進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0102201910325400
論文名稱(中文) 高靈敏度動態電壓補償射頻獵能器
論文名稱(英文) A Dynamic Body Bias CMOS Rectifier for High Sensitivity RF Energy Harvester
校院名稱 成功大學
系所名稱(中) 電腦與通信工程研究所
系所名稱(英) Institute of Computer & Communication
學年度 107
學期 1
出版年 108
研究生(中文) 林詠章
研究生(英文) Yung-Chang Lin
學號 Q36041436
學位類別 碩士
語文別 英文
論文頁數 67頁
口試委員 指導教授-鄭光偉
口試委員-魏嘉玲
口試委員-張順志
口試委員-蔡宗亨
中文關鍵字 射頻獵能  高靈敏度  動態電壓補償  交叉耦合  天線與整流器共同設計 
英文關鍵字 RF energy harvesting  high sensitivity  complementary diode  co-design with antenna and rectifier 
學科別分類
中文摘要 本論文提出了一個新架構的整流器,應用於900 MHz 的射頻獵能器。使用了在電晶體基端加入了電壓補償的技術,並改善了在放電時漏電流太大的問題和增加了充電時的順向電流,最後達到了高靈敏度的目標。在整體獵能電路的功率轉換效率,也使用了天線與整流器共同設計的方式,減少額外阻抗匹配電路的影響。
在論文第一章介紹了目前獵能電路的應用與本篇論文的設計考量,第二章會討論獵能電路的系統架構與參數定義,第三章會比較一些參考的獵能架構的優缺點,第四章提出了本論文的架構與設計方法,第五章為量測考量與結果。本論文使用了兩種無線量測,第一種為使用市售天線的50Ω阻抗匹配,第二種為天線與整流器共同設計阻抗匹配。在使用市售50Ω天線量測結果下,整體獵能電路在輸入功率為-19.4 dBm時,可提供0.2 MΩ負載1 V之輸出電壓,功率轉換效率為 43.6 %。使用天線與整流器共同設計阻抗匹配量測結果在0.2 MΩ負載下,輸入功率為-18 dBm。跟實驗室之前獵能器版本比較下有明顯改善,在同樣為1 MΩ負載下,功率轉換效率從15 %提升至43.6 %,操作頻率為900 MHz。晶片面積為0.94×0.645 〖mm〗^2,印刷電路板包括天線之面積為60×40 〖mm〗^2。
英文摘要 This thesis presents a novel architecture rectifier for 900 MHz RF energy harvester applications. In order to achieve the goal of high sensitivity, this structure adds the compensation voltage to the bulk side of the MOS transistor to reduce the leakage current at discharging phase and increase the forward current at charging phase. In the power conversion efficiency (PCE) of the overall RF energy harvester, the co-design antenna with the rectifier can reduce the parasitic from the additional impedance matching circuit.
Chapter 1 introduce the development of energy harvester application and the design consideration of the RF energy harvester system. The system architecture and parameter definition of the RF energy harvesters are discussed in chapter 2. Chapter 3 compared the advantages and disadvantages of the previous architecture of the CMOS rectifier. The implementation of the proposed structure and the design condition are presented in chapter 4. Chapter 5 shows the testing setups and the measurement results. There are two wireless measurement setup. First, a commercial 50 Ω antenna impedance matching network. Secondly, a co-design antenna with rectifier. At the commercial 50 Ω antenna measurement, the harvester system has 1 V output voltage and 0.2 MΩ load at an input power of -19.4 dBm. The power conversion efficiency (PCE) is 43.6 %. The co-design antenna wireless measurement achieves -18 dBm with 0.2 MΩ load. Significantly improved compared to the previous work of the lab. The PCE increased from 15% to 43.6 % under the same 1 MΩ load. The chip area is 0.94 × 0.645 〖mm〗^2, and the area of all PCB (Printed Circuit Board) while included the antenna is 60 × 40 mm2.
論文目次 Chapter 1 Introduction 1
1.1 MOTIVATION 1
1.2 APPLICATION OF THE RF ENERGY HARVESTING 2
1.2.1 Radio Frequency Identification (RFID) 2
1.2.2 Wireless Sensor Networks (WSNs) 3
1.3 RESEARCH GOAL 6
1.4 THESIS ORGANIZATION 7
Chapter 2 Systems of RF Energy Harvester 8
2.1 ARCHITECTURE OF RF ENERGY HARVESTING SYSTEM 8
2.1.1 Antenna and Matching Network 8
2.1.2 RF CMOS Rectifier 10
2.1.3 Power Management 10
2.2 SPECIFICATIONS OF RF ENERGY HARVESTER 11
2.2.1 Input Impedance 11
2.2.2 Sensitivity 13
2.2.3 Voltage Boost 14
2.2.4 Power Conversion Efficiency (PCE) 15
Chapter 3 Literature Review of RF Rectifier 17
3.1 DICKSON RECTIFIER 17
3.2 THRESHOLD COMPENSATED RECTIFIER WITH LOCAL SELF-CALIBRATOR 18
3.3 CROSS-COUPLE CMOS RECTIFIER 19
3.4 CROSS-COUPLE RECTIFIER WITH DC-BOOSTED BIAS TECHNIQUE 20
3.5 QUASI-FLOATING GATE CMOS RECTIFIER 21
3.6 CROSS-COUPLE RECTIFIER WITH FORWARD BODY BIAS 22
3.7 SELF-COMPENSATED COMPLEMENTARY RECTIFIER 23
Chapter 4 Proposed RF Rectifier 26
4.1 SCHEMATIC OF RF RECTIFIER 26
4.1.1 Dynamic Body Bias Architecture 27
4.1.2 Current Analysis 29
4.2 ANALYSIS OF DESIGN PARAMETERS 32
4.2.1 Transistor Size 32
4.2.2 Stage of RF Rectifier 33
4.3 SIMULATION RESULTS OF RF RECTIFIER 35
4.3.1 Pre-Simulation Result 35
4.3.2 Layout and Floor Plan 38
4.3.3 Post-Layout Simulation Result 40
4.4 ANRENNA CO-DESIGN 43
Chapter 5 Test Setup and Measurement Results 47
5.1 WIRE-TEST 47
5.1.1 Input Impedance Measurement 47
5.1.2 50 Ω antenna matching measurement 49
5.1.3 Low Dropout (LDO) Measurement 54
5.2 WIRELESS-TEST 56
5.2.1 Wireless-Test Setup 56
5.2.2 Measurement of Wireless-Test 57
Chapter 6 Conclusion and Future Works 61
6.1 CONCLUSION 61
6.2 FUTURE WORKS 61
Bibliography 64
參考文獻 [1] M.Hassanalieragh et al., “Health Monitoring and Management Using Internet-of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and Challenges,” Proc. - 2015 IEEE Int. Conf. Serv. Comput. SCC 2015, pp. 285–292, 2015.
[2] J.Kua, S. H.Nguyen, G.Armitage, andP.Branch, “Using Active Queue Management to Assist IoT Application Flows in Home Broadband Networks,” IEEE Internet Things J., vol. 4, no. 5, pp. 1399–1407, 2017.
[3] T.Soyata, L.Copeland, andW.Heinzelman, “RF Energy Harvesting for Embedded Systems: A Survey of Tradeoffs and Methodology,” IEEE Circuits Syst. Mag., vol. 16, no. 1, pp. 22–57, 2016.
[4] G.Papotto, F.Carrara, G.Palmisano, andS.Member, “A 90-nm CMOS Threshold-Compensated RF Energy Harvester,” IEEE J. Solid-State Circuits, vol. 46, no. 9, pp. 1985–1997, 2011.
[5] K.Kotani, A.Sasaki, andT.Ito, “High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3011–3018, 2009.
[6] P.Kamalinejad, K.Keikhosravy, S.Mirabbasi, andV. C. M.Leung, “A CMOS Rectifier with an Extended High-Efficiency Region of Operation,” 2013 IEEE Int. Conf. RFID-Technologies Appl. RFID-TA 2013, 2013.
[7] V. D.Hunt, A.Puglia, andM.Puglia, RFID-A Guide to Radio Frequency Identification. 2006.
[8] R.Jurdak, A. G.Ruzzelli, andG. M. P. O.Hare, “Multi-hop RFID Wake-up Radio : Design , Evaluation and Energy Tradeoffs,” pp. 1–8, 2008.
[9] D. S.Liu, F. B.Li, X. C.Zou, Y.Liu, X. M.Hui, andX. F.Tao, “New Analysis and Design of a RF Rectifier for RFID and Implantable Devices,” Sensors, vol. 11, no. 7, pp. 6494–6508, 2011.
[10] J. M.Laheurte, C.Ripoll, D.Paret, andC.Loussert, UHF RFID Technologies for Identification and Traceability, vol. 9781848215. 2014.
[11] T.Arampatzis, J.Lygeros, andS.Manesis, “A Survey of Applications of Wireless Sensors and Wireless Sensor Networks,” Proc. 2005 IEEE Int. Symp. on, Mediterrean Conf. Control Autom. Intell. Control. 2005., 2005.
[12] G. J.Pottie, Wireless Sensor Networks Concepts, Applications, Experimentation and Analysis, vol. 14, no. 5. 2016.
