgui A, Murphy PM, Mallat Z. Decreased
atherosclerotic lesion formation in cx3cr1/apolipoprotein
e double knockout mice. Circulation. 2003;107:1009-1016
45.Veillard NR, Kwak B, Pelli G, Mulhaupt F, James RW,
Proudfoot AE, Mach F. Antagonism of rantes receptors
reduces atherosclerotic plaque formation in mice.
Circulation research. 2004;94:253-261
46.Grey ST, Hancock WW. A physiologic anti-inflammatory
pathway based on thrombomodulin expression and generation
of activated protein c by human mononuclear phagocytes. J
Immunol. 1996;156:2256-2263
47.Kim HK, Kim JE, Chung J, Kim YT, Kang SH, Han KS, Cho HI.
Lipopolysaccharide down-regulates the thrombomodulin
expression of peripheral blood monocytes: Effect of serum
on thrombomodulin expression in the thp-1 monocytic cell
line. Blood Coagul Fibrinolysis. 2007;18:157-164
48.Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I.
Conditional gene targeting in macrophages and
granulocytes using lysmcre mice. Transgenic Res.
1999;8:265-277
49.Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global
double-fluorescent cre reporter mouse. Genesis.
2007;45:593-605
50.Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA.
Immunodesign of experimental sepsis by cecal ligation and
puncture. Nature protocols. 2009;4:31-36
51.Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global
double-fluorescent cre reporter mouse. Genesis
2007;45:593-605
52.Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide
induces physical proximity between cd14 and toll-like
receptor 4 (tlr4) prior to nuclear translocation of nf-
kappa b. J Immunol. 2000;165:3541-3544
53.da Silva Correia J, Soldau K, Christen U, Tobias PS,
Ulevitch RJ. Lipopolysaccharide is in close proximity to
each of the proteins in its membrane receptor complex.
Transfer from cd14 to tlr4 and md-2. J Biol Chem.
2001;276:21129-21135
54.Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira
S, Kitamura T, Kosugi A, Kimoto M, Miyake K. Essential
role of md-2 in lps responsiveness and tlr4 distribution.
Nat Immunol. 2002;3:667-672
55.Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S,
Silver J, Stewart CL, Goyert SM. Resistance to endotoxin
shock and reduced dissemination of gram-negative bacteria
in cd14-deficient mice. Immunity. 1996;4:407-414
56.Haziot A, Hijiya N, Gangloff SC, Silver J, Goyert SM.
Induction of a novel mechanism of accelerated bacterial
clearance by lipopolysaccharide in cd14-deficient and
toll-like receptor 4-deficient mice. J Immunol.
2001;166:1075-1078
57.Takagi T, Taguchi O, Toda M, Ruiz DB, Bernabe PG,
D'Alessandro-Gabazza CN, Miyake Y, Kobayashi T, Aoki S,
Chiba F, Yano Y, Conway EM, Munesue S, Yamamoto Y,
Yamamoto H, Suzuki K, Takei Y, Morser J, Gabazza EC.
Inhibition of allergic bronchial asthma by thrombomodulin
is mediated by dendritic cells. American journal of
respiratory and critical care medicine. 2011;183:31-42
58.Grimshaw MJ, Balkwill FR. Inhibition of monocyte and
macrophage chemotaxis by hypoxia and inflammation--a
potential mechanism. European journal of immunology.
2001;31:480-489
59.Zhang B, Ma Y, Guo H, Sun B, Niu R, Ying G, Zhang N. Akt2
is required for macrophage chemotaxis. European journal
of immunology. 2009;39:894-901
60.Allen WE, Jones GE, Pollard JW, Ridley AJ. Rho, rac and
cdc42 regulate actin organization and cell adhesion in
macrophages. Journal of cell science. 1997;110:707-720
61.Ishii H, Majerus PW. Thrombomodulin is present in human
plasma and urine. J Clin Invest. 1985;76:2178-2181
62.Iba T, Yagi Y, Kidokoro A, Fukunaga M, Fukunaga T.
Increased plasma levels of soluble thrombomodulin in
patients with sepsis and organ failure. Surg Today.
1995;25:585-590
63.Medzhitov R. Origin and physiological roles of
inflammation. Nature. 2008;454:428-435
64.Daubeuf B, Mathison J, Spiller S, Hugues S, Herren S,
Ferlin W, Kosco-Vilbois M, Wagner H, Kirschning CJ,
Ulevitch R, Elson G. Tlr4/md-2 monoclonal antibody
therapy affords protection in experimental models of
septic shock. J Immunol. 2007;179:6107-6114
65.Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L,
Worthen GS, Albelda SM. Polarization of tumor-associated
neutrophil phenotype by tgf-beta: "N1" versus "n2" tan.
Cancer Cell. 2009;16:183-194
66.Gregory AD, Houghton AM. Tumor-associated neutrophils:
New targets for cancer therapy. Cancer research.
2011;71:2411-2416
67.van Leeuwen M, Gijbels MJ, Duijvestijn A, Smook M, van de
Gaar MJ, Heeringa P, de Winther MP, Tervaert JW.
Accumulation of myeloperoxidase-positive neutrophils in
atherosclerotic lesions in ldlr-/- mice.
Arteriosclerosis, thrombosis, and vascular biology.
2008;28:84-89
68.Baetta R, Corsini A. Role of polymorphonuclear
neutrophils in atherosclerosis: Current state and future
perspectives. Atherosclerosis. 2010;210:1-13
69.Roger T, Froidevaux C, Le Roy D, Reymond MK, Chanson AL,
Mauri D, Burns K, Riederer BM, Akira S, Calandra T.
Protection from lethal gram-negative bacterial sepsis by
targeting toll-like receptor 4. Proc Natl Acad Sci U S A.
2009;106:2348-2352
70.Pillay J, den Braber I, Vrisekoop N, Kwast LM, de Boer
RJ, Borghans JA, Tesselaar K, Koenderman LCINBJ, Pmid. In vivo labeling with 2h2o reveals a human neutrophil
lifespan of 5.4 days. Blood. 2010;116:625-627
71.Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD.
Granulocyte-macrophage colony-stimulating factor (csf)
and macrophage csf-dependent macrophage phenotypes
display differences in cytokine profiles and
transcription factor activities: Implications for csf
blockade in inflammation. J Immunol. 2007;178:5245-5252
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-05-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-05-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw