進階搜尋

 
查詢範圍:「   」
顯示範圍:第筆 論文書目資料
顯示格式:全部欄位
共 9 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0026-0208201022252200
論文名稱(中文) 以成果導向教育機制提升電機科系學生跨領域整合核心能力-以鍍膜製程設備為例
論文名稱(英文) Improving the program outcomes of interdisciplinary and integration for graduate of department of electrical engineering with Outcome-Based education - A case of vacuum coating equipment
校院名稱 成功大學
系所名稱(中) 工程科學系專班
系所名稱(英) Department of Engineering Science (on the job class)
學年度 98
學期 2
出版年 99
研究生(中文) 潘弘尹
學號 n9796114
學位類別 碩士
語文別 中文
口試日期 2010-07-23
論文頁數 83頁
口試委員 指導教授-黃悅民
口試委員-陳鴻仁
口試委員-鄭淑真
口試委員-劉建宏
關鍵字(中) 成果導向教育
工程與科技教育認證
跨領域整合
半導體設備通訊標準
真空鍍膜製程設備
關鍵字(英) Outcome-Based Education
Accreditation system for engineering education
Interdisciplinary integration
SECS
Vacuum coating equipment
學科別分類
中文摘要 在今日科技、經濟快速變化的多元化社會,產業界亦開始朝向跨領域整合的方向發展,具備單一領域知識專長的人才已無法滿足產業界之需求,培養具備跨領域知識及整合能力的跨領域人才,平衡產學界之間人才供需的天秤,儼然成為學界努力的方向。
成果導向教育(Outcome-Based Education)的精神,即是以教育目標與核心能力為方向,培養學生具備面對未來生活所需知識、能力與態度;而我國中華工程教育學會所推動的工程與科技教育認證,即是以成果導向為精神,輔導各大專院校培養符合產業界所期待的人才。
本研究以真空鍍膜製程設備為例,設計並建置具有半導體設備通訊標準(SECS)介面之半導體標準通訊與控制系統,了解電機科系的課程中,如何有效的導入資訊及半導體製程相關課程,使電機科系學生具備多元及跨領域知識,並在畢業後,能更符合業界之期待及要求。
英文摘要 Today, in the multiplex society of fast-changing economy and technology. Industrial circle is heading into interdisciplinary integration. The graduate with single domain-knowledge can’t satisfy with the demands of industrial circle. Academic circle must make more effort to train a graduate who has knowledge of interdisciplinary and ability of integration to balance the human resource supply and demand between industrial circle and academic circle.
Outcome-Based Education is training graduate to have knowledge, ability and attitude by educational objectives and program outcomes. The accreditation system for engineering education by Institute of Engineering Education Taiwan (IEET), is helping university to train graduate to fulfill the demands of industrial circle by outcome-based.
The purpose of this paper, is designing and implementing a SECS Communication and Control System(SCCS) to provide with SECS communication interface. To find out how to train the graduate of department of electrical engineering to have multiplex and interdisciplinary integration knowledge via implement the curriculum of Information Technology(IT) and Semi-Conductor process. More to suffice for industrial circle’s need after completion of a course.
論文目次 摘 要 I
Abstract II
誌 謝 III
目 錄 IV
表 目 錄 VI
圖 目 錄 VII

第一章 緒論 1
1-1研究背景 1
1-2研究動機 4
1-3研究目的 6
1-4研究方法 8
1-4-1研究方法 8
1-4-2研究對象 11
1-4-3研究範圍與限制 11
第二章 文獻探討 12
2-1 成果導向教育 12
2-2 精密機械產業現況與人才需求 14
2-2-1電子與半導體生產設備需求人才 14
2-2-2電機相關科系及教育目標 17
2-3 工程及科技教育認證 22
2-3-1 英美之工程及科技教育認證發展現況 25
2-3-2 我國工程及科技教育認證發展現況 28
2-4 機電整合 31
2-4-1 系統本體 32
2-4-2 I/O通訊介面 33
2-4-3 人機介面(HMI, Human Machine Interface) 36
2-5 製程設備資訊整合 39
2-6 半導體設備通訊標準(SECS) 41
2-6-1半導體設備通訊標準(SECS)介紹 41
2-6-2 SECS-I標準介紹 45
2-6-3 SECS-II標準介紹 46
2-6-4 GEM介紹 48
2-6-5 HSMS標準 49
第三章 SCCS系統建置 51
3-1半導體標準通訊與控制系統(SCCS)設計與建置 51
3-1-1 SCCS設計 51
3-1-2 SCCS建置 56
3-2 SCCS程式執行流程 65
第四章 問卷設計與實施 72
4-1 問卷編製依據 72
4-2 研究對象 72
4-3 問卷調查 72
4-4 研究結果與分析討論 73
4-4-1 SCCS的認知構面驗證 73
4-4-2 SCCS的可用性構面驗證 74
4-4-3 SCCS製程設備開發人員需具備的學科知識部份 75
第五章 結論與未來研究方向 77
5-1 結論 77
5-2 未來研究方向 78
參考文獻 80
參考文獻 [1]2015年台灣產業與科技整合研究計畫小組. (2008). 2015年台灣重要產業技術發展藍圖ii: 經濟部
[2]工研院電子所. (1998). 工研院電子所ITIS計畫.
[3]天下雜誌出版社. (2008). 2009年最佳研究所指南. 天下雜誌.
[4]王明德. (2009). 人機介面進展快速,西門子全力布局. 機電整合雜誌, 第126期.
[5]中華工程教育學會認證委員會. (2008). 工程及科技教育認證規範(AC2004).
[6]行政院主計處. (2009). 98年11月人力資源調查統計結果.
[7]何金針、紐方頤. (2009). 全球化下台灣高等教育策略聯盟之因應. 教育資料集刊, 第四十四輯 - 2009 各國高等教育, Page(s):29-49.
[8]李坤崇. (2009). 成果導向的課程發展模式. 教育研究月刊, 第186期, Page(s):39-58.
[9]李隆盛. (2003). 2003年大專校院工程及技術學院院長會議講稿.
[10]林正亮. (2003). 機電整合之人機介面教具的研製. 行政院國家科學委員會專題研究計畫成果報告.
[11]周仁祥、林俊彥、王振興. (2001). 科技大學電機系專業學程之規劃研究. 第十六屆全國技術及職業教育研討會.
[12]徐聯恩、林明吟. (2005). 成果導向教育(OBE)的教育改革及其在美國實踐的經驗. 教育政策論壇, 第8卷(第2期), Page(s):55-74.
[13]教育部顧問室. (1993). 規劃及推動大專院校機電整合(第二度規劃書).
[14]教育部高教司. (2009). 大學校院新生錄取人數及錄取率.
[15]張焜銘、黃顯詔、黃悅民. (2007). 設計可置換之使用者介面建構於具有OSD功能之嵌入式系統. 2007年 NCS 全國計算機會議.
[16]經濟部技術處. (1998). 產業技術白皮書1998摘要版. 台北:經濟部.
[17]楊永斌、葛家豪、張佩芬、劉曼君. (2005). 我國工程教育認證制度現況及其未來發展. 國家菁英季刊, 第1卷(第3期), Page(s):111-126.
[18]曹永誠. (2005). 先進製程控制技術(APC)導論. 電機月刊, 第174期.
[19]曹永誠. (2005). APC人機介面設計原則與電腦輔助分析機制探討. 電機月刊, 第178期.
[20]劉佳霖、李金城. (2002). 製程資訊整合應用. 程序系統工程專刊, 化工 第49卷(第4期), Page(s):34-45.
[21]賴玄金. (2009). FPD製程設備相關耗材之國產化及應用介紹. 工業材料雜誌, 第269期, Page. 61.
[22]Adamo, F., Attivissimo, F., Cavone, G., & Giaquinto, N. (2007). SCADA/HMI systems in advanced educational courses. IEEE Transactions On Instrumentation and Measurement, Volume 56(Issue 1), pp.4–10.
[23]Buur, J. (1990). A theoretical approach to mechatronics design. PhD thesis, Institute for Engineering Design, Technical University of Denmark, Lyngby, Denmark.
[24]Bullen, F., & Silverstein, J. (2005). Linking local attributes to global accreditation. Frontiers in Education, 2005. FIE '05. Proceedings 35th Annual Conference, pp.F2D–1.
[25]Comerford, R. (1994). Mecha...What? Spectrum, Volume 31(Issue 8), pp.46–49.
[26]Daneels, A., & Salter, W. (1999). What is SCADA? International Conference on Accelerator and Large Experimental Physics Control Systems, pp.339–343.
[27]Howell, L. L., Roach, G. M., Clark, D. C., & Cox, J. J. (2003). Use of explicit instructional objectives to achieve program outcomes and facilitate assessment: A case study. Int. J. Engng Ed., Volume 19, No.6, pp.828-835.
[28]Kyura, N., & Oho, H. (1996). Mechatronics - an industrial perspective. IEEE/ASME Transactions on Mechatronics, Volume 1(Issue 1), pp.10–15.
[29]Mansor, W., Hashim, H., Abdullah, S. A. C., Kamaluddin, M. U., Latip, M. F. A., Yassin, A. I. M., et al. (2008). Preliminary results on the implementation of outcome-based education on the non-examinable computer engineering modules. 38th ASEE/IEEE Frontiers in Education Conference, pp.231–234
[30]MESA International. (1997). MES explained: The benefit of MES: A report from the field. White Paper1 (Pittsburgh: Manufacturing Execution Systems Assoc).
[31]Schalock, R. L. (2001). Outcome-Based evaluation. kluwer Academic/Plenum Publishers, New York.
[32]SEMI. (2002). Equipment engineering capabilities guidelines (phase 2.5). SEMI International Standards.
[33]Sheppard, S. D., Pellegrino, J. W., & Olds, B. M. (2008). On becoming a 21st century engineer. Journal of Engineering Education, July 2008, pp.231–234.
[34]Spady, W. G. (1981). Outcome-based instructional management: A sociological perspective. Washington, DC: National Institute of Education.
[35]Spady, W. G.(1994). Choosing outcomes of significance. Educational Leadership, 51, pp.18–22.
[36]Spady, W.G. (1994). Outcome-Based Education: Critical issues and answers. Arlington VA: American Association of School Administrators. (ERIC Document Reproduction Service No. ED380910).
[37]Spady, W. G., & Marshall, K. J. (1991). Beyond traditional outcome-based education. Educational Leadership, 49, pp.67-72.
[38]Sato, T., Yoshida, E., Kakebayashi, Y., Asakura, J., & Komoda, N. (2001). Application of IEC61131-3 for semiconductor processing equipment. Emerging Technologies and Factory Automation. Proceedings. 2001 8th IEEE International Conference, Volume 2, pp.47–50.
[39]Pomorski, T. (1994). Implementing automated equipment performance control in the manufacturing work cell. Advanced Semiconductor Manufacturing Conference and Workshop. ASMC 94 Proceedings. IEEE/SEMI, pp.161–168.
[40]Prados, J. W., Peters, G. D., & Aberle, K. B. (2001). A vision for change: The transformation of us educational quality assurance in engineering. SEFI Annual Conference 2001.
[41]Wen, L. (2009). Research on key technologies of MES development based on component and driven by ontology. Third International Symposium on Intelligent Information Technology Application Workshops, pp.112–115.
[42]Yamayee, Z. A., & Albright, R. J. (1999). Curriculum reform in the context of EC2000. 29th ASEE/IEEE Frontiers in Education Conference, Volume 1, pp.11B11/11-11B11/16.
[43]http://www.semi.org
[44]http://www.ieet.org.tw
[45]http://www.utitech.com.tw

------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910221783
論文名稱(中文) 電泳披覆法製備錳鋅鐵氧磁體鍍膜之研究
論文名稱(英文) Fabrication of Mn-Zn ferrite films by electrophoretic deposition
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 90
學期 2
出版年 91
研究生(中文) 林昱呈
學號 n5689127
學位類別 碩士
語文別 中文
口試日期 2002-06-14
論文頁數 114頁
口試委員 指導教授-黃啟祥
口試委員-駱榮富
口試委員-楊聰仁
口試委員-林文豪
關鍵字(中) 電泳披覆
超微粉
鍍膜
錳鋅鐵氧磁體
關鍵字(英) Mn-Zn ferrite
nano-powder
film
Electrophoretic Deposition
學科別分類
中文摘要 摘 要

本研究旨在以製程簡易之電泳披覆法(Electrophoretic Deposition,EPD),將錳鋅鐵氧磁體(Mn-Zn Ferrite)粒子披覆於不鏽鋼基材上。為得良好的披覆膜,本實驗是以奈米錳鋅鐵氧磁體粉末為起始粉末,檢討不同之懸浮液、I2添加量及披覆條件 (懸浮液濃度、電壓、時間、基材面積)對形成披覆膜之影響,以及冷均壓處理對披覆膜燒結性之影響。
實驗結果顯示:(1)以為丙酮懸浮液溶劑時,其披覆效果較乙醇佳,(2)在I2濃度未超過0.3 g/L時,披覆層之重量隨懸浮液中的碘的含量之增加而增加。 (3)以丙酮為溶劑時,其披覆重量是隨施加電壓強度之增加而成正比的關係。(4) 經冷均壓(CIP)處理披覆膜可變為較緻密,且在經65MPa以上壓力的CIP處理後,其緻密度幾乎不變;其在氮氣氣氛中900℃燒結2h後,形成一無孔洞的燒結體披覆膜。(5) 以分次披覆及在較慢的升溫速率(2℃/min)下燒結,可得一較無裂紋的鍍膜燒結體。(6) 以分6次重複披覆之鍍膜在升溫速率為2℃/min,900℃ x 2 h燒結下所得燒結體,有最佳之飽和磁化量5.38 emu/cc。(7) 矯頑磁力是隨燒結體晶粒之增加而變小;經CIP處理後之試樣,因晶粒較小導致矯頑磁力較大。

英文摘要 Electrophoretic Deposition (EPD) technique has demonstrated to be rather effective for fabrication of ceramic thick films. There are several advantages involved in this process such as process simplicity, low equipment cost, readiness for depositing on conductive substrates with complex shapes, and fast deposition rate as compared to PVD or CVD process. The aim of this study is to form the Mn-Zn ferrite films on stainless steel substrates by EPD process. Mn-Zn ferrite nanopowders were prepared via a hydrothermal route. The effect of process parameters including solvent properties of EPD suspension of ethanol and acetone, I2 additive amount, suspension concentration on Mn-Zn ferrite the formation of film formation, applied voltage, deposition time, and size of electrode substrate, and the effect of cold isostatic pressing (CIP) treatment on the sinterability of the films were investigated.
The deposition efficiency associated with using acetone, instead of ethanol, as solvent in EPD suspensions was reasonably good. The deposition weight per unit area increases as increasing the amount of I2 additive in EPD suspensions before the I2 concentration is over 0.3 g/L. It was a linear relationship between the applied voltage and specific deposition weight as using acetone solvent in suspension. The CIP process was proved to be helpful for enhancing the density of the deposited films, however, the increased density of films did not show for CIP pressure higher than 65MPa. The specimen sintered at 900℃ for 2h in N2 was of lower porosity. The films from repeated depositions showed no cracks in sintered sample by using lower heating rate (2℃/min). The films from six repeated EPD depositions had better magnetic property for its saturation magnetization was 5.38 emu/cc. The coercivity normally drops off with grain growth in sintered sample, therefore, the samples with extra CIP procedure for impeding grain growth showed greater coercive force.

論文目次 目錄

中文摘要......................................................................I
英文摘要......................................................................II
目錄.............................................................................IV
表目錄.........................................................................VIII
圖目錄.........................................................................IX
第一章 緒論..............................................................1
1-1前言...........................................................................1
1-2 研究目的..................................................................3
第二章 理論基礎及文獻回顧........................................4
2-1尖晶石型鐵氧磁體……………………………………4
2-2 水熱合成法..............................................................5
2-2-1 水熱合成法之原理...........................................5
2-2-2 水熱法製備粉體之優點....................................6
2-3 電泳法............................................................6
2-3-1電泳法之原理.........................................6
2-3-2電泳披覆法之優點.........................................7
2-3-3電泳技術之發展及應用....................................8
2-4定電壓與定電流電泳披覆........................................10
2-5電雙層..........................................................12
2-5-1膠體表面電荷之起源..........................................13
2-5-2電雙層中之內電荷層.............................................14
2-5-3 Stern層電位及電動位能…………………….17
2-6磁性理論………………………….……………….17
2-6-1磁性的分類…………………………………...17
2-6-2磁滯曲線的產生…………………..……….19
2-6-3初導磁係數………………………………..20
2-6-4損失與共振…………………………….21
2-6-5矯頑磁力………………………………..21
2-6-6形狀異向性………………………………….22
2-6-7磁性異向性…………………………………22
2-6-8微粒子的矯頑磁力…………………………..22
第三章 實驗步驟與方法..............................................32
3-1粉末的製備及粉體的特性分析........................32
3-1-1 起使粉末製備流程.................................................32
3-1-1-1 起始原料.....................................................33
3-1-1-2 混合.................................................................33
3-1-1-3水熱處理..........................................................33
3-1-1-4 離心、乾燥......................................................34
3-1-2粉末特性分析及實驗設備…………….…………34
3-1-2-1 X光繞射儀…...………………………………34
3-1-2-2 自動氣相物理吸附儀.................................34
3-1-2-3 結晶型態分析...............................................35
3-1-2-4感應輛電漿原子放射光譜分析....................35
3-2懸浮液的製備及電泳披覆….........................................36
3-2-1懸浮液的配置...................................................37
3-2-2電泳披覆.......................................................37
3-2-2-1基材之前處理...................................................37
3-2-2-2 電泳披覆製程參數之控制............................38
3-3-2-3冷均壓成形法(CIP)......................................38
3-3 燒結..............................................................................39
3-4 性質分析及實驗設備....................................................39
3-4-1懸浮液特性分析................................................39
3-4-1-1 Zeta電位的量測..........................................39
3-4-1-2 粒徑分佈....................................................40
3-4-2 燒結性質.........................................................41
3-4-2-1燒結收縮(DHT).............................................41
3-4-3電泳披覆鍍膜之微結構及磁性質分析..…..……42
3-4-2-1掃瞄式電子顯微鏡(SEM)……………………42
3-4-3-2超導量子干涉磁量儀(SQUID)……...……….42
第四章 結果與討論......................................................57
4-1 起始粉末的合成及性質…………………………….57
4-2 EPD懸浮液……………..……………………………57
4-3 電泳披覆製程參數的控制…………………………59
4-3-1 懸浮液濃度之影響……………………………...60
4-3-2 施加電壓對電泳披覆的影響…………………..60
4-3-3 披覆時間對電泳披覆的影響………………….61
4-3-4 碘添加量對電泳披覆的影響…………………..61
4-3-5 基板面積對電泳披覆的影響…………………..62
4-3-6 冷均壓(CIP)處理對電泳披覆的影響………….63
4-4 燒結……………………….……………………….63
4-4-1相分析…………………………………………....63
4-4-2 燒結收縮曲線…………………………………...63
4-4-3 顯微結構………………………………………..64
4-5磁性質………………………………………………...66
4-5-1 飽和磁化量…………………………………….66
4-5-2矯頑磁力…………………………………………67
第五章 結論................................................................103
參考文獻.....................................................................105
參考文獻 參考文獻

[1]P. I. Slick, “Ferrites for non-microwave applications,” inFerromagnetic Materials, 2, ed. by E. P. Wohlfarth (North-Holland Press, New York, 189-241 (1980).
[2]E. C. Snelling, IEEE spectrum 9[1] 46-49 (1972)
[3]J. A. T. Taylor, S.T. Reczek and A. Rosen, “Soft Ferrite Processing,” J. Am. Ceram. Soc. Bull., 74[4] 91-94 (1995).
[4] M. Gupta and C. Y. Loke, “Micromechanical Modeling of Processing-induced damage in Al-SiC Metal Matrix Composites Synthesized Using the Disintegrated Melt Deposition Technique,” Materials Research Bulletin, 34, 71-79 (1999)
[5] T. S. Chin, “Permanent Magnet Films for Applications in Microelectromechechanical Systems,” J. Magn. Magn. Mater. 209, 75-79 (2000)
[6] J. Feng, N. Matsushita, K. Watanabe, S. Nakagawa, and M. Naoe, “Al substituted Ba ferrite films with high coercity and excellent squareness for low noise perpendicular recording layer ,” J. Appl. Phys. 85, 6139-6141 (1999)
[7]宋小敏, “積層晶片電感元件製作,” 工業材料 第88期 66-71,83年4月
[8] M. Abe and Y. Tamaura, ”Ferrite Plating in Aqueous Solution : New Technique for Preparing magnetic Thin Film,” J. Appl. Phys. 55, 2614-2616 (1984)
[9] M. Abe, T. Itoh and Y. tamaura, ”Magnetic and biomagnetic films obtained by ferrite plating in aqueous solution,” Thin Solid Films, 216, 155-161 (1992)
[10] Soichiro Okamura, Takeyo Tsukamoto and Nobuyuki Koura, ”Fabrication of Elerroelectric BaTiO3 Films by Electrophoretic Deposition ,” Jan. J. Appl. Phys., 32, 4182-4185 (1993)
[11] T. Ishihara, K. Sato and Y. Takita, ”Electrophoretic Deposition of Y2O3-Stabilized ZrO2 Electrolyte Films in Solid Oxide Fuel Cells,” J. Am . Ceram. Soc. 79 [4], 913-919 (1996)
[12] M. P. Horvath,” Microwave applications of soft ferrites, “J. Magn. Magn. Mater. 215, 171-183 (2000)
[13] 洪永泰, “電泳披覆法製作積層PZT壓電致動器之電極表面絕緣層,” 逢甲大學材料科學研究所碩士論文,1996
[14] J. Van Tassel and C. A. Randall, “Electrophoretic Deposition and Sintering of Thin/Thick PZT Films,” J. of Euro. Ceram. Soc., 19, 955-958 (1999)
[15] P. S. Nicholson and P. Sarkar, “Electrophoretic Deposition and its use to synthesize Al3O3/ZrO2 Micro-Laminate ceramic/ceramic Compositite,” J. of Materials Science, 28 , 6274-6278 (1993)
[16] M. Suzuki , H. Yamato and M. Matsumura , ”Characterization of YBa2Cu3O7-X Layers Prepared by Electrophoretic Deposition,” J. Electrochem. Soc., 138 [10] 2942-2946 (1991)
[17] M. Hein, G. Muller, H. Piel and L. Ponto, ”Electrophoretic deposition of textured YBa2Cu3O7-x films on silver substrates,” J. Appl. Phys. 66 [12] 5940-5943 (1989)
[18] C. T. Chu and B. Dunn, ”Fabrication of YBa2Cu3O7-x superconducting Coatings by Electrophoretic Deposition,” Appl. Phys. Lett., 55 [5] 492-494 (1989)
[19] J. Mizuguchi, M. Sukuki, H. Yamato and M. Matsumura, ” Characterization of YBa2Cu3O7-2 Layers Prepared by Electrophoretic Deposition,” J. Electrochem. Soc., 138[10] 2944-2946 (1991)
[20] H. Hojims, H. Sukuki, H. Yamato and M. Matsumura,”Fabrication of Ag-Doped YBa2Cu3O7-x Superconducting Films on Cu Substrates by Electrophoretic Deposition,” Japanese J. Appl. Phys., 30[7A] L1166-1168 (1991)
[21] A. A. Foissy and G. Robert,”Electrophretic Forming of Beta-Alumina from Dichloromethane Suspensions,” Ceramic Bulletin, 6[2] 251-255 (1982)
[22] R. W. Powers, “Ceramic Aspects of Forming Beta-Alumina by Electrophoretic Deposition,” Ceramic Bulletin , 65[9] 1270-1275 (1986)
[23] R. W. Powers, ”Powder Requirements for Beta-Alumina Ceramnic Formed by Electrophoretic Deposition,” Ceramic Bulletin, 65[9] 1275-1281 (1986)
[24] H. A. Fisch, ”Electrophoretic Deposition of Aluminide Coatings form Aqueous Suspensions,” Ceramic Bulletin, 11[9] 275-286 (1990)
[25] D. U. K. Roa and E. C. Subbarao, “Electrophoretic Deposition of Magnesia”, Ceramic Bulletin, 58[4] 467-469 (1979)
[26] F. Hosseinbabaei and B. Raissidehkordi, ”Electroretic deposition of MgO thick films from an acetone suspension,” J. Euro. Ceram. Soc. 20, 2165-2168 (2000)
[27] F. Chen and M. Liu, ”Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) process, ”J. Euro. Ceram. Soc. 21, 127-134 (2001)
[28] 汪建民等,陶瓷技術手冊, 經濟部技術部、中華民國粉末冶金學會、中華民國產業發展協進會出版,1994年7月.
[29] A. R. Von Hipsel, Dielectrics and Waves, John Wiley & Sons, New York, 1954
[30] William J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders,” Ceramic Bulletin, 67[10] 1673-1678, (1988).
[31] S. Wada, T. Suzuki and T. Noma, ”Influence of Gravity on Inorganic Crystalline Particle Growth under High Temperature-High Pressure Aqueous Solution,” Jpn. J. Ceram. Soc., 103[12] 1220, (1995).
[32] A. Chittofratt and E. Matijevic, “Uniform particles of zinc-oxide of different morphologies,” Colloids and Surface., 48[1] 65-78 (1990).
[33] T. Trindate, J. D. Pedrosa de Jesus and P.O. Brien, “Preparation of zinc-oxide and znic-sulfide powders by controlled precipitation from aqueous-soultion,” J. Mater. Chem., 4[10] 1611-1614 (1994).
[34] M. Hinaro and E. Kato, “Hydrothermal synthesis and sintering of fine powders in CeO2-ZrO2 system,” J. Am. Ceram. Soc., 79[3], 777-780 (1996).
[35] E. Tani, M. Yoshimura and S. Somiya, Chapman and Hall Ltd., 461, (1982).
[36] Y. C. Chou and M. N. Rahaman, “Hydrothermal synthesis and sintering of ultrafine CeO2 powders,” J. Mater. Res., 8[7] 1680-1684 (1993).
[37] Hunter, R. J., Zeta Potential in Colloid Science, Academic Press (1981).
[38] F. F. Reuss, Notice sur un nouvel Effect de 1’electrite gavanique. Mem. Soc. Imp. Natur. Moscou , 2 ,327-337 (1809)
[39]黃琇芳, ”電泳塗裝技術,” 化工技術, 10 [4] 49-52 (1986)
[40] S. N. Heaven, ”Electrophoretic Deposition as a Processing Route for Ceramics,” in Advanced Ceramic Process and Technology, J.G.P. Binner (Ed.), 1,Noyes Publications, 255-283 (1990)
[41] H. A. Fisch, ”Electrophoretic Deposition of Aluminide Coatings from Aqueous Suspensions,” J. Electrochem. Soc., 119[1] 57-64 (1975)
[42] Z. R. Ulberg and Y. F. Deineged, Electrophoretic Composite Coatings, Ellis Horwood, New York, 35-84 (1992)
[43] J. Mizuguchi, K. Sumi and T. Muchi, “A Highly Stable Nonaqueous Suspension for the Electrophoretic Deposition of Powdered Substances,” J. Electrochem. Soc., 130[9] 1819-1825 (1983)
[44] C. Y. Chen, S. Y. Chen and D. M. Liu, “Electrophoretic Deposition Forming of Porous Alummin Membranes,” Acta Mater. 47[9] 2717-2726 (1999)
[45] M. Nagai, K. Yamashita, T. Umegaki and Y. Takuma, “Electroretic Deposition of Ferroelectric Barium Titanate Thick Films and Their Dilectric Properties,” J. Am. Ceram., 76 [1] 253-255 (1993)
[46] R. Thomas, D. C. Dube, M. N. Kamalasanan and S. Chandra, “Optical and electrical properities of BaTiO3 thin films prepared by chemical solution deposition,” Thin Solid Films, 346, 212-225 (1999)
[47] S. Sugiyama, A. Takagi and K. Tsuzuki, “(Pb,La)(Zr,Ti)O3 Films by Multiple Electrophoretic Deposition/Sintering Processing,” Jan. J. Appl. Phys., 30[9B] 2170-2173 (1991)
[48] P. Sarkar, S. Mathur, P. S. Nicholson and C. V. Stager, “ Fabrication of Textured Bi-Sr-Ca-Cu-O Thick Film by Electrophoretic Deposition,” J. Appl. Phys., 69[3] 1775-1777 (1991)
[49] R. Chaim, G. stark and Gal Or, “Electrochemical ZrO2 and Al2O3 Coatings on Substrates,” J. of Materials Science, 29, 6241-6248 (1994)
[50] P. Sarkar, X. Huang and P. S. Nichilson, “Zircona Alumina Functionally Gradiented Composite by Electrophoretic Deposition Techniques,” J. Am. Ceram. Soc., 76[4] 1055-1056 (1993)
[51] Luc Vandeperre, Omer Van Der and J. Persello, “Electrophoretic Forming of Silicon Carbide Ceramic,” J. of Euro. Ceram. Soc., 17, 373-376 (1996)
[52] F. Harbach and H. Nienburg, “Homogeneous Functional Ceramic Components through Electrophoretic Deposition from Stable Colloidal Suspensions Beta-Alumina and Concepts for Industrial Production,” J. of Euro. Ceram. Soc., 18, 685-692 (1998)
[53] Luc Vandeperre and Omer Van Der, “SiC-Graphite Laminates Shaped by EPD,” Ceramic Bulletin, 78[3] 53-58 (1998)
[54] A. Sussman and T. J. Ward, “Electropheretic Deposition of Coatings from Glass-Isopropanol Slurries,” RCA Review, 42,178-197 (1981)
[55] H. C. Hamaker, “Formation of a Deposit by Electrophoresis,” Trans. Faraday Soc., 36, 287-295 (1940)
[56] H. Koelmans, “Suspensions in non-aqueous media,” Philips Research Reports, 10, 161-193 (1955)
[57] 張有義,郭蘭生,膠體及介面化學入門, 高立圖書有限公司(2001)
[58] D. J. Shaw, Introduction to Colloid and Surface Chemistry, Butterworth-Heinemann (1992)
[59] 楊士瑩, “黏結劑PVA對錳鋅鐵氧磁體粉末燒結及燒結體性質之影響,” 國立成功大學材料科學及工程學系碩士論文 (2001)
[60] 鄭振東,實用磁性材料, 民國88年6月,全華科技圖書股份有限公司出版.
[61] G. R. Harrison and L. R. Jr. Hodges, “Microwave properties of polycrystalline hybrid garnets,” J. Am. Ceram. Soc., 44, 214 (1962)

------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910234869
論文名稱(中文) 不同鍍膜端銑刀對 SUS304 之銑削特性探討
論文名稱(英文) An Investigation of milling process for SUS304 with end mills of different coatings
校院名稱 成功大學
系所名稱(中) 機械工程學系專班
系所名稱(英) Department of Mechanical Engineering (on the job class)
學年度 90
學期 2
出版年 91
研究生(中文) 鄭忠賢
學號 n1789105
學位類別 碩士
語文別 中文
口試日期 2002-07-31
論文頁數 72頁
口試委員 口試委員-林仁輝
口試委員-蘇演良
指導教授-王俊志
關鍵字(中) 切屑
鍍膜
磨耗
端銑刀
關鍵字(英) end-mill
wear
coating
chip
學科別分類
中文摘要 摘要
由於TiN與TiCN膜層具有高硬度、低摩擦係數、耐腐蝕性等特質,所以廣泛被運用在刀具上。本論文主要是探討不同鍍膜層TiN、TiCN與未鍍膜刀具在不同的切削條件下,對銑削304不銹鋼時刀具磨耗分析、工件表面粗糙度探討。同時利用田口實驗方法(Taguchi Method)來規劃銑削實驗,瞭解不同鍍膜刀具與銑削加工條件等加工變異參數的交互作用為何。之後再以不同的切削速度、每刃進給,分別作銑削實驗來探討刀具磨耗及切屑型態。

而在本次田口法實驗當中三種可控銑削因子,對刀腹磨耗寬度及工件表面粗糙度影響,都是以不同鍍膜刀具銑削因子影響程度最大。同時實驗數據顯示,未鍍膜刀具磨耗量最大,TiCN鍍膜刀具磨耗量最小,且未鍍膜刀具磨耗量隨著時間的增長而增加,成正比關係。對於切削速度與進給量變更時,則明顯發現刀具磨耗量隨著切削速度與進給量增快而增大。其次切削速度對於切削後之切屑硬度及厚度是速度愈快兩者值愈高,並且切屑硬度及厚度與刀具磨耗量成正比關係。
英文摘要 Abstract
It’s widely used on tools due to TiN and TiCN coating featuring high hardness; low friction coefficient; anti-corrosiveness. The article is first mainly probing into tools with and without TiN, TiCN and without coating under different cutting condition while milling 304 stainless steel, its flank wear analysis and roughness of surface of workpiece. Second using Taguchi Method to design experiment in order to know the mutual function of variance parameter with different coating tool and mill machining condition. Finally, to experiment mill with different cutting speed and feed per flute in order to probe into wear of tool and chip type.

The three manageable mill factors in the Taguchi Method experiment, the influence of roughness of surface and flank wear of width with different coating tool mill factors with the most significant influence. At the meantime, according to the experiment data showing that uncoated tool would be with the largest attrition value, and tool coating with TiCN have the smaller attrition value. Therefore, wear of uncoated tool is proportional to the using time. When cutting speed and feed quantity changes, it shows obviously that wear tool would growing larger with the hingher speed of cutting and feeding. When cutting speed is faster, the value of hardness and thickness of the chip after cutting would be higher; and the hardness and thickness of the chip would be proportional to wear of the tool.
論文目次 總目錄
中文摘要………………………………………………………….….. Ⅰ
Abstract……………………………………….……. Ⅱ
誌謝……………………………………………….…... Ⅲ
總目錄………………………………………………………………….Ⅳ
圖目錄………………………………………………………………V
表目錄………………………………………………….……….Ⅵ
符號……………………………………….……….Ⅸ
第一章 緒論…………………………………...…….…………1
1-1 研究動機………………………………..………………...,……1
1-2 文獻回顧………………………………..………………………3
1-3 研究目的………………………………..………………………6
第二章 理論基礎
2-1 刀具磨耗與壽命………………………..………………………7
2-1-1 前言………………………..……………………..………7
2-1-2 刀具磨耗………………..………………………..………8
2-2 刀具鍍膜性…………………..……...……………………...…12
2-2-1 前言…………………..……...………………..……...…12
2-2-2 PVD成膜法…..…….……..……………….……....……12
2-2-3 鍍膜性質…..…….……..…………………...……..……14
2-3 切屑生成型態模..…….……..…..……...…..……16
2-3-1 前言…..…….…………..…………...……………..……16
2-3-2 切屑的形成…..…….………………………...…..……..17
2-3-3切屑彎曲型態…………………………………….……..18
第三章 實驗設備與規劃………………...….….…………...21
3-1 實驗設備………………………….………..….….…………...21
3-2 實驗規劃………………………….………..….….…………...22
3-2-1 田口法實驗設計………….………..….….…..………...22
3-2-2 刀具磨耗實驗設計……….………..….….…..………...24
3-2-3 實驗步驟……….………..….….……………..………...26
第四章 結果與討論……….…………………..…………….29
4-1 不同鍍膜刀具與摩耗量之影響討論…………..………….….29
4-1-1刀具磨耗之量測………………...………..………….….29
4-2 田口法實驗設計……………………....………..………….….34
4-2-1 銑刀磨耗寬度…………………....………..……..….….34
4-2-2 銑刀磨耗寬度…………………....………..……..….….36
4-3 每刃進給量對不同鍍膜刀具磨耗的影響……..………….….40
4-4 切削速度對不同鍍膜刀具的磨耗影響……..………….…….42
4-5 相同進給率下,切削速度對不同鍍膜刀所切削切屑之影響…45
4-5-1 切屑厚度….……………………………………………45
4-5-2 切屑捲曲型態….……………………………………….54
4-5-3 切屑硬度….…………………………………………….57
第五章 結論……….………………..…..…………….67
參考文獻……….………………..………..…………….69
自述……….………………..….……..…………….72
參考文獻 參考文獻
1 Shaw, Milton C., Metal Cutting Principle, Chapter 14, press, New York, 1984.
2 Stainless steel Turning, Catalogue C-1020; 6 Eng. Sandvik Coromant. Application Guide, UK (1996).
3 Norman, B., Schmidt,“New Standard in Machinable Stainless Steel,”American Machinist, pp. 91-94, 1995.
4 Turning Stainless Made Painless, Sandvik Coromant Co., Fair Lawn, NJ.
5 J. Lin, T. C., Chen and C. I. Weng,“Development of the infrared pyrometer with fiber optics for measuring cutting temperature at high speed cutting,”Symposium of Monitoring and control for Manfacturing Process, ASME PED, pp. 17-32, 44(1990).
6 F. F. Ling and E. Saibel,“On the tool life and temperature and relationship in metal cutting,”Trans. ASME Journal, pp. 1113-1117, 1995.
7 H. Tanaka, F. Obata, Y. Murakawa, S. Okamura and H. suji,“Machining Characteristics in End Milling of Hot Working Tool Steel,”International Conference on Precision Engineering, pp. 225-229, 1997.
8 J. Kopac,“Influence of cutting material and coating on tool quality and tool life,”Joural of Material Processing Technology, pp. 95-103, 1998.
9 G.E. D’Errico, E. Guglielm, G. Rutell:, “A study of coatings for end mills in high speed metal cutting,” Journal of Materials Processing Technology, 251-256, 1999.
10 Laizhu, J., Hannu, H., Jukka, P., and Veijo, K.,“Active Wear and Failure Mechanisms of TiN-Coated High Speed Steel and TiN-Coated Cemented Carbide Tools When Machining Powder Metallurgically Made Stainless Steels, ” Metallurgical and Materials Transactions A, Vol. 27A, pp. 2796-2808, 1996.
11 Sukura, K. Adachi, K. and Hanasaki, S., “Effect of Carbon Content of Austenitic stainless steel on Drill Life,” Third International Conference on Progress of Cutting and Grinding, Osaka, pp. 284-289, 1996.
12 Vigneau, J. and Boulanger, J. J., “Behaviour of Ceramic Tools During Machining Nickel Base Alloys,” Annals of CIRP, Vol. 31/1, pp. 35-39, 1982.
13 Routio. M., M. Saynatjoki,“Tool Wear and Failure in the Drilling of Stainless Steel,”Journal of Materials ProcessingTechnology, Vol. 74-75, pp. 375-381, 1995.
14 Sullivan K. F., Wright P. K. and Smith P. D.,“Metallurgical Appraisal of Instabilities Arising in Machining,”Metals Technology, Vol. 5. part6, pp. 181-189, 1997.
15 Su, Y. L., Yao, S. H., Wei, C. S. and Wu. C. T.,“Analysis and Design of a WC Milling Cutter with TiCN Coating,”Wear. Vol. 215, No. 1, PP. 59-66, 1998.
16 F. W. Taylor,“On the art of cutting metals,”Trans. ASME, pp. 28-31, 1906.
17 L. Ahman, S. Hogmark,“Wear of high speed steel milling tools,”Scandinavian Journal of Metallurgy, pp. 35-991, 1985.
18 M. Lahres, G. Jorgensen,“Properties and dry cutting performance of diamond-coated tools,”Surface and Coating Technology, p. 505, 1994.
19 和立聯合科技股份有限公司 刀具型錄
20 L. V. Colwell,“Predicting the Angle of Chip Flow for Sigle-point Cutting tools,”Trans of the ASME, p. 199, 1954.
21 林維新、紀松水編譯,切削理論,全華科技圖書股份有限公司,民國76年12月。
22 李正中編著,薄膜光學與鍍膜技術,藝軒圖書出版社,民國88年十二月。

------------------------------------------------------------------------ 第 4 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911545307
論文名稱(中文) 鎢元素對氮化鉻、氮化鈦與碳化鉻鍍膜 的組織結構奈米化和奈米機械性質之影響
論文名稱(英文) Effect of tungsten on the nano-structure and nano-mechanical properties of CrN, TiN and CrC coatings
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 劉醇鴻
學號 n1890112
學位類別 博士
語文別 英文
口試日期 2006-06-26
論文頁數 103頁
口試委員 口試委員-蘇啟宗
口試委員-于劍平
口試委員-高文顯
召集委員-李榮顯
指導教授-蘇演良
口試委員-陳鐵城
關鍵字(中) 磨耗
摩擦
機械性質
多層鍍膜
關鍵字(英) Wear
Multilayered coatings
Mechanical properties
Friction
學科別分類
中文摘要   本研究利用封閉式非平衡磁控濺鍍系統發展應用於工業的氮化鉻鎢、氮化鈦鎢及碳化鉻鎢奈米多層鍍膜技術。論文中探討鎢元素、微晶大小、表面粗糙度及調變週期對氮化鉻、氮化鈦及碳化鉻鍍膜,奈米結構及奈米機械性質的影響。使用奈米壓痕及奈米磨耗試驗研究奈米多層鍍膜的機械及磨潤性質。利用原子力顯微鏡、掃瞄式電子顯微鏡、穿透式電子顯微鏡及X光繞射儀研究奈米多層膜的微觀結構。最後,利用車削及印刷電路板微鑽削實驗分析氮化鉻鎢、氮化鈦鎢及碳化鉻鎢鍍膜的切削性能。

  實驗結果顯示,添加3~8 at.%的鎢元素於氮化鉻鍍膜內,對其硬度值有顯著的影響。鎢含量6 at.%的Cr-W0.06-N鍍膜具有最高的硬度值67.2 GPa。但進一步添加鎢含量至16 at.%,硬度反而下降至36 GPa。隨著鎢含量的提升,氮化鈦鎢鍍膜硬度也隨之增加。鎢含量14 at.%的Ti-W0.14-N鍍膜具有最高的硬度值46.3 GPa。添加12~15 at.%的鎢元素於碳化鉻鎢鍍膜內,對其硬度值並無顯著影響。奈米磨耗試驗中,Cr-W0.06-N和Ti-W0.14-N分別為氮化鉻鎢、氮化鈦鎢鍍膜中,具有最佳的耐磨耗性質的鍍膜。而60V2鍍膜為碳化鉻鎢中,具有最低摩擦係數及磨耗深度鍍膜。H/E參數值(材料破壞前的彈性應變)越高,鍍膜的磨耗深度越淺。因此H/E參數較單獨使用硬度值更能準確判斷鍍膜的抗磨耗性。

  隨著鎢含量的增加,氮化鉻鎢、氮化鈦鎢的微結構可分為三種類型。第一種具有奈米結晶或非晶態結構且其表面形貌相當細緻,如Cr-W0.03-N和Ti-W0.01-N鍍膜。第二種擁有緻密和纖細的柱狀晶結構而其表面形貌仍為細緻的結晶態。如Cr-W0.06-N, Cr-W0.08-N, Ti-W0.06-N和Ti-W0.14-N鍍膜。第三種為具有粗大柱狀結晶且表面形貌十分粗糙的鍍膜,如Cr-W0.13-N, Cr-W0.16-N, Ti-W0.29-N和Ti-W0.38-N鍍膜。碳化鉻鎢鍍膜則隨著甲烷流量增加,其微結構由緻密柱狀結晶發展成鬆散類非晶型態。而底材偏壓對碳化鉻鎢鍍膜微結構並無顯著影響。40V2,60v2和80V2鍍膜皆為緻密且發展良好的柱狀晶結構

  隨著鎢含量的提升,氮化鉻鎢、氮化鈦鎢及碳化鉻鎢鍍膜的微晶大小也隨之增大。氮化鉻鎢、氮化鈦鎢及碳化鉻鎢鍍膜的表面粗糙度,隨著微晶大小的增大而顯著提升。在奈米磨耗試驗中,表面粗糙度和氮化鉻鎢、氮化鈦鎢及碳化鉻鎢鍍膜的磨耗行為有強烈的關連性。隨著表面粗糙度的增加,摩擦係數及磨耗深度亦隨之明顯變大。隨著多層膜調變週期的增加,氮化鉻鎢和氮化鈦鎢鍍膜的微晶大小也隨之明顯變大,而碳化鉻鎢鍍膜則略微增大。

  車削及印刷電路板微鑽削實驗中,Cr-W0.06-N, Ti-W0.14-N和60V2鍍膜分別為氮化鉻鎢、氮化鈦鎢及碳化鉻鎢鍍膜中具有最佳抗磨耗能力的鍍膜。在印刷電路板實驗鑽孔數為兩萬孔的情況下,60V2是所有奈米多層鍍膜中具有最小刀角磨耗的鍍膜。

英文摘要   This study utilizes the closed-field unbalanced magnetron sputtering system to develop the Cr-W-N, Ti-W-N and Cr-W-C nano-multilayered coatings for industrial applications. Effect of tungsten, crystallite size, surface roughness and modulation period on the nano-structure and nano-mechanical properties of CrN, TiN and CrC coatings was discussed in this dissertation. Mechanical and tribological properties of these nano-multilayered coatings were investigated by the nanoindentation technique and nano-wear test. The microstructure of these nano-multilayered coatings was examined by AFM, SEM, TEM and XRD in terms of crystal structure and crystallite size. Finally, the cutting performance of the Cr-W-N, Ti-W-N and Cr-W-C coated cemented carbide tools was analyzed in the turning and PCB micro-drilling test.

  Results of the experiments show that adding 3~8 at.% tungsten into the Cr-N coating influence the hardness significantly. The hardness rises steeply and a maximum of 67.2 GPa is reached approximately 6 at.% W of the Cr-W0.06-N coating. Upon further increasing the tungsten content, the hardness drops rapidly to approximately 36 GPa at 16 at.%. The hardness is increasing with an increase of the tungsten content for the Ti-W-N coatings. The Ti-W0.38-N coatings with 38 at.% tungsten possess the highest hardness of 46.3 GPa. For the Cr-W-C coatings, adding 12~15 at.% tungsten does not influence the hardness significantly. The optimum Cr-W-N and Ti-W-N coatings for sliding against spherical diamond indenter in the nano-wear test are the Cr-W0.06-N and Ti-W0.14-N coatings. For the Cr-W-C coatings, the 60V2 coating obtains the lowest wear depth and friction coefficient among all Cr-W-C coatings. The wear depth decreases with an increase of the H/E factor (elastic strain to failure) in the nano-wear test. The H/E factor is a more suitable parameter for predicting wear resistance than is hardness alone.

  With increasing the tungsten content, the microstructure of Cr-W-N and Ti-W-N coatings can be divided into three types. The first type, Cr-W0.03-N and Ti-W0.01-N coatings, is nanocrystalline/amorphous and the surface topography is featureless and very smooth. The second type has the slender columnar grain structure and surface topology changes into crystalline, and can be found in the Cr-W0.06-N, Cr-W0.08-N, Ti-W0.06-N and Ti-W0.14-N coatings. Moreover, the third type is coarse columnar and the surface topology is rough crystalline structure and we can found in the Cr-W0.13-N, Cr-W0.16-N, Ti-W0.29-N and Ti-W0.38-N coatings. An obvious evolution from dense columnar to loose amorphous-like microstructure in the Cr-W-C coatings is observed with increasing the flow rate of methane gas from 2 to 6 sccm at 35V. There is no significant evolution of the microstructure with an increase in the substrate bias. The 40V2, 60V2 and 80V2 coatings show dense and well-developed columnar structures.

  The crystallite sizes of the Cr-W-N, Ti-W-N and Cr-W-C coatings are increasing with increase of the tungsten concentration. The surface roughness of the Cr-W-N, Ti-W-N and Cr-W-C coatings is obviously increased with increase of the crystallite size. The surface roughness and the wear behavior of the Cr-W-N, Ti-W-N and Cr-W-C coatings in the nano-wear test have strong correlation. The higher the surface roughness of the coatings is, the greater the coefficient of friction and wear depths of the coatings are. An obvious increase in crystallite size is observed in the case of the Cr-W-N and Ti-W-N coatings as the modulation period is increased, whereas only minor change in the crystallite size is observed in the case of the Cr-W-C coatings.

  The Cr-W0.06-N, Ti-W0.14-N and 60V2 coatings have the best wear resistance for Cr-W-N, Ti-W-N and Cr-W-C coatings in the turning and PCB micro-drilling test, respectively. By drilling the same number of 20,000 holes, the 60V2 coated micron-drill has the smallest corner wear among all nano-multilayered coatings in PCB micro-drilling test.

論文目次 Abstract (English)…………………………………………Ⅰ
Abstract (Chinese)…………………………………………Ⅲ
Acknowledgements (Chinese)………………………………Ⅴ
Table of contents…………………………………………Ⅵ
List of tables…………………………………………… Ⅷ
List of figures……………………………………………Ⅸ
List of Acronyms and Symbols…………………………ⅩⅣ

1. Introduction………………………………………………1
1.1 Overview …………………………………………………1
1.2 Motivation ………………………………………………4
1.3 Organization ……………………………………………5
2. Literature Review ………………………………………7
2.1 PVD coating technology ………………………………7
2.1.1 Sputtering ……………………………………………7
2.1.2 Magnetron sputtering ………………………………9
2.1.3 Closed-field unbalanced magnetron sputtering…11
2.2 Nanocrystalline coatings……………………………14
2.2.1 Transition metal nitride coatings ……………15
2.2.2 Nano-multilayered coatings………………………17
2.3 Mechanical behavior and strengthening mechanism…18
2.3.1 Fine grain strengthening mechanism …………18
2.3.2 Nano-multilayered strengthening mechanism …20
3. Experimental Instruments and Techniques…………23
3.1 Sample preparations …………………………………23
3.2 Deposition procedure…………………………………24
3.3 Analysis instruments and techniques ……………26
3.3.1 X-ray diffraction …………………………………26
3.3.2 Field-emission scanning electron microscopy … 26
3.3.3 Transmission electron microscopy………………27
3.3.4 Atomic force microscopy …………………………28
3.3.5 The scratch tester…………………………………29
3.3.6 The nano-tester ……………………………………30
3.3.7 Turning test ………………………………………31
3.3.8 PCB micro-drilling test …………………………31
4. Results and Discussion ………………………………32
4.1 Chemical composition…………………………………32
4.2 Mechanical properties ………………………………36
4.3 Adhesion test …………………………………………44
4.4 Nano-wear test…………………………………………46
4.5 Surface topography and microstructure …………62
4.6 Phase identification ………………………………71
4.7 Turning test …………………………………………83
4.8 PCB micro-drilling test ……………………………87
5. Conclusions ……………………………………………91
References …………………………………………………94
Vita …………………………………………………………100
Publications ………………………………………………101
參考文獻 [1] H. Gleiter, “Nanocrystalline materials”, Prog. Mater. Sci. 33 (1989) 223.
[2] Y.K. Huang, A.A. Menovsky, F.R. de Boer, “Electrical resistivity of nanocrystalline copper“, Nanostruct. Mater. 2 (1993) 505.
[3] R.W. Siegel, “Nanostructured Materials-Mind over mater”, Nanostruct. Mater. 4 (1994) 121.
[4] H. Gleiter, “Nanostructured materials: state of the art and perspectives”, Nanostruct Mater. 6 (1995) 3.
[5] H. Gleiter, “Nanostructured materials: basic concepts and microstructure”, Acta Mater. 48 (2000) 1.
[6] D.S. Rickerby and A. Matthews, Advanced Surface Coatings: a handbook of surface engineering, Glasgow, Blackie, (1991).
[7] R. Behrisch Ed., Sputtering by Particle Bombardment, Applied Physics, 47, Berlin, Springer, (1981).
[8] P.D. Toensend, and J. C. Kelly, Ion Implantation: Sputtering and Their Applications, Academic Press, (1976).
[9] S.M. Rossnagel, W.D. Sproul, K.O. Legg, editors. Sputter Deposition: Opportunities for Innovation in Advanced Surface Engineering. Switzerland,
Technomic Publishing Co., 1995.
[10] P.S. McLeod, L.D. Hartsough, “High-rate sputtering of aluminum for metalization of integrated circuits”, J. Vac. Sci. Technol. 14 (1977) 263.
[11] R.K. Waits, “Planar magnetron sputtering”, J. Vac. Sci. Technol. 15 (1978) 179.
[12] B. Window, N. Savvides, “Charged particle fluxes from planar magnetron sputtering sources”, J. Vac. Sci. Technol. A 4 (1986) 196.
[13] B. Window, N. Savvides, “Unbalanced dc magnetrons as sources of high ion fluxes”, J. Vac. Sci. Technol. A 4 (1986) 453.
[14] N. Savvides, B. Window, “Unbalanced magnetron ion-assisted deposition and property modification of thin films”, J. Vac. Sci. Technol. A 4 (1986) 504.
[15] D.G. Teer, “Magnetron sputtering ion plating”, Surf. Coat. Technol. 39-40 (1989) 565.
[16] W.D. Sproul, P.J. Rudnick, M.E. Graham, S.L. Rohde, “High-rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system”, Surf. Coat. Technol. 43-44 (1990) 270.
[17] S. Schiller, K. Goedicke, J. Reschke, V. Kirchoff, S. Schneider, F. Milde, “Pulsed magnetron sputter technology“, Surf. Coat. Technol. 61 (1993) 331.
[18] H. Holleck, V. Schier, “Multilayer PVD coatings for wear protection”, Surf. Coat. Technol. 76-77 (1995) 328.
[19] Z.J. Liu, A. Vyas, Y.H. Lu, Y.G. Shen, “Structural properties of sputter-deposited CNx/TiN multilayer films”, Thin Solid Films 479 (2005) 31.
[20] Y.H. Lu, P. Sit, Z.F. Zhou, et al., “X-Ray photoelectron spectroscopy characterization of reactively sputtered Ti-B-N thin films”, Surf. Coat. Technol. 187 (2004) 98.
[21] G. Berg, C. Friedrich, E. Broszeit, C. Berger, “Development of chromium nitride coatings substituting titanium nitride”, Surf. Coat. Technol. 86-87 (1996) 184.
[22] J.H. Hsieh, C. Liang, C.H. Yu, W. Wu, “Deposition and characterization of TiAlN and multi-layered TiN/TiAlN coatings using unbalanced magnetron sputtering”, Surf. Coat. Technol. 108-109 (1998) 132.
[23] S.S. Eskildsen, C. Mathiasen, M. Foss, “Plasma CVD: process capabilities and economic aspects”, Surf. Coat. Technol. 116-119 (1999) 18.
[24] S. Wilson, T. Alpas, “Tribo-layer formation during sliding wear of TiN coatings”, Wear 245 (2000) 223.
[25] R. Wiedemann, H. Oettel, T. Bertram, V. Weihnacht, “Mechanical properties of TiN coatings”, Adv. Eng. Mater. 3 (2001) 865.
[26] A.A. Galska, J.C. Uht, P.M. Adaias, “Reactive and nonreactive ion mixing of Ni films on carbon substrates”, J. Vac. Sci. Technol. A 6 (1988) 99.
[27] S.C. Tjong, N.B. Wong, G. Li, S.T. Lee, “Metallization of CVD diamond films by ion beam assisted deposition”, Mater. Chem. Phys. 62 (2000) 241.
[28] S.C. Tjong, H.P. Ho, S.T. Lee, “Development of single- and multi-layered metallic films on diamond by ion beam-assisted deposition”, Diam. Rel. Mater. 10 (2001) 1578.
[29] J.S. Koehler, “Attempt to design a strong soild“, Phys. Rev. B 2 (1970) 547.
[30] S.L. Lehoczy, “Strength enhancement in thin-layered Al-Cu laminates”, J. Appl. Phys. 49 (1978) 5479.
[31] S.L. Lehoczy, “Retardation of dislocation generation and motion in thin-layered metal laminates”, Phys. Rev. Lett. 41 (1978) 1814.
[32] M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, T. Nomura, “Formation of cubic-AlN in TiN/AlN superlattice”, Surf. Coat. Technol. 86-87 (1996) 225.
[33] U. Helmersson, S. Todorova, S.A. Barnett, J.E. Sundgren, L.C. Markert, J.E. Greene, “Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness”, J. Appl. Phys. 62 (1987) 481.
[34] M. Shinn, L. Hultman, S.A. Barnett, “Growth, structure, and microhardness of epitaxial titanium nitride-niobium nitride (TiN/NbN) superlattices”, J. Mater. Res. 7 (1992) 901.
[35] X. Chu, M.S. Wong, W.D. Sproul, S.L. Rohde, S.A. Barnett, “Deposition and properties of polycrystalline TiN/NbN superlattice coatings”, J. Vac. Sci. Technol. A10 (1992) 1604.
[36] X. Chu, S.A. Barnett, “Model of superlattice yield stress and hardness enhancements”, J. Appl. Phys. 77 (1995) 4403.
[37] H. Wrzesinska, J. Ratajczak, K. Studzinska, J. Katcki, “Transmission electron microscopy of hard ceramic superlattices applied in silicon micro-electro- mechanical systems”, Mater. Chem. Phys. 81 (2003) 265.
[38] G.W. Nieman, J.R. Weertman, R.W. Siegel, “Microhardness of nanocrystalline palladium and copper produced by inert-gas condensation”, Scr. Met. 23 (1989) 2013.
[39] G.W. Nieman, J.R. Weertman, R.W. Siegel, “Mechanical behavior of nanocrystalline Cu and Pd”, J. Mater. Res. 6 (1991) 1012.
[40] L. A. Giannuzzi, P. R. Howell, H. W. Pickering and W. R. Bitler, “Diffusion induced recrystallization during ion beam milling ”, Scr. Metall. Mater. 24 (1990) 2407.
[41] A.M. El-Sherik, U. Erb, G. Palumbo, K.T. Aust, “Deviations from. Hall-Petch behavior in as-prepared nanocrystalline nickel”, Scr. Metall. Mater. 27 (1992) 1185.
[42] R.W. Siegel, G.E. Fougere, “Mechanical properties of nanophase metals”, Nanostruct. Mater. 6 (1995) 205.
[43] A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, “On the validity of the. Hall-Petch relationship in nanocrystalline materials”, Scr. Metal. 23 (1989) 1679.
[44] K. Lu, W.D. Wei, J.T. Wang, “Microhardness and fracture properties of. nanocrystalline Ni-P alloy”, Scr. Metall. Mater. 24 (1990) 2319.
[45] G.E. Fougere, J.R. Weertman, R.W. Siegel, S. Kim, “Grain-size dependent hardening and softening of nanocrystalline Cu and Pd”, Scr. Metall. Mater. 26 (1992) 1879.
[46] D.A. Konstantinidis, E.C. Aifantis, “On the Anomalous Hardness of Nanocrystalline Materials”, Nanostruct. Mater. 10 (1998) 1111.
[47] G. Palumbo, S.J. Thorpe, K.T. Aust, “On the contribution of triple junctions to the structure and. properties of nanocrystalline materials”, Scr. Metal. Mater. 24 (1990) 1347.
[48] C. Suryanarayana, D. Mukhopadhyay, S.N. Patankar, F.H. Froes, “Grain size effects in nanocrystalline materials”, J. Mater. Res 7 (1992) 2114.
[49] P.G. Sanders, C.J. Youngdahl, J.R. Weertman, “The strength of nanocrystalline metals with and without flaws”, Mater. Sci. Eng. A 234-236 (1997) 77.
[50] L.S. Palatnik, A.I. Il'inskii, N.P. Sapelkin, “Strength of multilayered vacuum condensates”, Sov. Pys. Solid State 8 (1967) 2016.
[51] L.S. Palatnik, A.I. Il'inskii, “Stabilization of high-strength vacuum-deposited films”, Doklady Sov. Phys.: Techn. Phys. 9 (1964) 93.
[52] R.W. Springer, D.S. Catlett, ”Structure and mechanical properties of AlxOy vacuum-deposited laminates”, Thin Solid Films 54 (1978) 197.
[53] B.A. Movchan, A.V. Demchishin, G.F. Badilenko, Bunshah, et al., “Structure- property relationships in microlaminate TiC/TiB2 condensates”, Thin Solid Films 97 (1982) 215.
[54] M. Kato, T. Mori, L.H. Schwartz, “Hardening by spinodal modulated structure”, Acta Metall. 28 (1980) 285.
[55] H. Holleck, H. Schulz, “Advanced layer material constitution”, Thin Solid Films 153 (1987) 11.
[56] A.F. Jankowski, “Modelling the supermodulus effect in metallic multilayers”, J. Phys. F 18 (1988) 413.
[57] M. Shinn, L. Hultman, S.A. Barnett, “Growth, structure, and microhardness of epitaxial TiN/NbN superlattices”, J. Mater. Res. 7 (1992) 901.
[58] W.D. Sproul, “Multilayer, multicomponent, and multiphase physical vapor deposition coatings for enhanced performance”, J. Vac. Sci. Technol. A 12 (1994) 1595.
[59] X. Chu, S.A. Barnett, ”A model of superlattice yield stress and hardness enhancements”, Mater. Res. Soc. Symp. Proc. 382 (1995) 291.
[60] P. Robinson, A. Matthews, K.G. Swift, S.A. Franklin,” A computer knowledge- based system for surface coating and material selection”, Surf. Coat. Technol. 62 (1993) 662.
[61] A.A. Voevodin, A.L.Yerokhin, V.V. Lyubimov, “Formal order for search of the principle structure of multilayer coatings at their designing”, Phisik Status Solidi A 145 (1994) 565.
[62] A.A. Voevodin, S.D. Walck, J.S. Zabinski, ”Architecture multilayer nanocomposite coatings with super-hard diamond-like carbon layers for wear protection at high contact loads”, Wear, 203-204 (1997) 516.
[63] H. Holleck, “Material selection for hard coatings”, J. Vac. Sci. Technol. A 4 (1986) 2661.
[64] H. Holleck, H. Schulz, “Preparation and behaviour or wear-resistant TiC/TiB2, TiN/TiB2 and TiC/TiN coatings with high amounts of phase boundaries”, Surf. Coat. Technol. 36 (1988) 707.
[65] A.A. Voevodin, V.V. Lyubimov, A.L. Yerokhin, S.E. Spassky, ”Calculation of multilayer ion-plasma coating scheme”, Voprosy Atomnoy Naukii Techniki, 19 (1991) 66.
[66] V.V. Lyubimov, A.A. Voevodin, S.E. Spassky, A.L. Yerokhin, ”Stress analysis and failure possibility assessment of multilayer PVD coating”, Thin Solid Films 207 (1992) 117.
[67] C. Rebholz, H. Ziegele, A. Leyland, A. Matthews, “Structure, mechanical and tribological properties of nitrogen-containing chromium coatings prepared by reactive magnetron sputtering”, Surf. Coat. Technol. 115 (1999) 222.
[68] B. Bhushan, Handbook of Micro/Nano Tribology, CRC press, (1995) 323.
[69] A. Leyland, A. Matthews, “On the significance of the H/E ratio in wear control: A nanocomposite approach to optimised tribological behavior”, Wear 246 (2000) 1.
[70] Y.L. Su, S.H. Yao, Z.L. Leu, et al., ”Comparison of tribological behavior of three films-TiN, TiCN and CrN-grown by physical vapor deposition”, Wear 213 (1997) 165.
[71] U. Wiklund, O. Wanstrand, M. Larsson, S.E. Hogmark, “Evaluation of new multilayered physical vapour deposition coatings in sliding contact”, Wear 236 (1999) 88.
[72] S. Zhang, Y. Fu , H. Du , X.T. Zeng , Y.C. Liu, “Magnetron sputtering of. nanocomposite (Ti, Cr)CN/DLC Coatings”, Surf. Coat. Technol. 162 (2002) 42.
[73] K.E. Cooke, M. Bamber, J. Bassas, et al., “Multilayer nitride coatings by closed field unbalanced magnetron sputter ion plating”, Surf. Coat. Technol. 162 (2003) 276.
[74] E. Martınez, J. Romero, A. Lousa, J. Esteve, “Wear behavior of nanometric CrN/Cr multilayers”, Surf. Coat. Technol. 163-164 (2003) 571.
[75] J. Romero, E. Martınez, J. Esteve, A. Lousa, “Nanometric chromium nitride/chromium carbide multilayers by r.f. magnetron sputtering”, Surf. Coat. Technol. 180-181 (2004) 335.
[76] S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, “Toughening of hard nanostructural thin films: a critical review“, Surf. Coat. Technol. 198 (2005) 2.
[77] K. Yamamotoa, S. Kujimeb, K. Takaharab, “Properties of nano-multilayered hard coatings deposited by a new hybrid coating process: Combined cathodic arc and unbalanced magnetron sputtering”, Surf. Coat. Technol. 200 (2005) 435.
[78] A. Pinyol, E. Bertran, C. Corbella, et al., “Properties of W/a-C nanometric multilayers produced by RF-pulsed magnetron sputtering”, Diam. Relat. Mater. 11 (2002) 1000.
[79] M.J.H. Kessels, J. Verhoeven, A.E. Yakshin, F.D. Tichelaar, F. Bijkerk, “Ion beam induced intermixing of interface structures in W/Si multilayers”, Nucl. Instrum. Meth. B 222 (2004) 484.
[80] Y.L. Su, S.H. Yao, “On the performance and application of CrN coating”, Wear 205 (1997) 112.
[81] H. Scheerera, T.H. Hochea, E. Broszeit, et al., “Effects of the chromium to aluminum content on the tribology in dry machining using (Cr,Al)N coated tools”, Surf. Coat. Technol. 200 (2005) 203.

------------------------------------------------------------------------ 第 5 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200912002406
論文名稱(中文) 以射頻濺鍍製備氟化鎂薄膜之光學性質研究
論文名稱(英文) Investigation of Optical Properties of Magnesium Fluoride Thin Films Produced by RF Sputtering
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 陳舒瀚
學號 n5693431
學位類別 碩士
語文別 中文
口試日期 2006-06-29
論文頁數 107頁
口試委員 口試委員-何主亮
指導教授-李世欽
口試委員-薛富盛
口試委員-楊耀昇
口試委員-林天財
關鍵字(中) 氟化鎂
射頻濺鍍
光學鍍膜
熱處理
表面能
關鍵字(英) R.F. sputtering
Magnesium fluoride
optical coating
surface energy
heat treatment
學科別分類
中文摘要 氟化鎂薄膜具有很多優異的性質,如:在遠紫外光至紅外光區間有高穿透率、低折射係數(1.38-1.40)、機械耐久性與化學穩定性佳,可被應用在抗反射層、金屬保護層、彩色濾光片等光學元件上。另外氟化鎂薄膜亦可應用於光電、磁性、半導體與生醫材料方面,是一種應用極為廣泛的材料。然而傳統上使用熱蒸鍍方法製備氟化鎂薄膜,還是存在結構不緻密、堆積密度低與光學損失高等缺點。
本研究利用射頻磁控濺鍍沈積法(R.F.Sputtering)於純氬氣中來成長氟化鎂薄膜,基材使用矽晶片與玻璃基板,並透過製程上射頻功率、基板溫度與熱處理等條件變化,來研究氟化鎂薄膜的性質。
研究結果顯示,氟化鎂薄膜為含有微小晶粒的微晶結構,而鍍膜中含有些微的氧化鎂產生。隨著射頻功率增加時,鍍膜的沈積速率、光學穿透率及光學能隙值都呈現上升的趨勢,而表面粗糙度與表面能則有先上升後下降的趨勢。當基板溫度增加時,其沈積速率、光學穿透率與光學能隙值會下降,而表面團聚物(clusters)的尺寸與表面粗糙度有先上升後下降的趨勢,表面能則呈現相反的趨勢。熱處理會造成鍍膜的表面粗糙度增加、降低光學穿透率與表面能。

英文摘要 MgF2 thin films have many superior properties such as their high transparency, low refractive index, high chemical stability and mechanical durability. These properties make the films suitable for a large number of applications in optics, semiconductors and biologics. For example, anti-reflection coatings, protective coatings, nanocrystalline semiconductors, organic electroluminescent molecules and solar cell. Conventionally, films are grown by thermal evaporation of fluoride coating materials. These films have some mistake for sparse structure, low packing density, and high scattering loss.
In this study, MgF2 thin films were deposited in argon gas by radio frequency magnetron sputtering deposition. The substrate selected silicon wafer, glass. The properties of the films were investigated relations with changes of radio frequency power, substrate temperature and thermal treatment.
The results reveal that MgF2 thin films were amorphous-like structure with some nanocrystalline. The deposition rate, transparency, optical band gap, roughness and surface energy of thin films depend its process parameters such as power, substrate temperature and thermal treatment. When substrate temperature increasing, the MgO structures were formed in the MgF2 thin films by R.F. sputtering. With the R.F. power increasing, the deposition rate, transparency and optical band gap are increasing. The deposition rate, transparency and optical band gap are decreasing by raising substrate temperature. With substrate temperature increasing, the roughness of MgF2 thin films is increasing and the largest value appears at 200℃, neither does the surface energy of thin films. After thermal treatment, the roughness of MgF2 thin films is increasing, but the optical transparency and surface energy are decreasing.

論文目次 總目錄
中文摘要.........................................I
英文摘要........................................II
總目錄..........................................IV
圖目錄.........................................VII
表目錄.........................................XII
第一章 緒論......................................1
1-1 前言.........................................1
1-2 研究動機與目的...............................3
第二章 文獻回顧及理論基礎........................4
2-1 氟化鎂(MgF2)之介紹.........................4
2-2 製備氟化鎂薄膜之方法.........................6
2-3 濺鍍原理.....................................9
2-3-1 電漿原理..................................12
2-3-2 射頻放電..................................14
2-3-3 磁控濺鍍法................................15
2-4 薄膜成長理論................................17
2-5 薄膜之光學性質..............................21
第三章 實驗方法與流程...........................26
3-1 實驗流程....................................26
3-2 濺鍍系統裝置................................27
3-3 實驗材料....................................30
3-4 鍍膜程序及參數設定..........................31
3-5 退火處理....................................32
3-6 薄膜性質量測................................33
3-6-1 膜厚與成長速率之量測......................33
3-6-2 晶體結構分析..............................33
3-6-3 顯微結構分析..............................34
3-6-4 成份及化學鍵結分析........................34
3-6-5 表面型態及粗糙度分析......................35
3-6-6 光學量測..................................35
3-6-7 接觸角量測................................36
第四章結果與討論..............................38
4-1 氟化鎂薄膜結構與成分之研究..................38
4-1-1 鍍膜之沈積速率分析........................38
4-1-2 鍍膜之元素成分與鍵結分析..................42
4-1-3 鍍膜之微結構分析..........................46
4-1-4 鍍膜之晶體結構分析........................48
4-1-5 鍍膜之表面型態觀察........................52
4-2 氟化鎂薄膜光學性質與表面能分析..............61
4-2-1 鍍膜之光學性質分析........................61
4-2-2 鍍膜之表面能分析..........................70
4-3 熱處理製程之影響............................81
4-3-1 微結構與成分分析..........................81
4-3-2 表面型態分析..............................86
4-3-3 光學性質分析..............................91
4-3-4 表面能分析................................95
第五章 結論....................................100
參考文獻.......................................102
誌謝...........................................107

圖目錄
Fig. 2-1 The crystal structure of magnesium fluoride (MgF2)..................................5
Fig. 2-2 The interaction of Ar ion gas on the target surface..................................11
Fig. 2-3 The mechanism of radio frequency magnetic sputtering.............................16
Fig. 2-4 The model of the magnetic sputtering...16
Fig. 2-5 The growth mechanism of the thin film..18
Fig. 2-6 The structure models of deposited layers, (a) Movchan and Demchisin’s model;(b) Thornton’s SZM model...........................20
Fig. 2-7 The pattern is the Burstein Moss shift effect..........................................24
Fig. 3-1 Flow chart of the experimental procedure.......................................26
Fig. 3-2 (a) Schematic diagram of the R.F. sputtering system. (b)The relation of target with substrate position..............................29
Fig. 3-3 The process of annealing treatment.....32
Fig. 3-4 Schematic drawing showing the contact angle between liquid and thin films.............37
Fig. 4-1 Deposition rate of MgF2 thin films at various R.F. power..............................41
Fig. 4-2 Deposition rate of MgF2 thin films at different substrate temperature.................41
Fig. 4-3 XPS spectrum of MgF2 films for 125W at different temperature (a) RT (b) 300℃..........44
Fig. 4-4 XPS analysis of MgF2 thin films (a) Mg2p3/2 (b) F1s (c) O1s.........................45
Fig. 4-5 TEM morphology of MgF2 thin films (a) bright filed (b)dark field (c)selected diffraction pattern.............................47
Fig. 4-6 XRD diffraction pattern of MgF2 thin films (constant power : 150W) at various substrate temperature, (a) RT (b) 100℃(c) 200℃(d) 300℃.......................................50
Fig. 4-7 XRD diffraction pattern of MgF2 thin films (RT) at different power, (a) 100W (b) 125W (c) 150W........................................51
Fig. 4-8 SEM morphology of MgF2 thin films (power:100W) by various substrate temperature, (a)RT (b)100℃ (c)200℃ (d)300℃...................53
Fig. 4-9 SEM morphology of MgF2 thin films at RT by various power, (a)100W (b)125W (c)150W.......54
Fig. 4-10 AFM of as-deposited films by different substrate temperature at constant power: 100W...57
Fig. 4-11 The relation of roughness and substrate temperature on MgF2 thin films..................58
Fig. 4-12 AFM micrographs of MgF2 thin films at various power: (a)100W (b)125W (c)150W (Substrate temperature is 300℃)...........................59
Fig. 4-13 The surface roughness of MgF2 thin films prepared at different power...............60
Fig. 4-14 The optical transmittance of as-deposited films in various substrate temperatures, constant power: (a) 100W (b) 150W.65
Fig. 4-15 The extinction coefficient of MgF2 thin films at different substrate temperatures, constant power: (a) 100W (b) 150W...............66
Fig. 4-16 The optical transmittance of MgF2 thin films changes for various power at constant substrate temperature...........................67
Fig. 4-17 The extinction coefficient of MgF2 thin films for different power at constant substrate temperature.....................................67
Fig. 4-18 Dependence of the absorption coefficient on the photo energy for MgF2 thin films deposited at various substrate temperature.....................................68
Fig. 4-19 Dependence of the absorption coefficient on the photo energy for MgF2 thin films deposited at various R.F. power...........68
Fig. 4-20 Variation of photo energy gap of MgF2 thin films deposited at different power.........69
Fig. 4-21 The contact angle of MgF2 thin films deposited at different substrate temperature for constant power:100W.............................74
Fig. 4-22 The morphology between pure water and MgF2 thin films deposited at various substrate temperature at 100W.............................75
Fig. 4-23 The morphology between ethylene glycol and MgF2 thin films deposited at various substrate temperature at 100W...................76
Fig. 4-24 The morphology between pure water and MgF2 thin films deposited at various R.F. power on 100℃. ......................................77
Fig. 4-25 The morphology between ethylene glycol and MgF2 thin films deposited at various R.F. power on 100℃..................................78
Fig. 4-26 Variation of contact angle of MgF2 thin films deposited for different R.F. power on 100℃...........................................79
Fig. 4-27 Surface energy of MgF2 thin films prepared at various substrate temperature.......79
Fig. 4-28 XRD of MgF2 thin films deposited at 125W, 200℃ after different annealing temperature : (a)as-deposited (b) 200℃(c) 300℃...........................................82
Fig. 4-29 XPS spectrum of MgF2 thin films; (a)as-deposited (b)after annealing 300℃..............84
Fig. 4-30 XPS analysis of MgF2 thin films after annealing 300℃; (a)Mg2p2/3 (b) F1s (c)O1s......85
Fig. 4-31 SEM morphology of MgF2 thin films prepared at 125W, 200℃after different annealing temperature; (a)as-deposited (b) 200℃(c) 300℃.87
Fig. 4-32 AFM morphology of MgF2 thin films prepared at 125W, 200℃after different annealing temperature; (a)as-deposited (b) 200℃(c) 300℃.89
Fig. 4-33 Surface roughness of MgF2 thin films after different annealing temperature...........90
Fig. 4-34 The optical transmittance of MgF2 thin films (100W, 200℃) in the region (300~800 nm) after different heat treatment..................93
Fig. 4-35 The extinction coefficient of MgF2 thin films (100W, 200℃) in the region (300~800 nm) after different heat treatment..................93
Fig. 4-36 Dependence of the absorption coefficient on the photo energy for MgF2 films deposited at 100W, 200℃ and annealed at different temperature...........................94
Fig. 4-37 The contact angle of MgF2 films prepared at 150W and annealed at various temperature for pure water......................97
Fig. 4-38 The contact angle of MgF2 films prepared at 125W, RT and annealed at various temperature.....................................97
Fig. 4-39 The contact morphology of MgF2 films deposited at 125W, RT and annealed at different temperature. (a-c) for pure water; (d-f) for ethylene glycol.................................98
Fig. 4-40 Surface energy of MgF2 films prepared at RT and annealed at various temperature.......99
Fig. 4-41 Surface energy of MgF2 films prepared at 125W and annealed at various temperature.....99

表目錄
Table 2-1 The physical properties of magnesium fluoride.........................................5
Table 3-1 The parameters of experiments.........31
Table 4-1 The energy gap of MgF2 thin films on various parameters..............................69
Table 4-2 The data of contact angle, surface energy and roughness of MgF2 thin films.........80

參考文獻 參考文獻
[1] H. Ganesha Shanbhogue, S.N. Prasad, C.L. Nagendra and G.K.M. Thutupalli, "Optical properties and surface morphology of near infrared multiplayer antireflection coatings", Thin Solid Films, 320(1998), 290-297.
[2] G. Zhang, J. Zhao and M. A. Green, "Effect of substrate heating on the adhesion and humidity resistance of evaporated MgF2/ZnS antireflection coatings and on the performance of high-efficiency silicon solar cells", Solar Energy Materials and Solar Cells, 51(1998), 393-400.
[3] Juan I. Larruquert and Ritva A.M. Keski-Kuha, "Far ultraviolet optical properties of MgF2 films deposited by ion-beam sputtering and their application as protective coatings for Al" Optical Communications, 215(2003), 93-99.
[4] T. Furubayashi, J. Magn. Magn. Mater., 140-144(1995) , 393.
[5] R. Thielsch, H. Bottcher, Chem. Phys. Lett., 189(1992), 226.
[6] S. Tokito, Y. Taga, Appl. Phys. Lett., 66(1995), 673.
[7] H. Kozuka, Sol-Gel Optics IV, SPIE 3136, 304(1997).
[8] Zs. Czigany, M. Adamik and N. Kaiser, "248 nm laser interaction studies LaF3/MgF2 optical coatings by cross-sectional transmission electron microscopy", Thin Solid Films, 312, (1998), 176-181.
[9] 李正中,"薄膜光學與鍍膜技術",藝軒圖書出版社,第一版,(1999).
[10] 楊錦章,"基礎濺鍍電漿",電子發展月刊,68期,(72)13-40.
[11] K. Kawamata , T. Shouzu and N. Mitamura, "K-M-S (keep-molecules sputtering) deposition of optical MgF2 thin film", Vacuum, 51(1998),559-564.
[12] Yong-Hong Ye, Ning Gu, Hai-Qian Zhang, Ping-Ping Chen and Xi-Lin Tan, "Influence of annealing on the surface topography of MgF2:an atomic force microscopic study", Thin Solid Films, 346(1999), 230-233.
[13] Xueke Xu, Zhaosheng Tang, Jianda Shao and Zhengxiu Fan, "The study on the interface adhesion comparison of the MgF2, Al2O3, SiO2 and Ag thin films", Applied Surface Science, 245(2005),11-15
[14] D. Jacob, F. Peiro, E. Quensnel and D. Ristau, "Microstructure and composition of MgF2 optical coatings grown on Si substrate by PVD and IBS processes", Tin Solid Films, 360(2000), 133-138.
[15] George Atanassov, James Turlo, Ji Kai Fu and Yi Sheng Dai, "Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition", Thin Solid Films, 342(1999), 83-92.
[16] L. Dumas, E. Quesnel, J.-Y. Robic and Y.Pauleau, "Charaterization of magnesium fluoride thin films produced by argon ion beam-assisted deposition", Thin Solid Films, 382(2001), 61-68.
[17] Shinobu Fujihara, Hiroki Naito, Munehiro Tada and Toshio Kimura, "Sol-gel preparation and optical properties of MgF2 thin films containing metal and semiconductor nanoparticles" Scripta mater., 44(2001), 2031-2034.
[18] Shinobu Fujihara, Munehiro Tada and Toshio Kimura, "Preparation and characterization of MgF2 thin film by a trifluoroacetic acid method" Thin Solid Films, 304(1997), 252-255.
[19] S. M Rossnagel et al., "Handbook of plasma processing technology", Noyes Publications Park Ridge, New Jersey, U.S.A, (1982).
[20] Brain Campman, "Plasma", Glow Discharge Process, (John Wiley & Sons, NewYork, U. S. A, (1980), Chap.3.
[21] 林光隆,國立成功大學 材料科學及工程學系,"材料表面工程講義",chap.7,(2001).
[22] L. John Vossen and Werner Kerm, "Thin Film Process", Academic Process, (1999), 134.
[23] R. F. Bunshah, "Deposition Technologies for Films and Coatings", Noyes Publications, Park Ridge, New Jersey, U. S. A., (1982).
[24] J. Venables, "Nucleation and Growth of Thin films", Rep. Prog. Phys., 47 (1984) 399.
[25] John A. Thornton, "Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings", J. Vac. Sci. Technol., 11(4)(1974), 666~670.
[26] 艾啟峰,"電漿工程科技在表面處理工業應用之發展(上) ",科儀新知,(1998).
[27] L. Gupta, A. Mansingh and P.K.Srivastava, "Band Gap Narrowing and the Band Structure of Tin-Doped Indium Oxide Films", Thin Solid Films, 176(1989), 33~44.
[28] 李玉華,"透明導電膜及其應用",科儀新知,第十二卷第一期(1990),94~102.
[29] E. Burstein, "Anomalous optical absorption limit in InSb", Phys. Rev. 93(1954), 455.
[30] H.L Hartangel, A.L. Dawar, A.K. Jain, and C. Jagadish, Semiconducting Transparent Thin Films (Institute of Physics, Philiadelphia, (1995), 219-230.
[31] M. Ohing, "The Materials Science of Thin Films", printed in the United States of America, (1991), 11~112.
[32] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. muilenberg(Editor), "HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY", Eden Prairie, Minn., Physical Electronics, 1995.
[33] D. Briggs and M.P. Seah, "Practical Surface Analysis", Chichester, Wiley, c1990-c1992, New York.
[34] John F. Moulder, Jill Chastain, Roger C. King "Handbook of x-ray photoelectron spectroscopy : a reerence book of standard spectra for identification and interpretation of XPS data", Eden Prairie, Minn., Physical Electronics, c1995.
[35] 陳力俊,"材料電子顯微鏡學",國科會精儀中心發行,修訂再版(1994),75~77.
[36] A. Amaral, P. Brogueira, C. Nunes de Carvalho and G. Lavared, "Early stage growth structure of indium tin oxide thin films deposited by reactive thermal evaporation", Surface and Coatings Technology, 125 (2000), 151-156.
[37] Jianguo Lu, Zhizhen Ye, Jingyun Huang, Lei Wang and Binghui Zhao, "Synthesis and properties of ZnO films with (110) orientation by SS-CVD", Applied Surface Science, 207(2003), 295-299.
[38] Carl. V. Thompson, Roland Carel, "Texture development in poly crystalline thin films", Material Science and Engineering, B32(1995), 211-219.
[39] T. Young, Phil. Trans. R. Soc. (London), 95(1805), 65-87.
[40] F. M. Fowkes, J. Phys. Chem., 66(1962), 382.
[41] D.K. Owens, R.C. Wendt, J. Appl. Polym. Sci, 13 (1969), 1741-1747.
[42] Q. Zhao, Y. Liu and E. W. Abel, "Effect of temperature on the surface free energy of amorphous carbon films", Journal of Colloid and Interface Science, 280(2004), 174-183.
[43] D.E. Packham, "Surface energy, surface topography and adhesion", International Journal of Adhesives, 23(2003), 437-448.

------------------------------------------------------------------------ 第 6 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200914242718
論文名稱(中文) 可電控棱鏡光柵於具有光導電鍍膜之液晶薄膜之研究
論文名稱(英文) Electrically-controllable prism gratings based on liquid crystal films with a photoconductive layer
校院名稱 成功大學
系所名稱(中) 光電科學與工程研究所
系所名稱(英)
學年度 96
學期 2
出版年 97
研究生(中文) 林宏仁
學號 l7695125
學位類別 碩士
語文別 中文
口試日期 2008-07-16
論文頁數 78頁
口試委員 口試委員-黃啟炎
口試委員-莫定山
指導教授-李佳榮
關鍵字(中) 光導電鍍膜
液晶
棱鏡光柵
關鍵字(英) liquid crystal
prism gratings
photoconductive layer
學科別分類
中文摘要 本論文主要利用鍍有導電聚合物薄膜之水平配向液晶品,研究發展出可電控之液晶菱鏡光柵。藉由紫外光經過一灰階光柵光罩照射導電薄膜以產生一導電度漸進變化之纇電極光柵圖樣,在外加一電壓於樣品下,可造成跨於液晶層兩端之有效電場大小呈現一空間週期性漸進變化。這便是造成液晶方向具有一空間週期性漸進變化的液晶菱鏡光柵。當偵測光通過此光柵後會產生非對稱性的繞射圖樣。此非對稱性的繞射圖樣之分佈可經由外加不同大小之直流電壓來調控,而且此菱鏡光柵可在兩互相垂直之入射偏振間開關。基於一液晶菱鏡模型假設下的繞射理論,我們也發展了一些模擬,並與實驗結果作比較與討論。
英文摘要 This study investigated electrically-controllable prism gratings based on homogeneously-aligned liquid crystals with a photoconductive layer. An ultraviolet-induced conductivity-gradient electrode-like grating pattern of the polymer layer under a gray-scale grating photomask results in a spatially-periodic gradient magnitude of the effective electric field dropping on LC layer under an applied dc voltage. This causes a prism grating with a spatially-periodic gradient reorientation of LCs. An asymmetric diffraction pattern can be obtained when the probe beam passes through the LC prism grating, and the distribution of the asymmetric diffraction pattern can be tuned with different dc voltage and switched between two orthogonal probe polarizations. Simulation based on a diffraction theory under a LC prism grating model is also developed and compared with the experimental results in this thesis.
論文目次 目錄
摘要……………………………………………………………………I
Abstract………………………………………………………………II
誌謝……………………………………………………………………III
目錄……………………………………………………………………IV
圖目錄…………………………………………………………………VII
第一章 緒論……………………………………………………………1
第二章 液晶簡介………………………………………………………3
2.1 液晶定義……………………………………………………………3
2.2 液晶分類……………………………………………………………4
2.2.1 向列型(Nematics)液晶………………………………………6
2.2.2 盤狀相(Discotic)液晶………………………………………7
2.2.3 層列型(Smectics)液晶………………………………………9
2.2.4 膽固醇相(Cholesterics)液晶……………………………12
2.3 液晶物理特性……………………………………………………13
2.3.1 雙折射性(Birefringence)………………………………13
2.3.2 介電異向性(dielectric anisotropy)……………………16
2.3.3 連續彈性體…………………………………………………19
2.3.4 Freedericksz Transition…………………………………20
2.3.5 溫度對液晶的影響…………………………………………20
2.3.6 秩序參數(S) ………………………………………………21
第三章 理論……………………………………………………………23
3.1 Diffraction Theory In Thin Trassmission Gratings……23
3.2薄棱鏡光柵之繞射效率推導………………………………………24
3.3 繞射效率模擬……………………………………………………29
第四章 實驗樣本製作及架設…………………………………………31
4.1 實驗材料介紹……………………………………………………31
4.1.1 向列型液晶E7………………………………………………31
4.1.2 聚乙烯(咔)唑(Poly(vinyl carbazple))介紹……………32
4.2 樣品製作流程……………………………………………………33
4.2.1 ITO玻璃清洗………………………………………………35
4.2.2 樣本A和B-ITO玻璃表面處理及製作過程…………………35
4.2.3 液晶填充……………………………………………………41
4.2.4 樣品檢測……………………………………………………42
4.3 實驗測量架設……………………………………………………44
4.3.1 樣本測量穿透強度…………………………………………44
4.3.2 測量偏振實驗………………………………………………45

第五章 實驗樣本測量及架設…………………………………………46
5.1 穩定的UV光及PVK反應的波段……………………………………46
5.1.1 PVK反應的波長……………………………………………46
5.1.2 UV光源強度隨時間變化……………………………………46
5.2 漸進式非對稱性光罩……………………………………………47
5.3 PVK照光時間決定………………………………………………48
5.4樣本厚度改變與繞射效率關係……………………………………51
5.4.1 不同厚度的prism grating效果……………………………51
5.4.2 樣本A厚度10µm繞射效率討論………………………………52
5.4.3 樣本A厚度10µm繞射圖形討論………………………………54
5.4.4 樣本A厚度10µm偏光顯微鏡討論……………………………55
5.4.5 透射光與原入射光偏振方向不變…………………………57
5.5 樣本B和樣本A的比較……………………………………………58
第六章 結論以及未來展望……………………………………………62
6.1 結論………………………………………………………………62
6.2 未來展望…………………………………………………………63
參考文獻………………………………………………………………64
參考文獻 1. Boris Apter, Uzi Efron, and Eldad Bahat-Treidel, Appl.Opt, 43 , 11 (2004).
2. C. M. Titus and J. R. Kelly,E. C. Gartland, S. V. Shiyanovskii, J.A.Anderson, and P. J. Bos , Opt.Lett , 26 , 1188 (2001).
3. T. Fujita, H. Nishihara, and J. Koyama, Opt.Lett, 7 , 578 (1982).
4. R. Magnusson and T. K. Gaylord, J. Opt. Soc. Am, 68 , 806 (1978).
5. Michinori Honma and Toshiaki Nose, Appl.Opt, 43 , 5193 (2004).
6. Xu Wang, Daniel Wilson, Richard Muller, Paul Maker, and
Demetri Psaltis, Appl.Opt , 39 , 6545 (2000).
7. E. P. Raynesa, C. V. Brown, and J. F. Stro¨mer, Appl. Phys. Lett, 82 , 13 (2003)
8. Hongwen Ren, Yun-Hsing Fan, and Shin-Tson Wu, Appl.
Phys. Lett, 82 , 3168 ( 2003)
9. Hongwen Ren and Shin-Tson Wu, Appl. Phys. Lett, 81 , 3537 (2002).
10. F. Reintzer, O. Lehmann, H. Keller, Mol. Cryst. Liq. Cryst, 21 , 1 (1973)
11. M. Kaczmarek and A. Dyadyusha, Appl. Phys, 96 , 2617 (2004)
12. Jun Li, Sebastian Gauza, and Shin-Tson Wu, Appl. Phys, 96 , 19 (2004)
13. B. Bahoadur,” Liquid Crystals-Applications and Uses”, World Scientific Press, Singapore (1990).
14. P. gde Gennes and J. prost, “The Physics of Liquid Crystals”, 2nd ed., Clarendon Press, Oxford (1993).
15. M Blinov and V.G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials”, Springer-Verlag, New York (1994).
16.松本正一, 角田市良原著 ; 劉瑞祥譯,“液晶之基礎與應用”,國立編譯館, (1996)
17.液晶應用技術研究會 著,“最新應用液晶技術”,建興出版社
(1997)

------------------------------------------------------------------------ 第 7 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200914371791
論文名稱(中文) 彩色濾光片彩色層鍍膜製程品質提升之研究
論文名稱(英文) Study on Quality Enhancement for the Colored Layer Coating Procedure of Color Filter
校院名稱 成功大學
系所名稱(中) 工程科學系專班
系所名稱(英) Department of Engineering Science (on the job class)
學年度 96
學期 2
出版年 97
研究生(中文) 謝宗勳
學號 N9794130
學位類別 碩士
語文別 中文
口試日期 2008-07-29
論文頁數 76頁
口試委員 指導教授-趙隆山
口試委員-周榮華
口試委員-黃登淵
關鍵字(中) 鍍膜
穿透率及擠壓式塗佈法
彩色濾光片
色度
關鍵字(英) Slit Die Coating
Color Filter
Coater
Colorimetric
Transmittance
學科別分類
中文摘要 隨著顯示器市場推陳出新,如面板大型化、低價化、廣視角(Multi-domain Vertical Alignment)、廣色域(Wild Color Gamut)、高對比、高穿透度、高色彩飽和度等條件以滿足消費者市場需求,其中彩色濾光片(Color Filter)為液晶顯示器呈現色彩之關鍵材料,因此彩色濾光片色度(Colorimetric)要求條件亦相形嚴峻。在彩色濾光片製造方法中,顏料分散法之光微影製程因具備高信賴性、高解析度、及耐高溫特性,廣為業界採用,但是面板大型化與低價策略影響下,彩色濾光片更被要求降低成本,於是減化製程步驟、低材料成本、高直通率成為彩色濾光片重要議題之一。
本文之研究將旋轉塗佈轉換成擠壓式塗佈(Slit Die Coating)方式可提高光阻利用率至90%以上,並將鉻黑色矩陣(Cr Black Matrix)轉換成樹脂黑色矩陣(Resin Black Matrix)可減化鍍鉻製程、降低材料成本與減少重金屬所造成環境污染。另一重要議題為色彩飽和度與對比度,由於紅、藍、綠三原色膜厚高,色再現性(Color Reproduction)將會提升,但其穿透率是降低的,所以色度(膜厚)與穿透率(對比度)相互衝突的特性,需要由光阻特性之改變取得高色度與高對比度之平衡,上述兩點之重要議題為本實驗主軸及探討之主題。
英文摘要 As TFT-LCD products bring forth the new through the old, the market demands become more and more critical, such as large-size panel, low price, multi-domain vertical alignment, wild color gamut, high contrast, high transmittance, high saturation of color, etc. In a LCD, the color filter is the key part for color appearance and hence the colorimetric requirement becomes rigorous. Among the fabricating methods of color filter, the photolithographic process of pigment dispersion method possesses high reliability, high contrast and high temperature endurance, which is generally used by the TFT-LCD company. However, under the influences of large size panel and low price policy, it is asked to cut the cost of color filter. Accordingly, the simplification of fabrication procedure, the decrease of material cost and the high throughput become the important topics.
In this study, the slit die coating is used instead of slit-spindle coating for the coating process and the performance of the new scheme is evaluated. The utilization ratio of photo resistance can be improved and the ratio after improvement is more than 90%. Since the material of black matrix can be changed from chromium to resin, this could reduce the chromium coating process, material cost and heavy metal pollution. The other important topics are the saturation of color and the contrast ratio. Since the film thicknesses of the three primary colors (red, blue and green) increase with the new method, the color reproduction will be improved; however, the transmittance will decrease. The conflict between colorimetric (thickness) and transmittance (contrast ratio) must be balanced by changing the photo-resistance characteristic. Hence the exploration of the two key points, thickness and transmittance, described above is the primary purpose of this work.
論文目次 摘要..........................................................................................................I
Abstract....................................................................................................II
誌謝.........................................................................................................IV
目錄..........................................................................................................V
表目錄.....................................................................................................Ⅳ
圖目錄......................................................................................................Ⅴ

第一章 緒論.............................................................................................1
1-1 前言....................................................................................................1
1-2文獻回顧.............................................................................................2
1-3 研究動機............................................................................................4
1-4 論文架構............................................................................................5

第二章 彩色濾光片製程與色度量測模式.............................................6
2-1 彩色濾光片製程方法........................................................................6
2-1-1 黑色矩陣(BM:Black Matrix)製程品質要求.............................6
2-1-2 彩色層(Red、Green、Blue)製程品質要求................................8
2-1-3 曝光、顯影製程品質要求..........................................................9
2-2 CIE色彩理論...................................................................................10
2-2-1可見光與色彩..............................................................................11
2-2-2色度三刺激值..............................................................................11
2-2-3加法混色......................................................................................13
2-3實驗模式與控制因子......................................................................15

第三章實驗設備與方法.........................................................................17
3-1實驗設備..........................................................................................17
3-2現行所採用之各種規範..................................................................18
3-3 實驗設計參數.................................................................................18
3-3-1實驗模式Case A...........................................................................20
3-3-2實驗模式Case B...........................................................................21
3-3-3實驗模式Case C...........................................................................22

第四章 結果與討論.................................................................................24
4-1擠壓式塗佈(Slit Die Coater)與色度膜厚之變化.............................24
4-2曝光量(Exposure)與膜厚之關係.....................................................26
4-3後烤(Post-oven)與膜厚色度之關係................................................27
4-4拋光(Polish)與膜厚色度之關係......................................................28


第五章結論與未來展望.........................................................................30
參考文獻.................................................................................................32
附錄1表色系與用語...............................................................................36
附錄2塗佈平坦度與彩色濾光片之膜厚斷面圖...................................38
表1.1彩色濾光片產品特性要求............................................................39
表1.2彩色濾光片(RGB)設計規格.....................................................40
表2.1色彩的分類.....................................................................................41
表2.2可見光波長.....................................................................................42
表2-3實驗設計參數因子.........................................................................43
表3.1現有之色度規範.............................................................................44
表3.2彩色濾光片(RGB)設計規格.....................................................45

表4.1各光阻用量.....................................................................................46
表4.2紅綠藍色溼膜之膜厚.....................................................................46
表4.3濕膜色度及穿透率.........................................................................47
表4.4紅綠藍色乾膜之膜厚.....................................................................48
表4.5乾膜色度及穿透率.........................................................................49
表4.6紅色拋光前後之穿透率.................................................................50
表4.7綠色拋光前後之穿透率.................................................................50
表4.8藍色拋光前後之穿透率.................................................................51
表4.9拋光後之膜厚.................................................................................51
圖1.1 液晶顯示器中三原色....................................................................52
圖1.2 CIE 1931色彩空間.........................................................................52
圖1.3 NTSC、CRT、LCD之色域比較....................................................53
圖1.4塗佈方法與光阻用量之比較(資料來源 TOK)..............................53
圖2.1彩色濾光片結構.............................................................................54
圖2.2 CIE 1931 Yxy色度圖.....................................................................54
圖2.3可見光波長.....................................................................................55
圖2.4色彩匹配實驗方法.........................................................................55
圖2.5彩色濾光片 紅、綠、藍製程色度量測........................................56
圖3.1實驗量測點.....................................................................................57
圖3.2狹縫式塗佈機構造.........................................................................58
圖3.3分光光譜儀.....................................................................................59
圖3.4畫素尺寸..........................................................................................60
圖3.5人眼之可見光範圍..........................................................................60
圖3.6曝光步驟..........................................................................................61
圖3.7拋光機台示意圖..............................................................................61
圖4.1濕膜色度與NTSC.............................................................................62
圖4.2濕膜色度與NTSC.............................................................................62
圖4.3濕膜色度(Red) .................................................................................63
圖4.4濕膜色度(Green) ..............................................................................63
圖4.5濕膜色度(Blue) ................................................................................64
圖4.6膜厚與露光量...................................................................................64
圖4.7烘烤後色度.......................................................................................65
圖4.8烘烤後色度......................................................................................65

圖4.9 OVEN烘烤後色度(Red) ..................................................................66
圖4.10 OVEN烘烤後色度(Green) .............................................................66
圖4.11 OVEN烘烤後色度(Blue) ................................................................67
圖4.12全尺寸方式量測點..........................................................................68
圖4.13乾膜色度與穿透(Red) ....................................................................69
圖4.14乾膜膜厚與穿透(Red) ....................................................................69
圖4.15乾膜色度與穿透(Green) .................................................................70
圖4.16乾膜膜厚與穿透(Green) .................................................................70
圖4.17乾膜色度與穿透(Blue) ....................................................................71
圖4.18乾膜膜厚與穿透(Blue) ....................................................................71
圖4.19紅色拋光前後穿透率之影響...........................................................72
圖4.20紅色拋光前後色度之影響...............................................................72
圖4.21綠色拋光前後穿透率之影響...........................................................73
圖4.22綠色拋光前後色度之影響...............................................................73
圖4.23藍色拋光前後穿透率之影響...........................................................74
圖4.24藍色拋光前後色度之影響...............................................................74
圖4.25拋光前後穿透率之影響...................................................................75
圖4.26拋光後之色度...................................................................................75
圖4.27拋光後之色度...................................................................................76
參考文獻 1. 紀國鐘、鄭晃忠 液晶顯示器技術手冊 經濟部技術處發行
九十三年十一月四版 pp171。
2. Hideki Matsumura,Masayuki Ishikawa,Kenichiro Kida,
Koyu Maenka,Tadaaki Kuno,Koh-hei Nitta,Minoru
Terano and Shigehira Minami. Development of Micro-
Assembling Technology for Fabrication of Large Size
Liquid Crystal Displays. Japanese Journal of
Application Physics Vol.45,No.5B 2006 pp.4413-4418。
3. Takanori Kudo,Yuki Nanjo,Yuko Yamagichi,Hidemasa
Yamaguchi,Wen-Bing Kang and Georg Pawlowski.
Fabrication Process of Color Filter Using Pigment
Photoresists. Jpn. J.Appl.Phys. Vol.37 1998
pp.3594-3603。
4. 鍾俐娟 全球平面顯示器材料市場與產業發展動向
工業材料 246期 96年6月 pp.200-206
5. 王信淳 以MRP II觀念為基礎發展彩色濾光片製造業中資材計畫
方法之研究 中央大學企管所碩士論文(2007)。
6. Taik-Min Lee,Yong-Jung Choi,Su-Yong Nam,Choon-Woo
You,Dae-Yup Na,Hyeon-Cheol Choi,Dong-Youn Shin,
Kwang-Young Kim,Kwang-II Jung. Color Filter
Patterned by Screen Printing. Thin Solid Films 2008。
7. M.Katayama. TFT-LCD Technology. Thin Solid Films
Vol.341 1999 pp. 140-147。
8. 顏怡文 薄膜電晶體液晶顯示器(TFT-LCD)簡介與未來發展技術
趨勢 化工第52卷第2期(2005)。
9. Fu-Jen KO and Han-Ping David Shieh. High-efficient
micro-optical color filter for liquid-crystal
projection system application. APPLIED OPTICS Vol.39
No.7 1 March 2000。
10.Massimo Poncino,Member,IEEE,and Enrico Macii,
Fellow,IEEE. Low Energy RGB Color Approximation for
Digital LCD Interfaces. IEEE Transactions on
Consumer Electronics Vol.52 No.3 August 2006。
11.Rastislav Lukac,Konstantinos N. Plataniotis.
Universal demosaicking for imaging pipelines with an
RGB color filter array. Pattern Recognition 38(2005)
pp.2208-2212。
12.溫俊祥、鄭文桐、鄭淑惠、范智誠、林德嘉 LCD彩色濾光片與顏
料分散法技術 工業材料124期 86年4月 pp.122-135
13.顧鴻壽 光電液晶平面顯示器技術基礎及應用(2004)
新文京開發出版股份有限公司 P287~289。
14.Ram W. Sabnis. Color Filter Technology for liquid
crystal displays. Displays 20(1999) pp.119-129。
15.Simon Grbec,Marko Tkalcic,Janez Diaci. The influence
of inertial loading on color gamut properties of a
TFT-LCD display. Displays Vol.29 2008 pp.18-24。
16.大田登著 陳鴻興、陳君彥編譯 基礎色彩再現工程
全華出版社2006年2月再版 pp2-2~2-6。
17.陳中豪、蔣培瑜 光源色度測量原理 工業材料208期 93年4月
pp.108-118
18.顏單青 次世代液晶顯示器用彩色濾光片元件之平坦化製程技術
開發與擬真度評價指標系統 清華大學動力機械工程學系博士
論文 九十五年元月。
19.顏單青 新世代彩色濾光片製程技術發展現況與分析 化工第51卷
第1期 2004 pp.9-28
20.顏單青 彩色濾光片介紹 化工第51卷第1期(2004)pp.29-49。
21.李孟錴、許明德 彩色濾光片生產製程對色度的影響 工業材料
197期 92年5月 pp.124-128
22.Tan-Ching YEN and Pei-Lum TSO. An Effective
Fabrication Method for Producing Color Filters of
Liquid Crystal Displays. Japanese Journal of Applied
Physics Vol. 43, No. 7A, 2004, pp. 4229–4233.
23.嚴楚材、鄺東元、顧鴻壽、方昭訓 彩色濾光片塗佈技術簡介
真空科技十八卷二期。
24.李孟錴、許明德 彩色濾光片生產製程對色度的影響 工業材料
197期 92年5月pp124-128
25.林松香等 高遮光係數黑色矩陣 工業材料 183期91年3月
pp161-164
26.溫俊祥,鄭文桐,鄭淑惠,范智誠,林德嘉 LCD彩色濾光片與顏
色分散法技術 工業材料 124期 86年4月 pp.122-136
27.駱文欽、許明德 第五代以上彩色濾光片技術發展趨勢 電子與
材料 第十七期pp.55-62
28.紀國鐘、鄭晃忠 液晶顯示器技術手冊 經濟部技術處發行
九十三年十月四版P171~P188
29.陳君彥 液晶監視器的彩色技術 工研院光電所
30.顏單青 彩色濾光片介紹 化工第51卷第1期(2004)
31.陳中豪,蔣培瑜 光源色度測量原理 工業材料 208期 93年4月
pp.108-118

------------------------------------------------------------------------ 第 8 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915110425
論文名稱(中文) 氮化鈦表面披覆氧化鎢之磨潤性質研究
論文名稱(英文) Tribological performance of TiN's surface with oxidated Tungsten
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 陳又誠
學號 n1696159
學位類別 碩士
語文別 中文
口試日期 2009-06-19
論文頁數 103頁
口試委員 指導教授-蘇演良
口試委員-高文顯
口試委員-姚舜暉
關鍵字(中) 鍍膜
氧化鎢
氮化鈦
關鍵字(英) TiN
Tungsten
coating
學科別分類
中文摘要 本實驗採用封閉式非平衡磁控濺鍍法,且使用漸進層概念,氮化鈦於鍍層表面沉積一層純金屬鎢,並且進行熱處理,使鍍層表面生成氧化鎢的組織。鍍膜分析測試方面,利用輝光放電光譜儀及波長發散光譜儀進行成份分析;掃描式電子顯微鏡及X光繞射光譜儀分析鍍層成長結構與結晶特性;並於鍍層進行熱處理後,研究其於氧化後結構及性質之變化。機械性質與磨潤性能分析方面,利用刮痕試驗及洛氏壓痕器測試鍍層之附著性;以奈米硬度試驗機量測其硬度;以銷對盤迴轉式磨耗試驗機及點、線接觸往復式磨耗試驗機測試其磨耗機構、抗磨耗性及摩擦係數。並將鍍膜被覆於車刀及印刷電路板微鑽針上,實際對鋼料及印刷電路板進行加工,試驗鍍膜之刀具保護性能及分析其破壞機構。
透過以上對鍍層的分析測試,探討不同之氮化鈦與鎢之複合鍍膜沉積模式,以及不同溫度及時間的熱處理產生的效果及其於各應用場合的實用性,對此系列鍍層更進一步了解,進而實際應用於工業加工生產。
英文摘要 The TiN/WO3 coatings will be deposited by closed field unbalanced magnetron sputtering system from mixed titanium(Ti) and Tungsten(W) targets and nitrogen using some concepts that can improve bonding of the performance of TiN-W and WO3 coatings.
The chemical composition and depth profile of the coatings analyzed by EDX and GDS. The microstructures of the coating researched by XRD and SEM. The structures of the different temperature in annealing process will be researched, too.
The mechanical and tribological properties of the coatings measured by Nano Indentester, pin-on-disk and wear tester. The adhesion of the coatings to the substrate will be evaluated by means of a Rockwell-C hardness tester. In order to approve the feasibility of applying the coatings on actual machining, the coatings will be deposited on cutting tools and micro-drills.

Following all the research and experiment, we could understand structure and properties of TiN/WO3 coatings in different temperature of annealing for applying in different areas. To advance the understanding, we can actually apply in making production in industry.
論文目次 摘要 II
Abstract III
總目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
第二章 理論探討與文獻回顧 4
2-1薄膜成形 4
2-1-2 薄膜成形技術的用途 4
2-1-3 薄膜成形技術的種類 5
2-2-1直流濺鍍原理 6
2-2-2磁控濺鍍目的 8
2-3 鍍膜性質 9
2-3-1氮化鈦(TiN)鍍膜性質 9
2-3-2 鎢及氧化鎢 10
2-4 奈米硬度 12
2-4-1 基本原理 12
2-4-2 奈米硬度計算 13
第三章 實驗方法與步驟 18
3-1實驗目的 18
3-2實驗流程 18
3-3 實驗方法與規劃 19
3-3-1 濺鍍參數與鍍膜安排 19
3-3-2 實驗材料 20
3-3-3 成分分析 20
3-3-4 結構分析 21
3-3-5 奈米硬度試驗 21
3-3-6 附著性試驗 21
3-3-7 磨耗實驗 22
3-3-8 氧化實驗 23
3-3-9 車削實驗 23
3-3-10 鑽削實驗 24
3-3-11 表面、斷面和磨耗型態分析 24
3-4 實驗設備 25

第四章 鍍層實驗結果與討論 27
4-1 設計鍍層變化對鍍膜的影響 27
4-1-2 鍍膜附著性 29
4-1-3 鍍層耐磨性質 29
4-1-4 小結 30
4-2 熱處理生成氧化鎢鍍膜 31
4-2-1 鍍膜基本性質 31
4-2-2 鍍膜附著性 33
4-2-3 鍍層耐磨性質 33
4-5 乾車削實驗 36
4-6 PCB微鑽削實驗 37
第五章-結論與未來展望 39
5-1 結論 39
5-2 未來展望 41
第六章 參考文獻 42
參考文獻 1. Q. Miao , C.E. Cui , J.D. Pan “CrN/TiN multilayer coating on magnesium alloy AZ91 by arc-glow plasma depositing process” Surface & Coatings Technology 201 (2007) 5077–5080
2. Xiaoqin Zeng, Guosong Wu , Shoushan Yao “Formation by reactive magnetron sputtering of TiN coating on Ti-implanted magnesium alloy” Materials Letters 60 (2006) 2252–2255
3. Z. Teka, M.A. Gqgfr, E. C﹐ al, M. Sonugelen, C. Artunc, A. Oztarhan “A study of the mechanical properties of TiN coating of Cr–Ni alloy” Surface & Coatings Technology 196 (2005) 317– 320
4.Taek-Soo Kim , Sang-Shik Park , Byong-Taek Lee “Characterization of nano-structured TiN thin films prepared by R.F. magnetron sputtering” Materials Letters 59 (2005) 3929 – 3932
5.S. Wilson *, A.T. Alpas “Wear mechanism maps for TiN-coated high speed steel” Surface and Coatings Technology 120–121 (1999) 519–527
6.Shih-Kang Tien, Jenq-Gong Duh “Comparison of microstructure and phase transformation for nanolayered CrN/AlN and TiN/AlN coatings at elevated temperatures in air environment” Thin Solid Films 515 (2006) 1097–1101
7. Yu Xiang a, Meng Hua b, Wang Cheng-biao a, Fu Zhi-qiang a, Liu Yang “Investigation of Ti/TiN multilayered films in a reactive mid-frequency dual-magnetron sputtering” Applied Surface Science 253 (2007) 3705–3711
8. C. Mendibide , P. Steyer , J. Fontaine b, P. Goudeau “Improvement of the tribological behaviour of PVD nanostratified TiN/CrN coatings — An explanation” Surface & Coatings Technology 201 (2006) 4119–4124
9. Harish C. Barshilia , B. Deepthi, A.S. Arun Prabhu, K.S. Rajam “Superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive direct current unbalanced magnetron sputtering” Surface & Coatings Technology 201 (2006) 329–337
10. G.A. Zhang , P.X. Yan , P. Wang , Y.M. Chen , J.Y. Zhang “The structure and tribological behaviors of CrN and Cr–Ti–N coatings” Applied Surface Science 253 (2007) 7353–7359
11. Sheng-Yi Lee, Sheng-Chang Wang, Jen-Sue Chen and Jow-Lay Huang, “Effects of nitrogen partial pressure on electrical properties and thermal stability of TiAlN films by ion beam sputter deposition” Surface & Coatings Technology 202 (2007) 977–981
12. L Zhang, H C Jiang, C Liu, J W Dong and P Chow “Annealing of Al2O3 thin films prepared by atomic layer deposition” L Zhang et al 2007 J. Phys. D: Appl. Phys. 40 3707-3713
13. Karuppasamy and A. Subrahmanyam “Studies on electrochromic smart windows based on titanium doped WO3 thin films” Thin Solid Films 516 (2007) 175–178
14. Z. Tek, M.A. Gqgfr, E. C﹐ alb, M. Sonugelen, C. Artunc, A. Oztarhan “A study of the mechanical properties of TiN coating of Cr–Ni alloy” Surface & Coatings Technology 196 (2005) 317– 320
15. Wenran Feng, Dianran Yanb, Jining He, Guling Zhang, Guangliang Chen, Weichao Gu, Size Yang “Microhardness and toughness of the TiN coating prepared by reactive plasma spraying” Applied Surface Science 243 (2005) 204–213
16. Dimigen, C.P. Klages, "Microstructure and wear behavior of metal-containing diamond-like coatings", Surface and Coatings Technology, Vol. 49, 1991, pp.543-547.
17. L. Feng, J. Tang, et al., "Tribological properties of magnetron-sputtered TiC coatings", Materials Science and Engineering, Vol. A257, 1998, pp. 240-249.
18. Holleck, M. Lahres, P. Woll, "Multilayer coatings. Influence of fabrication parameters on constitution and properties", Surface and Coatings Technology, Vol. 41, 1990, pp. 179.
19. C.L. Chang, D.Y. Wang, "Microstructure and adhesion characteristics of diamond-like carbon films deposited on steel substrate", Diamond and Related Materials, Vol. 10, 2001, pp. 1528-1534.
20. A.A. Voevodin, R. Bantle, A. Matthews, "Dynamic impact wear of TiCxNy and Ti-DLC composite coatings", Wear, Vol. 185, 1995, pp.151-157.
21. Matthews, A. Leyland, et al., "Design aspects for advanced tribological surface coatings", Surface and Coatings Technology, Vol. 100-101, 1998, pp.1-6.
22. Y.L. Su, W.H. Kao, "Optimum multilayer TiN-TiCN coatings for wear resistance and actual application", Wear, Vol. 223, 1998, pp. 119-130
23. Y.L. Su, W.H. Kao, "Tribological behavior and wear mechanisms of Ti-C:H/TiC/TiCN/TiN/Ti coatings when sliding against steel, bronze and aluminum alloy rods ", Journal of Materials Science, Vol. 36, 2001, pp. 189-199.
24李邦哲, “薄膜成形技術的演進與未來-薄膜成形技術新紀元”, 台灣綜合展望, 2003.1.11, No.7.
25. W.R. Grove, Phil. Trans. Roy. Soc. London, 5, 87 (1852)
26. W.R. Grove, Phil. Mag., 5, 203 (1853)
27.董家齊, 陳寬任, “奇妙的物質第四態-電漿”, 科學發展, 354期, 2002, pp.52-59
28.金原粲, “薄膜的基本技術”, 日本東京大學出版會社,1987年5月,pp.3.
29.宋健民, ”以物理氣相沉積(PVD)鍍類似鑽石碳膜(DLC)(中)”, 工業材料148期,pp.177.
30. B. Window,” Recent advances in sputter deposition”, Surface and Coatings Technology, Vol.71 , 1995, pp.93-97.
31. D. P. Monaghan, D. G. Teer, K. C. Laing, I. Efeoglu and R. D. Arnell, “Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering”, Surface and Coatings Technology, Vol.59, 1993, pp.21-25.
32. P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications”, Vacuum, Vol.56, 2000, pp.159-172.
33. C. Mitterer, P. H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P. N. Gibson, W. Gissler, H. Hruby, J. Musil, J. Vlček, “Microstructure and properties of nanocomposite Ti-B-N and Ti-B-C coatings”, Surface & Coatings Technology 120-121(1999)405-411
34. J. Musil, F. Regent , “Formation of nanocrystalline NiCr-N films by reactive dc magnetron sputtering”, J. Vac. Sci. Technol. A 16(6)
35. M. Ohring, The materials science of thin films,(Academic Press, San Diego,1992), P409
36. R. W. Siegel and G. E. Fougere, ”Mechanical properties of nanophase metals” ,Nanostructured Mater. 6, 205(1995)
37. T. G. Nieh, J. Wadsworth, “Hall-Petch relation in nanocrystalline solids ” ,Script Metall. Mater. 25, 955(1991)
38. H. Gleiter, “On the structure of grain boundaries in metals”,Mater. Sci. Eng.52, 91(1982)
39. L.Huetman,et al, ”Initial growth of TiN on different phases of high speed steel”, Thin solid films vol. 124,Iss2,1985,163-170
40. O. D. Greenwood, S. C. Moulzolf, P. J. Blau and R. J. Lad, “The influence of microstructure on tribological properties of WO3 thin films”, Wear, Vol.232, 1999, pp.84-90.
41 P. Harlin, P. Carlsson, U. Bexell and M. Olsson, “Influence of surface roughness of PVD coatings on tribological performance in sliding contacts”, Surface and Coatings Technology, Vol.201, 2006, pp.4253-4259.
42. Q. T. Vu, P. J. Pokela “Thermal oxidation of reactively sputtered amorphous W80N20 films“California Institute of Technology, Pasadena, California 91125
43. D. Bragaa, J.P. Diasa, A. Cavaleiro “Duplex treatment: W–Ti–N sputtered coatings on pre-nitrided low and high alloy steels” Surface & Coatings Technology 200 (2006) 4861 – 4869
44. P. Hones a, R. Consiglio b, N. Randall b, F. Le′vy “Mechanical properties of hard chromium tungsten nitride coatings” Surface and Coatings Technology 125 (2000) 179–184
45. 江珮淳 “氮化鎢薄膜之製備以及其閘極特型之研究” 國立成功大學材料科學及工程學系 九十一學年度畢業碩士論文
46. 丁志華 管平正 奈米壓痕量測系統簡介 國家元件實驗室
47. 林士傑 應用無電解電鍍與電泳技術於玻璃基板沉積研究 國立中山大學機械與機電工程學系九五學年度碩士論文
48. 張瑞慶 奈米壓痕技術與應用 聖約翰科技大學
49. 魏伯任 奈米壓痕實驗應用於塊材覆膜材料機械性質以及硬脆材料黏彈性錫量測-理論分析與實驗印証 國立成功大學機械工程研究所94 博士論文
50. 張啟釗 参雜銀鎢之氮化鈦陶瓷薄膜磨潤性能研究 國立成功大學機械工程研究所92 碩士論文
51. N.M.G. Parreira*,N.J.M. Carvalho, A. Cavaleiro “Synthesis, structural and mechanical characterization of sputtered tungsten oxide coating” Thin solid films 510(2006) 191-196
52. 謝宜寰 添加鎢元素之鉻薄膜高溫氧化磨潤性研究 國立成功大學機械工程研究所96 碩士論文
53. Oliver, W.C., and Pharr, G.M., 1992, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, pp. 1564-83.
54. Nix, W.D., and Gao, H., Indentation size effects in crystalline: a few for strain gradient plasticy, J. Mech. Phys. Solids. 3, 46, p411~425, 1998.
55. Odegard G.M., Lai J.s., and Onaran K., 2005, Characterization of Viscoelastic
Properties of Polymeric Materials Through Nanoindentation, ,Society for Experimental Mechanics, Vol. 45,No. 2.
56. Findley W.N., et al., 1989, Creep and Relaxation of Nonlinear Viscoelastic Materials, Dover Publications, New York
57. Li, X., Diao, D., and Bhushan, B., 1997, Fracture mechanisms of thin amorphous carbon films in nanoindentation, Acta Mater. 45, pp. 4453-61.
58. Li, X., and Bhushan, B., 1998, Measurement of fracture toughness of ultra-thin
amorphous carbon films, Thin Solis Films 315, pp. 214-21.
59. Li, X., and Bhushan, B., 1999, Evaluation of fracture toughness of ultra-thin amorphous carbon coatings deposited by different deposition techniques, Thin Solis Films 355, pp.330-6.

------------------------------------------------------------------------ 第 9 筆 ---------------------------------------------------------------------
系統識別號 U0026-2806201015192100
論文名稱(中文) 鎢鈦鍍膜之磨潤性質研究
論文名稱(英文) Tribological performance of W-Ti coatings
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 林俊全
學號 N1697164
學位類別 碩士
語文別 中文
口試日期 2010-06-18
論文頁數 105頁
口試委員 指導教授-蘇演良
口試委員-高文顯
口試委員-姚舜暉
關鍵字(中) 磨潤


鍍膜
關鍵字(英) Tribological
Ti
W
Coating
學科別分類
中文摘要 本研究採用封閉式非平衡磁控濺鍍,利用漸進層的方式濺鍍。主要目的為探討TiN表面披覆W、Ti和W(N)鍍膜於高溫氧化前後之磨潤性質、機械性質及切削性能。實驗主要分為兩部份:第一部份探討TiN披覆W、Ti和W(N)鍍層的機械性質;第二部份探討不同的溫度(500 ℃、600 ℃)氧化一小時的機械性質;最後選用較佳鍍層進行乾車削及印刷電路板微鑚針試驗,以瞭解鍍膜披覆刀具之實際在工業上的應用。
由實驗結果可知,W-Ti鍍層於Ti含量為5 %(鈦靶電流為0.47 A)時,鍍層擁有較高的奈米硬度35.2 GPa(10 mN)、微硬度Hv0.01 1545以及較好磨耗特性。W-Ti05鍍層經500 ℃、600 ℃一小時高溫氧化處理後,硬度及抗磨耗性質則都下降。由實際的切削實驗結果得知,W-Ti05鍍層能有效降低車刀及鑚針磨耗量,可降低車刀刀腹磨耗量48 %及微鑚針刀角磨耗量58 %。
英文摘要 The TiN/TiWN/W-Ti multilayer coatings were deposited on the high speed steel substrate by closed field unbalanced magnetron sputtering system. The coatings were deposited with different tungsten and titanium ratios on the surface. The main purpose of this study is to research the mechanical and tribological properties and cutting performance of the TiN/TiWN/W-Ti multilayer before and after high thermal oxidation.
The experiment was divided into two stages. In first stage, The effect of the mechanical properties of tungsten, titanium and tungsten nitride coatings were deposited on TiN coating. In second stage, The effect of the mechanical properties of oxidation treatment at 500 ℃ and 600 ℃. Finally, the cutting performance of the optimal coatings were understood in the turning and micro-drilling tests.
The results reveal that the highest nano hardness of 35.2 GPa and the micro hardness of Hv0.011545 have the best wear resistance were performed by the W-Ti coatings with the titanium of at.5 %. the hardness and tribological properties decreased of W-Ti05 coating after 500 ℃ and 600 ℃ one hour oxidation treatment.
In actually turning and micro-drilling tests, the W-Ti05 coatings will be deposited on cutting tools can be reduced about 48 % and 58 %, respectively.
論文目次 摘要 II
Abstract III
總目錄 V
表目錄 VII
圖目錄 VIII
緒論 1
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 理論探討與文獻回顧 3
2-1 薄膜成形 3
2-1-1 薄膜成形技術 3
2-1-2 薄膜成形技術的種類 3
2-1-3 成形技術與用途 5
2-2 磁控濺鍍理論 5
2-2-1 直流濺鍍原理 5
2-2-2 磁控濺鍍目的 6
2-3 奈米硬度 7
2-3-1 基本原理 7
2-3-2 奈米硬度的計算 8
2-3-3 奈米硬度機的校正 10
2-3-3-1 探針面積函數的校正 10
2-3-4 奈米硬度誤差 12
2-3-4-1 黏著效應 12
2-3-4-2 尺寸效應 12
2-3-4-3 表面粗糙度效應 13
2-3-4-4 凸起和陷入效應 13
2-3-4-5 奈米硬度數值的差異 14
2-4 鍍膜性質 14
2-4-1 氮化鈦(TiN)鍍膜性質 14
2-4-2 鎢及氧化鎢性質 16
2-4-3 鈦及氧化鈦性質 18
第三章 實驗方法與步驟 20
3-1 實驗目的 20
3-2 實驗流程 20
3-3 實驗方法與規劃 21
3-3-1 鍍層參數與鍍膜安排 21
3-3-2 實驗材料 22
3-3-3 成份分析 22
3-3-4 結構分析 23
3-3-5 硬度實驗 23
3-3-6 附著性實驗 24
3-3-7 磨耗實驗 25
3-3-8 氧化實驗 25
3-3-9 車削實驗 25
3-3-10 鑚削實驗 26
3-3-11 表面、斷面和磨耗型態分析 27
3-4 實驗設備 27
第四章 鍍層實驗結果與討論 30
4-1 設計鍍層變化對鍍膜的影響 30
4-1-1 鍍膜基本性質 30
4-1-1-1 鍍膜微結構 30
4-1-1-2 鍍膜表面之粗糙度分析及斷面SEM觀察 31
4-1-1-3 鍍膜膜厚及成份分析 32
4-1-1-4 鍍膜硬度 33
4-1-2 鍍膜的附著性 33
4-1-3 鍍膜耐磨實驗 34
4-1-4 小結 35
4-2 高溫熱處理對鍍膜的影響 35
4-2-1 鍍膜基本性質 36
4-2-1-1 鍍膜微結構 36
4-2-1-2 鍍膜之表面及斷面SEM觀察 36
4-2-1-3 鍍膜硬度 38
4-2-2 鍍膜的附著性 39
4-2-3 鍍膜的磨耗性 39
4-3 乾車削實驗 41
4-4 PCB微鑚削實驗 42
第五章 結論與未來展望 45
5-1 結論 45
5-2 未來展望 47
第六章 參考文獻 48
參考文獻 1. D.J. Cheng, W.P. Sun, M.H. Hon, The morphology and structure of chemically vapour-deposited Ti(C, N) coatings Thin Solid Films, 146 (1) 45-53 (1987)
2. B.E. Jacobson, C.V. Deshandey, H.J. Doerr, A.A. Karim, R.F. Bunshah, Microstructure and hardness of Ti(C, N) coatings on steel prepared by the activated reactive evaporation technique, Thin Solid Films, 118 (3) 285-292 (1984)
3. F. Vaz, L. Rebouta, M. Andritschky, M.F. da silva, J.C. Soares, The effect of the addition of Al and Si on the physical and mechanical properties of titanium nitride, Journal of Materials Processing Technology, 92-93 169-176 (1999)
4. B. Gomez, A. Jimenez-Suarez, E. Gordo, Oxidation and tribological behaviour of an Fe-based MMC reinforced with TiCN particles, Journal of Refractory Matels & Hard Materials, 27 360-366 (2009)
5. T. Fukada, T. Mori, Y. Toyoda, M. Hasegawa, K. Namba, K. Ogata, Electromigration resistance of TiWN/Cu/TiWN interconnections, Applied Surface Science, 91 227-233 (1995)
6. S.Y. Lee, S.C. Wang, J.S. Chen, J.L. Huang, Effects of nitrogen partial pressure on electrical properties and thermal stability of TiAlN films by ion beam sputter deposition, Surface & Coatings Technology, 202 977-981 (2007)
7. P. Panjan, B. Navinsek, A. Cvelbar, A. Zalar, I. Milosev, Oxidation of TiN, ZrN, TiZrN, CrN, TiCrN and TiN/CrN multilayer hard coatings reactively sputtered at low temperature, Thin Solid Films, 281-282 298-301 (1996)
8. G. Abadias, F. Pailloux, S.N. Dub, Epitaxial growth and mechanical properties of (001) ZrN/W nanolaminates, Surface & Coatings Technology, 202 3683-3687 (2008)
9. X. Chu, S.A. Barnett, J. Model of superlattice yield stress and hardness enhancements, Appl. Phys, 77 4403 (1995)
10. G. Abadias, S. Dub, R. Shmegera, Nanoindentation hardness and structure of ion beam sputtered TiN, W and TiN/W multilayer hard coatings, Surface & Coatings Technology, 200 6538-6543 (2006)
11. G. Abadias, A. Michel, C. Tromas, C. Jaouen, S.N. Dub, Stress, interfacial effects and mechanical properties of nanoscale multilayered coatings, Surface & Coatings Technology, 202 844-853 (2007)
12. G. Abadias, Y.Y. Tse, A. Michel, C. Jaouen, M. Jaouen Nanoscaled composite TiN/Cu multilayer thin films deposited by dual ion beam sputtering: growth and structural characterization, Thin Solid Films, 433 166-173 (2003)
13. Y.M. Zhou, R. Asaki, K. Higashi, W.H. Soe, R. Yamamoto, Sliding wear behavior of polycrystalline TiN/CrN multilayers against an alumina ball, Surface & Coatings Technology, 130 9-14 (2000)
14. Y. Zhou, R. Asaki, W.H. Soe, R. Yamamoto, R. Chen, A. Iwabchi, Hardness anomaly, Plastic deformation work and fretting wear properties of polycrystalline TiNrCrN multilayers, Wear, 236 159-164 (1999)
15. A. Karuppasamy, A. Subrahmanyam Studies on electrochromic smart windows based on titanium doped WO3 thin films, Thin Solid Films, 516 175–178 (2007)
16. O.D. Greenwood, S.C. Moulzolf, P.J. Blau, R.J. Lad, The influence of microstructure on tribological properties of WO3 thin films, Wear, 232 84-90 (1999)
17. 陳又誠, 氮化鈦表面披覆氧化鎢之磨潤性質研究, 國立成功大學機械工程研究所 九十八碩士論文
18. 李邦哲, 薄膜成形技術的演進與未來-薄膜成形技術新紀元, 台灣綜合展望, 2003.1.11, No.7.
19. W.R. Grove, Phil. Trans. Roy. Soc. London, 5, 87 (1852)
20. W.R. Grove, Phil. Mag., 5, 203 (1853)
21. 董家齊, 陳寬任,奇妙的物質第四態-電漿, 科學發展, 354期p.52–59 2002
22. 金原粲, 薄膜的基本技術, 日本東京大學出版會社, P.3 1987年5月
23. 宋健民, 以物理氣相沉積(PVD)鍍類似鑽石碳膜(DLC)(中), 工業材料148期, P.177
24. M. Komath, G. Mohan Rao, S. Mohan, Studies on the optimisation of unbalanced magnetron sputtering cathodes, Vacuum, 52 307-311 (1999)
25. S. Guruvenket, G. Mohan Rao, Bias induced structural changes in tungsten nitride films deposited by unbalanced magnetron sputtering, Materials Science and Engineering B 106 172–176 (2004)
26. V. Chawla, R. Jayaganthan, A.K. Chawla, R. Chandra, Morphological study of magnetron sputtered Ti thin films on silicon substrate, Materials Chemistry and Physics, 111 414-418 (2008)
27. K. Abourayak, S. Fayeulle, L. Vincent, C. Ribeiro, A. Cavaleiro, M.T. Vieira, Tribological behaviour at elevated temperatures of thin physical vapour deposited coatings, Surface and Coatings Technology, 80 171-175 (1996)
28. B. Window, Recent advances in sputter deposition, Surface and Coatings Technology, 71 93-97 (1995)
29. D.P. Monaghan, D.G. Teer, K.C. Laing, I. Efeoglu, R.D. Arnell, Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering, Surface and Coatings Technology, 59 21–25 (1993)
30. P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, 56 159–172 (2000)
31. M.H. Yang, 高密度電漿鍍膜技術專題-Pulsed Magnetron Sputtering, 工業材料雜誌, 232期 95年4月
32. 張瑞慶, 奈米壓痕技術與應用
33. W.C. Oliver, G.M. pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Material Research, 7(4) 1564-1583 (1992)
34. 魏伯任, 奈米壓痕實驗應用於塊材覆膜材料機械性質以及硬脆材料黏彈性錫量測-理論分析與實驗印証, 國立成功大學機械工程研究所94 博士論文
35. 劉得煜, 金/鉻/矽薄膜系統之奈米壓痕行為及其微觀結構變化之研究,國立成功大學機械工程研究所 九十六學年度碩士論文
36. W.D. Nix, H. Gao , Indentation size effects in crystalline: a low for strain gradient plasticy, J. Mech. Phys. Solids, 3, 46, 411~425, 1998
37. C. Mitterer, P. H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P. N. Gibson, W. Gissler, H. Hruby, J. Musil, J. Vlček, Microstructure and properties of nanocomposite Ti-B-N and Ti-B-C coatings, Surface & Coatings Technology 120-121 405-411 (1999)
38. J. Musil, F. Regent , Formation of nanocrystalline NiCr-N films by reactive dc magnetron sputtering, J. Vac. Sci. Technol. A 16 (6)
39. M. Ohring, The materials science of thin films,(Academic Press, San Diego) P409 1992
40. R. W. Siegel, G. E. Fougere, Mechanical properties of nanophase metals ,Nanostructured Mater. 6, 205 (1995)
41. T. G. Nieh, J. Wadsworth, Hall-Petch relation in nanocrystalline solids , Script Metall. Mater. 25 955 (1991)
42. H. Gleiter, On the structure of grain boundaries in metals,Mater. Sci. Eng.52, 91 (1982)
43. L. Huetman,et al, Initial growth of TiN on different phases of high speed steel, Thin solid films, 124 2 163-170 (1985)
44. N.M.G. Parreira, N.J.M. Carvalho, A. Cavaleiro, Synthesis, structural and mechanical characterization of sputtered tungsten oxide coatings, Thin Solid Films 510 191-196 (2006)
45. N.M.G. Parreira, N.J.M. Carvalho, F. Vaz, A. Cavaleiro, Mechanical evaluation of unbiased W-O-N coatings deposited by d.c. reactive magnetron sputtering, Surface and Coatings Technology, 200 6511-6516 (2006)
46. T. Polcar, A. Cavaleiro, Structure, mechanical properties and tribology of W-N and W-O coatings, Journal of Refractory Metals and Hard Materials, 28 15-22 (2012)
47. P. Harlin, P. Carlsson, U. Bexell and M. Olsson, Influence of surface roughness of PVD coatings on tribological performance in sliding contacts, Surface and Coatings Technology, 201, 4253-4259 (2006)
48. Q.T. Vu, P.J. Pokela, Thermal oxidation of reactively sputtered amorphous W80N20 films California Institute of Technology, Pasadena, California 91125
49. D. Bragaa, J.P. Diasa, A. Cavaleiro, Duplex treatment: W–Ti–N sputtered coatings on pre-nitrided low and high alloy steels, Surface & Coatings Technology 200 4861 – 4869 (2006)
50. P. Hones a, R. Consiglio b, N. Randall b, F. Le´vy, Mechanical properties of hard chromium tungsten nitride coatings, Surface and Coatings Technology, 125 179–184 (2000)
51. 江珮淳, 氮化鎢薄膜之製備以及其閘極特型之研究, 國立成功大學材料科學及工程學系 九十一學年度畢業碩士論文
52. Krol S. Mechanism and oxidation kinetics of titanium and selected titanium alloys. Opole: Scientific Papers, High Engineering School; [in Polish] 1994
53. 揚哲清, 生醫用鈦合金之滑動磨潤性質研究, 國立成功大學材料科學及工程學系 九十一學年度碩士論文
54. 葉松瑋, 離子束濺鍍法成長二氧化鈦薄膜特性研究, 中山大學材料科學研究所
55. M.D. Stamate, On the non-linear I-V characteristics of dc magnetron sputtered TiO2 thin films, Applied Surface Science 205 353-357 (2003)
56. S. Krol, Z. Zalisz, M. Hepner, Comparison of the friction and wear properties of titanium and oxidised titanium in dry sliding against sintered high speed steel HS18-0-1 and against C45 carbon steel, Journal of Materials Processing Technology, 164-165 868-875 (2005)
57. S. Krol, W. Grzesik, Z. Zalisz, M. Hepner, Frictional behaviour of oxygen diffusion hardened titanium in dry sliding against Co–28Cr–5W–4Fe–3Ni–1Si cobalt alloy, Tribology, 37 633-643 (2004)
58. D.S.R. Krishna, Y. Sun, Effect of thermal oxidation conditions on tribological behaviour of titanium films on 316L stainless steel, Surface and Coatings Technology, 198 447-453 (2005)
59. D.S.R. Krishna, Y. Sun, Thermally oxidised rutile-TiO2 coating on stainless steel for tribological properties and corrosion resistance enhancement, Applied Surface Science, 252 1107-1116 (2005)
60. T. Arai, H. Fujita, M. Watanabe, Evaluation of adhesion strength of thin hard coatings, Thin Solid Films, 154 387-401 (1987)
61. 張啟釗, 摻雜銀、鎢元素之氮化鈦陶瓷薄膜磨潤性研究, 國立成功大學機械工程研究所 九十二學年度碩士論文
62. T.W. Scharf, A. Rajendran, R. Banerjee, F. Sequeda, Growth, structure and friction behavior of titanium doped tungsten disulphide (Ti-WS2) nanocomposite thin films, Thin Solid Films, 517 19 5666-5675 (2009)
63. T. Polcar, N.M.G. Parreira, A. Cavaleiro, Tribological characterization of tungsten nitride coatings deposited by reactive magnetron sputtering, Wear, 262 655-665 (2007)
64. H. Zhang, D.Y. Li, Effects of sputtering condition on tribological properties of tungsten coatings, Wear 255 924-932 (2003)

 


如您有疑問,請聯絡圖書館
聯絡電話:(06)2757575#65773
聯絡E-mail:etds@email.ncku.edu.tw