[13] H. J.Visser andR. J. M.Vullers, “RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Requirements,” Proc. IEEE, vol. 101, no. 6, pp. 1410–1423, 2013.
[14] M.Stoopman, S.Member, andS.Keyrouz, “Co-Design of a CMOS Rectifier and Small Loop Antenna for Highly Sensitive RF Energy Harvesters,” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 622–634, 2014.
[15] J. J.Carr, “Impedance matching,” in Antenna Toolkit, 2001.
[16] V.Pillai, “Impedance Matching in RFID Tags: to Which Impedance to Match?,” IEEE Antennas Propag. Soc. Int. Symp., pp. 3505–3508, 2006.
[17] T.Le, K.Mayaram, andT.Fiez, “Efficient Far-Field Radio Frequency Energy Harvesting for Passively Powered Sensor Networks,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1287–1302, 2008.
[18] S. G.Yuchen Wang, Xiaohong Peng, Ligang Hou, “High-efficiency Rectifier for Passive RF Energy Harvesting Devices,” vol. 82, 2017.
[19] Miroslav Cermak, “Design of Low-Dropout Voltage Regulator,” Czech Tech. Univ. Prague, no. May, 2016.
[20] G. A.Rincon-Mora andP. E.Allen, “Study and Design of Low Drop-Out Regulators,” pp. 1–28, 1998.
[21] J.Kang, S.Rao, P.Chiang, andA.Natarajan, “Design and Optimization of Area-Constrained Wirelessly Powered CMOS UWB SoC for Localization Applications,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 4, pp. 1042–1054, 2016.
[22] S.Shieh andM.Kamarei, “Transient Input Impedance Modeling of Rectifiers for RF Energy Harvesting Applications,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 65, no. 3, pp. 311–315, 2018.
[23] M. A. A.Raop, R.Radzuan, M. K.Hamzah, M. K. M.Salleh, andR.Baharom, “CADENCE Simulation Studies on the Effect of Transistor Width Size and Internal Resistance CMOS Rectifier Using Two PMOS and NMOS,” Proceeding - 2013 IEEE Student Conf. Res. Dev. SCOReD 2013, pp. 417–420, 2015.
[24] Z.Liu, Y. P.Hsu, B.Fahs, andM. M.Hella, “An RF-DC Converter IC With On-Chip Adaptive Impedance Matching and 307-μw Peak Output Power for Health Monitoring Applications,” IEEE Trans. Very Large Scale Integr. Syst., vol. 26, no. 8, pp. 1565–1574, 2018.
[25] A. A.Razavi Haeri, M. R.Ghaderi Karkani, M.Sharifkhani, M.Kamarei, andA.Fotowat-ahmadi, “Analysis and Design of Power Harvesting Circuits for Ultra-Low Power Applications,” Circuits Syst. I Regul. Pap. IEEE Trans., vol. 64, no. 2, pp. 471–479, 2016.
[26] J. F.Dickson, “On-Chip High-Voltage Generation in MNOS Integrated Circuits Using an Improved Voltage Multiplier Technique,” IEEE J. Solid-State Circuits, 1976.
[27] U.Karthaus andM.Fischer, “Fully Integrated Passive UHF RFID Transponder IC with 16.7-μ W Minimum RF Input Power,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1602–1608, 2003.
[28] R.Barnett et al., “A Passive UHF RFID Transponder for EPC Gen 2 with -14dBm Sensitivity in 0.13μm CMOS,” Dig. Tech. Pap. - IEEE Int. Solid-State Circuits Conf., pp. 582–584, 2007.
[29] P. T.Theilmann, C. D.Presti, D.Kelly, andP. M.Asbeck, “Near Zero Turn-On Voltage High-Efficiency UHF RFID Rectifier in Silicon-On-Sapphire CMOS,” Dig. Pap. - IEEE Radio Freq. Integr. Circuits Symp., pp. 105–108, 2010.
[30] K.Gharehbaghi, Ö.Zorlu, F.Koçer, andH.Külah, “Auto-Calibrating Threshold Compensation Technique for RF Energy Harvesters,” Dig. Pap. - IEEE Radio Freq. Integr. Circuits Symp., vol. 2015–Novem, pp. 179–182, 2015.
[31] K.Gharehbaghi, Ö.Zorlu, F.Koçer, andH.Külah, “Threshold Compensated UHF Rectifier with Local Self-Calibrator,” IEEE Microw. Wirel. Components Lett., vol. 27, no. 6, pp. 575–577, 2017.
[32] J.Kang, P.Chiang, andA.Natarajan, “A 3.6cm2 Wirelessly-powered UWB SoC with -30.7 dBm Rectifier and Sub-10cm Range Resolution,” Dig. Pap. - IEEE Radio Freq. Integr. Circuits Symp., pp. 255–258, 2015.
[33] K. R.Sadagopan, J.Kang, S.Jain, Y.Ramadass, andA.Natarajan, “A 365 nW -61.5 dBm Sensitivity, 1.875 cm^2 2.4 GHz Wake-up Receiver with Rectifier-Antenna Co-design for Passive Gain,” Dig. Pap. - IEEE Radio Freq. Integr. Circuits Symp., pp. 180–183, 2017.
[34] H. L. H.Lin, K.-H. C. K.-H.Chang, andS.-C. W. S.-C.Wong, “Novel High Positive and Negative Pumping Circuits for Low Supply Voltage,” ISCAS’99. Proc. 1999 IEEE Int. Symp. Circuits Syst. VLSI (Cat. No.99CH36349), vol. 1, pp. 8–11, 1999.
[35] W. W. Y.Lau andL.Siek, “A 2.45GHz CMOS Rectifier for RF Energy Harvesting,” 2016 IEEE Wirel. Power Transf. Conf. WPTC 2016, pp. 2–4, 2016.
[36] A.Almansouri, M.Ouda, andK. N.Salama, “A Highly Sensitive RF-to-DC Power Converter with an Extended Dynamic Range,” Midwest Symp. Circuits Syst., vol. 2017–Augus, no. c, pp. 436–439, 2017.
[37] M. H.Ouda, W.Khalil, andK. N.Salama, “Self-Biased Differential Rectifier with Enhanced Dynamic Range for Wireless Powering,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 64, no. 5, pp. 515–519, 2017.
[38] S. S.Hashemi, M.Sawan, andY.Savaria, “A High-EfficiencyLow-Voltage CMOS Rectifier for Harvesting Energy in Implantable Devices,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 4, pp. 326–335, 2012.
[39] M.Ghovanloo andK.Najafi, “Fully Integrated Wideband High-Current Rectifiers for Inductively Powered Devices,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1976–1984, 2004.
[40] A. S.Almansouri, M. H.Ouda, andK. N.Salama, “A CMOS RF-to-DC Power Converter With 86% Efficiency and -19.2 dBm Sensitivity,” IEEE Trans. Microw. Theory Tech., vol. 2, pp. 1–7, 2018.
[41] P.Kamalinejad, K.Keikhosravy, M.Magno, S.Mirabbasi, V. C. M.Leung, andL.Benini, “A High-Sensitivity Fully Passive Wake-Up Radio Front-End for Wireless Sensor Nodes,” Dig. Tech. Pap. - IEEE Int. Conf. Consum. Electron., pp. 209–210, 2014.
[42] J.Ramírez-Angulo, A. J.López-Martín, R.González Carvajal, andF.Muñoz Chavero, “Very Low-Voltage Analog Signal Processing Based on Quasi-Floating Gate Transistors,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 434–442, 2004.
[43] Y.Chang, S. S.Chouhan, andK.Halonen, “A Scheme to Improve PCE of Differential-Drive CMOS Rectifier for Low RF Input Power,” Analog Integr. Circuits Signal Process., vol. 90, no. 1, pp. 113–124, 2017.
[44] S.Mandal andR.Sarpeshkar, “Low-Power CMOS Rectifier Design for RFID Applications,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 54, no. 6, pp. 1177–1188, 2007.
[45] Behzad Razavi, “Design of Analog CMOS Integrated Circuits.” .
[46] M. A.Ghanad andC.Dehollain, “A Passive CMOS Rectifier with Leakage Current Control for Medical Implants,” 2012 19th IEEE Int. Conf. Electron. Circuits, Syst. ICECS 2012, pp. 520–523, 2012.
[47] C.Hu, “MOSFET Technology Scaling , Leakage Current , and Other Topics,” Semicond. Devices Integr. Circuits, 2009.
[48] T.Umeda, H.Yoshida, S.Sekine, Y.Fujita, T.Suzuki, andS.Otaka, “A 950-MHz Rectifier Circuit for Sensor Network Tags with 10-m Distance,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 35–41, 2006.
[49] H.Goncalves, M.Martins, andJ.Fernandes, “A Study on MOSFET Rectifiers with Transistors Operating in the Weak Inversion Region,” 2012 19th IEEE Int. Conf. Electron. Circuits, Syst. ICECS 2012, no. 1, pp. 665–668, 2012.
[50] a J.Wiley, Antenna Theory Analysis and Design Third Edition. 2005.
[51] J. L.Volakis, Antenna Engineering Handbook. 2007.
[52] G. S.Smith, “Chapter 5: Loop Antennas,” Antenna Eng. Handb., pp. 69–109, 1984.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-02-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-02-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw