進階搜尋

 
查詢範圍:「   」
顯示範圍:第筆 論文書目資料
顯示格式:全部欄位
共 8 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910185436
論文名稱(中文) 非線性系統動態行為之預測與分析
論文名稱(英文) Prediction and Analyis of the Dynamic Behavior of Nonlinear Systems
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 90
學期 2
出版年 91
研究生(中文) 范景翔
學號 n3689102
學位類別 碩士
語文別 中文
口試日期 2002-06-17
論文頁數 122頁
口試委員 指導教授-黃世宏
口試委員-張玨庭
口試委員-陳建忠
關鍵字(中) 非線性
動態
分歧
關鍵字(英) Nonlinear
Dynamic
Bifurcation
學科別分類
中文摘要 化工程序由於存在高度非線性,導致其經常出現複雜的動態行為,包括多重恆態、週期震盪、週期倍增、圓環面或甚至達到混沌狀態。
本論文以化工程序中常見的連續攪拌反應器系統作為研究對象,針對該系統的一般性分歧點,應用分歧理論裡的Center Manifold 映射及標準模型(Normal Form)來預測分歧點附近的動態變化。我們首先分析該系統在不同開環操作範圍中的線性穩定性變化情形。接著,分別加入比例與比例積分控制器,藉著調整控制器參數來觀察控制器所衍生分歧點附近的非線性動態變化。在比例控制下, 標準模型可預測出週期震盪的振幅與穩定性,其結果與系統與安全操作範圍密切相關。而在比例積分控制下,藉由調整比例與積分增益來觀察系統經由週期倍增發展至混沌的路徑。最後,藉著費根堡數的計算,可以更準確地找出系統週期倍增的對應參數值。






英文摘要 High nonlinearity existing in most chemical processes could result in complicated dynamic behavior, including multiple steady states, limit cycles, period doubling, torus and chaos.
This thesis analyzes a continuous stirred tank reactor system often encountered in the process industry. Generic bifurcation points of the system are explored and the dynamics in the vicinity of each bifurcation point are predicted based on center manifold projection and normal form provided by bifurcation theory. First, we analyze the linearized stability of the CSTR system under various open-loop operating ranges. Subsequently, a proportional and a proportional-integral controller are introduced, and the resulting nonlinear dynamic behavior near the controller-induced bifurcation points are observed by adjusting the controller gains. Under proportional control, the normal form model gives immediately the amplitude and stability of the limit cycle, which are consistent with the simulation results. Under proportional-integral control, we can identify the route from period doubling to chaos with changes in the controller gains. Finally, parameter values at which period doubling occurs is further confirmed by the Feigenbaum number.






論文目次 第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 4
1.3 章節與組織 8

第二章 研究方法及理論 9
2.1 Center Manifold 理論 13
2.2 Normal Form 理論 21
2.3 Unfolding 分析 28

第三章 實例應用:系統描述及系統穩定性分析 33
3.1 系統描述 34
3.2 線性穩定分析 38
3.3 閉環穩定性分析 42

第四章 比例控制器下之動態行為模式分析 53
4.1 比例控制系統之Normal Form分析 54
4.2 Hopf Bifurcation 與 Limit Cycles 60

第五章 比例積分控制器下之動態行為模式分析 69
5.1比例控制系統之Normal Form分析 70
5.2 Hopf Bifurcation 73
5.3 Double-Zero Bifurcation 87
5.4 費根堡數 FeigenbaumδNimber 92

第六章 結論與未來展望 96
參考文獻 [1] Alos, M. A., F. Strozzi and M. Zaldivar, “A New Method for Assessing the Thermal Stability of Semibatch Processes Based on Lyapunov Exponents,” Chem. Eng. Sci., 51, 3089 (1996).
[2] Balakotaiah, V. and D. Luss, “Explicit Runaway Criterion for Catalytic Reactors with Transport Limitations,” AIChE J., 37, 1780 (1991).
[3] Balakotaiah, V., D. Kodra and D. Nguyen, “Runaway Limits for Heterogeneous and Catalytic Reactors,” Chem. Eng. Sci., 50, 1149 (1995).
[4] Barkelew, C. H., “Stability of Adiabatic Reactors,” ACS Symp. Ser., 237, 337 (1984).
[5] Bronnikova, T. V., V. R. Fed’kina, W. M. Schaffer and L. F. Olsen, “Period-Doubling Bifurcations and Chaos in a Detailed Model of the Peroxidase-oxidase Reaction,” Physical Chemistry, 99, (1995).
[6] Boe, E., “The Dynamics and Control of Nonlinear Systems Processing a Large Time Delay,” Ph.D. Thesis, University of Houston, Houston, USA (1988).
[7] Chang, H. C. and L. H. Chen, “Bifurcation Characteristics of Nonlinear Systems under Conventional PID Control,” Chem. Eng. Sci., 39, 1127 (1984).
[8] Chua, L. O. and H. Kokubu, “Normal Forms for Nonlinear Vector Fields – Part I: Theory and Algorithm,” IEEE Trans. on Circuits and Systems, 35, 863 (1988).
[9] Chua, L. O. and H. Kokubu, “Normal Forms for Nonlinear Vector Fields – Part II: Applications,” IEEE Trans. on Circuits and Systems, 36, 51 (1989).
[10] Curry, J., “A Generalized Lorenz System”, Comm. Math. Phys., 60, 193 (1978)
[11] Douglas, J. M. and D. W. T. Rippin, “Unsteady State Process Operation”, Chem. Eng. Sci., 21, 305 (1966)
[12] Feigenbaum, M. J., “Quantitative Universality for a Class of Nonlinear Transformations”, J. Stat. Phys., 19, 25 (1978)
[13] Guckenheimer, J. and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, Springer, New York, USA (1983).
[14] Henon, M. and C. Heiles, “The Applicability of the Third Integral of Motion : Some Numerical Experiments”, Astron. J., 69, 73 (1964)
[15] Holms, P. J., “A Strange Family of Three-Dimensional Vector Fields Near a Degenerate Singularity,” Journal of Differential Equations, 37, 382 (1980).
[16] Hwang, S. H. and H. C. Chang, “Process Dynamic Models for Heterogeneous Chemical Reactor – An Application of Dynamic Singularity Theory,” Chem. Eng. Sci., 41, 953 (1986).
[17] Hwang, S. H. and H. C. Chang, “Turbulent and Inertial Rolls Waves in Inclined Film Flow,” Phys. Fluids, 30, 1259 (1987).
[18] Hwang, S. H. and H. C. Chang, “Non-Boussinesq Effects of Transitions in Hele-Shaw Convection,” Phys. Fluids, A1, 924 (1989).
[19] Kuznetsov, Y. A., CONTENT-Integrated Environment for Analysis of Dynamic Systems, (1998).
[20] Lebender, D., J. Muller and F. W. Schneider, “Control of Chemical Chaos and Noise : A Nonlinear Neural Net Based Algorithm,” J. Phys. Chem., 99, 4992 (1995).
[21] Lorenz, E. N., “Deterministic Nonperiodic Flow”, J. Atmos. Sci., 20, 130 (1963)
[22] May, R. M., “Simple Mathematical Models with Very Complicated Dynamics”, Nature., 261, 459 (1976)
[23] Pellegrini, L. and C. Tablino Possio, “A Non-Ideal CSTR: A High Codimension Bifurcation Analysis,” Chem. Eng. Sci., 51, 3151 (1996).
[24] Pellegrini, L. and G. Biardi, “Chaotic Behaviour of a Controled CSTR,” Computers chem. Engng., 14, 1237 (1990).
[25] Ray, W. H., “New Approaches to the Dynamics of Nonlinear Systems with Implications for Process and Control System Design ,” Chemical Process Control 2, D. E. Seborg and T. F. Edgar, eds. United Engineering Trustees, New York, USA, 245(1982).
[26] Rossler, O. E., “Different Types of Chaos in Two Simple Differential Equaions”, Z. Naturforschung., 31a, 1664 (1976)
[27] Ruelle, D. and R. Takens, “On the Nature of Turbulence,” Commun. Math. Phys., 20, 167 (1971).
[28] Russo, L. P. and B. W. Bequette, “Impact of Process Design on the Multiplicity Behavior of a Jacketed Exothermic CSTR,” AIChE, 41, 135 (1995).
[29] Seydel, R., “Practical Bifurcation and Stability Analysis : From Equilibrium to Chaos”, Springer, New York., (1994).
[30] Strozzi, F., J. M. Zaldivar, A. E. Kromberg and K. R. Westerterp, “On-line Runway Detection in Batch Reactors Using Chaos Theory Techniques,” AIChE, 45, 2429 (1999).
[31] Uppal, A., W. H. Ray and A. B. Poor, “On the Dynamic Behaviour of Continuous Stirred Tank Reactors,” Chem. Engng. Sci., 29, 967 (1974).


------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910242692
論文名稱(中文) 海森堡模型的非線性研究
論文名稱(英文) the Nonlinear Research of Heisenberg Model
校院名稱 成功大學
系所名稱(中) 物理學系碩博士班
系所名稱(英) Department of Physics
學年度 90
學期 2
出版年 91
研究生(中文) 連峻儀
學號 l2688108
學位類別 碩士
語文別 中文
口試日期 2002-07-16
論文頁數 36頁
口試委員 口試委員-張志義
口試委員-許祖斌
指導教授-張為民
關鍵字(中) 相變
繞數
週期性
魔梯
關鍵字(英) Frenkel-Kontorova Model
Cantor Function
devil's staircase
Cantor Set
Standard Mapping
winding number
ground state
ANNNI Model
學科別分類
中文摘要 非線性系統中魔梯現象在許多本質上完全不同的系統中都被觀察到,
例如Frenkel-Kontorova模型的Ground States與ANNNI模型中自旋狀態隨不同參數產生的相變。
本文將選擇一個海森堡模型,
能夠與Frenkel-Kontorova模型同樣以最小能量所得到的mapping equation求解,
並且與ANNNI模型中自旋系統的相變能夠對應,
求得絕對零度下的Ground State,並討論魔梯現象出現的可能性;
希望以此作為將Frenkel-Kontorova模型與ANNNI模型的魔梯現象連結的出發點。
英文摘要 We found the ground state of a Heisenberg model which has a phase transition at 0k similar to the ANNNI model by some strategy similar to the Frenkel-Kontorova model.
And we discuss the possibilities of the devil's staircase of this system,in order to connect the devil's staircase phenomenon from different nonlinear systems.
論文目次 1 引言 4
2 Frenkel-Kontorova Model 與 Standard Mapping 6
3 Extended Frenkel-Kontorova Model 與 Devil's Staircase 11
4 圓映像(Circle Map) 18
5 ANNNI Model(Axial Nearist-Next Nearist Ising Model) 21
6 最近鄰交互作用伴隨外加磁場的古典Heisenberg Model 26
7 與Frenkel-Kontorova Model及ANNNI模型的比較 31
參考文獻 1.馮端 金國鈞, ch6.1 "魔梯", 凝聚態物理學新論, 凡異出版社, 新竹, 339-362, (2000).
2.P. Bak, "Commensurate Phases, Incommensurate Phases and the Devil's Staircase", Rep. Prog. Phys., 45, 587, (1982).
3.R.L. Wheeden, A. Zygmund, Measure and Integral: An Introduction to Real Analysis, Marcel Dekker, N. Y. and Basel, 33-37, (1977); D. R. Chalice, "A Characterization of the Cantor Function", Amer. Math. Monthly 98, 255-258, (1991); R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Redwood City, CA, (1987); S. Wagon, "The Cantor Function" and "Complex Cantor Sets", ch4.2 and ch5.1, Mathematica in Action, W. H. Freeman, New York, 102-108 and 143-149, (1991).
4.T. Kontorova and Y. I. Frenkel, Zh. Eksp. & Teor. Fiz. 8, 89, 1340, 1349, (1938); F. C. Frank and J. M. Van der Merwe, Proc. Roy. Soc., London, A198, 2045, (1949). S. C. Ying, Phys. Rev. B3, 4160, (1971).
5.S. Aubry, "The new concept of transition by breaking of analyticity", Solitons and Condensed Matter Physics, Edited by A. R. Bishop and T. Schneider, Solid. State. Sciences 8, Springer Verlag, 264, (1978).
6.V. I. Arnold and A. Avez, Ergodic problems of classical mechanics, W. A. Benjamin Inc., (1968).
7.J. Moser, Stable and Random motions in Dynamical Systems, Princeton University Press, N. J., (1973).
8.S. Aubry and P. Y. Le Daeron, "The discrete Frenkel-Kontorova model and its extensions", Physica, 8D, 381-422, (1983).
9.S. Aubry, "The twist map, the extended Frenkel-Kontorova model and the devil's staircase", Physica, 7D, 240-258, (1983).
10.S. Aubry, G. Andre, "Analyticity Breaking and Anderson Localization in Incommensurate Lattices", Ann. of the Israel Phys. Soc. 3, 133-164, (1980); reprinted in: P.J. Steinhardt, S. Ostlund (Eds.), The Physics of Quasicrystals, World Scientific, Singapore, 554-593, (1987).
11.M. H. Jensen, P. Bak, and T. Bohr, "Complete Devil's Staircase, Fractal Dimension, and Universality of Mode-Locking Structure in the Circle Map", Phys. Rev. Lett. 50, 1637,(1983); "Transition to Chaos by Interaction of Resonances in Dissipative Systems. 1. Circle Maps", Phys. Rev. A30, 1960, (1984).
12.J. von Boehm and P. Bak, "Devil's Staircase and the Commensurate-Commensurate Transitions in CeSb", Phys. Rev. Lett. 42, 122, (1987).
13.P. Bak and J. von Boehm, "Ising Model with Solitons, Phasons, and the Devil's Staircase", Phys. Rev. B21, 5297, (1980).
14.M. H. Jensen and P. Bak, "Mean-Field Theory of the Three-Dimensional Anisotropic Ising Model as a Four-Dimensional Mapping", Phys. Rev. B27, 6853, (1983).

------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910363292
論文名稱(中文) 聚苯胺之電感電容及蕭基行為研究
論文名稱(英文) Studies on Inductive, Capacitive and Schottky Behavior of Polyaniline
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 91
學期 2
出版年 92
研究生(中文) 陳韋志
學號 n3889109
學位類別 博士
語文別 英文
口試日期 2003-06-13
論文頁數 150頁
口試委員 指導教授-溫添進
口試委員-楊乾信
口試委員-鄧熙聖
口試委員-胡啟章
口試委員-萬其超
關鍵字(中) 蕭基二極體
超高電容器
電感行為
聚苯胺
導電性高分子
關鍵字(英) Inductive behavior
Schottky diode
Supercapacitor
Conducting polymers
Polyaniline
學科別分類
中文摘要 本論文主要研究以電化學合成之導電性高分子-聚苯胺分別成膜於白金電極、多孔性碳材電極與黃金電極上,分三部分來依序探討聚苯胺之電感、電容與蕭基性質。本研究中,聚苯胺之水解副產物苯酉昆 (benzoquinone)和氫酉昆 (hydroquinone)對聚苯胺之電化學行為與電子特性有重大之影響。

(1) 聚苯胺之電感行為
於鹽酸溶液中,利用循環伏安法配合上限電位0.9 V,所形成之聚苯胺膜顯現出電感行為。在不同上限電位(0.75和0.9 V)合成的聚苯胺膜,以電化學阻抗分析儀來探討其阻抗特性。阻抗分析結果發現,合成聚苯胺時,若有大量副產物苯酉昆 /氫酉昆 伴隨產生,則此高分子膜有明顯的電感行為顯現。此一結果可進一步地由X射線光電子光譜得到證明。從電化學阻抗和X射線光電子光譜之比較與分析中,說明了於電化學合成聚苯胺過程中所形成的水解副產物是造成聚苯胺電感行為之最主要因素。

(2) 聚苯胺之電容行為
利用循環伏安法植入聚苯胺於高表面積的多孔性碳材內,製備超高電容器之電極。以掃瞄式電子顯微鏡與X射線光電子分析儀來檢視聚苯胺植入之碳電極的表面形態與化學組成。並藉由循環伏安法以及電化學阻抗分析來進行複合電極的電化學特性探討。所提出的等效電路適切地模擬電極之電化學阻抗行為,更進一步地證明聚苯胺所提供之擬電容的重要性。單純多孔性碳電極也在相同的條件下做了對照組的實驗以利於比較分析。電容器的性能是以定電流方式於1 M的硫酸中,電位窗範圍0  0.6 V,進行1000次的充放電測試。聚苯胺植入之複合式碳電極呈現出180 F/g的高電容量,遠大於純碳電極的92 F/g。

(3) 聚苯胺二極體之蕭基行為
以循環伏安法配合兩個不同的上限電位, 0.8和1.1 V,分別在黃金電極上成長聚苯胺高分子膜。經過乾燥處理後,再於聚苯胺表面上以蒸鍍的方式鍍上一層鋁金屬,製作出Al/PANI/Au之蕭基二極體。歐傑電子光譜顯示以1.1 V上限電位合成的聚苯胺膜含有高含量的副產物-苯酉昆 和氫酉昆。含有副產物與不含副產物之聚苯胺跟鋁金屬的接面(Al/PANI)電性性質,以電流-電壓特性和阻抗分析來檢視,同時並探討溫度變化與接面性質的相互關係。結果顯示,內含水解產物之聚苯胺確實會對接面的電性性質造成影響。兩種聚苯胺所形成的Al/PANI接面都可發現有整流效應,但其接面參數,如障壁高、理想係數以及飽和電流密度卻都顯現出極大的差異。於不同溫度下,所測得的兩種元件之阻抗行為趨勢也有所不同;同時藉由等效電路模擬可求得蕭基元件的阻抗參數。綜合電流-電壓特性分析與阻抗分析的結果顯示,含有副產物的聚苯胺所形成的Al/PANI接面會增加元件的接觸電阻、空乏層厚度以及壁障高。
英文摘要 Conducting polymer polyaniline (PANI) was synthesized in aqueous acid solution and deposited on platinum, porous carbon and gold electrodes, respectively to investigate the inductive, capacitive and Schottky properties of the resulting PANI coated electrodes and their corresponding devices. The hydrolysis products of PANI, benzoquinone (BQ) and hydroquinone (HQ) play a determining role in this research. The present study work is systematically summarized in the following three parts.

(1) Inductive behavior of PANI
PANI film electrodeposited in HCl medium using cyclic voltammetry (CV) with an upper potential limit of 0.90 V, exhibited an inductive behavior. PANI films deposited with different conditions were subjected to various applied potentials and the impedance characteristics were recorded through electrochemical impedance spectroscopy (EIS). The impedance results clearly reveal the existence of inductive behavior to PANI. Inductive behavior was observed for PANI films deposited with conditions which favor BQ/HQ formation and further evidenced by X-ray photoelectron spectroscopy (XPS). A comparative analysis of the EIS and XPS results of PANI films prepared under similar conditions with the upper potential limits of 0.75 V and 0.90 V, respectively, clearly documented that the presence of BQ/HQ, the degradation products of PANI, formed during the electrochemical polymerization causes inductive behavior to PANI.

(2) Capacitive behavior of PANI
Electrodes for supercapacitors were fabricated by depositing PANI on high surface area carbons. The surface morphology and chemical composition of the PANI-deposited carbon electrode was characterized by scanning electron microscopy (SEM) and XPS. CV and EIS were used to investigate the electrochemical properties of electrodes. An equivalent circuit was proposed to successfully fit the EIS data, and the significant contribution of pseudocapacitance from PANI was thus identified. A comparative analysis on the electrochemical properties of bare-carbon electrodes was also conducted under similar conditions. The performance of the capacitors equipped with the resulting electrodes in 1 M H2SO4 was evaluated by constant current charge-discharge cycling within a potential range from 0 to 0.6 V. The PANI-deposited electrode exhibits high specific capacitance of 180 F/g, in comparison with a value of 92 F/g for the bare-carbon electrode.

(3) Schottky behavior of PANI-based diodes
Schottky diodes based on Al/PANI, electrodeposited by cyclic voltammetry with two different upper oxidation potentials, 0.8 and 1.1 V, respectively, were fabricated. Auger electron spectroscopy (AES) confirms the presence of hydrolysis products of PANI, BQ and HQ for PANI film deposited with a switch potential of 1.1 V. The electronic properties of the Al/PANI (with inbuilt hydrolysis products) and Al/PANI (without hydrolysis products) junctions were evaluated for different temperatures by current-voltage characteristics and impedance spectroscopy measurements. The presence of inbuilt hydrolysis products with PANI influences the electronic properties of the junction. The junctions were found to be rectifying in both cases but with wide differences in junction parameters, like barrier height, ideality factor and saturation current density, between them. The temperature dependence of impedance spectra of the devices was found to have variations. The combined analyses of current-voltage characteristics and impedance measurements reveal that the presence of hydrolysis products with PANI in Al/PANI junction increases the contact resistance, depletion layer thickness, and barrier height of the device.
論文目次 Acknowledgement i
Abstract ii
中文摘要 v
Symbols and Abbreviations vii
Contents xii
List of Figures xv
List of Schemes xix
List of Tables xx

Chapter 1 Introduction 1
1-1 Conducting polymer 1
1-1-1 Development of conducting polymers 2
1-1-2 Classification of conducting polymers 4
1-1-3 Conducting mechanism 5
1-1-4 Applications 8
1-1-4-1 Polymer-based light-emitting devices (PLEDs) 9
1-1-4-2 Light-emitting electrochemical cells (LECs) 10
1-1-4-3 Electrochromic display 11
1-1-4-4 Electrochemical supercapacitors 12
1-1-4-5 Biosensors 14
1-1-4-6 Polymer-based field effect transistor (PFET) 15
1-2 Polyaniline 17
1-2-1 Chemical polymerization of aniline 18
1-2-2 Electrochemical polymerization of aniline 19
1-2-3 Processability 21
1-2-4 Electrochemistry 22
1-3 Polyaniline derivatives and copolymers 24
1-3-1 Ring-substituted polyanilines 25
1-3-2 N-substituted polyanilines 26
1-3-3 Copolymers of polyaniline 27
1-3-4 Sulfonated polyaniline 29
1-4 Research Motivation 30

Chapter 2 Identification of Inductive Behavior for Polyaniline 41
2-1 Introduction 41
2-2 Experimental 45
2-2-1 Chemicals 45
2-2-2 Electrochemical polymerization 45
2-2-3 Electrochemical impedance behavior of polymer films 46
2-2-4 X-ray Photoelectron Spectroscopy 46
2-3 Results and Discussion 48
2-3-1 Electrochemical polymerization of aniline and generation of benzoquinone 48
2-3-2 Electrochemical impedance characteristics of PANI films in the presence of BQ 49
2-3-3 XPS analysis 58
2-4 Conclusion 60

Chapter 3 Polyaniline-Implanted Porous Carbon Electrode for Supercapacitor 75
3-1 Introduction 75
3-2 Experimental 77
3-2-1 Preparation of carbon electrodes 77
3-2-2 Loading PANI on carbon electrodes 77
3-2-3 SEM 78
3-2-4 X-ray Photoelectron Spectroscopy 78
3-2-5 Electrochemical measurements 79
3-2-6 Capacitance measurement 80
3-3 Results and Discussion 81
3-3-1 Electrochemical polymerization of PANI on carbon electrodes 81
3-3-2 Textural characteristics 82
3-3-3 Electrochemical characteristics of the resulting electrodes 83
3-3-4 Charge-discharge cycling performance of capacitors 89
3-4 Conclusions 92

Chapter 4 Characterization of Schottky Diodes Based on Polyaniline/Aluminum Junction 106
4-1 Introduction 106
4-2 Experimental 109
4-2-1 Electrodeposition of PANI with or without hydrolysis products 109
4-2-2 Auger electron spectroscopy 110
4-2-3 Schottky diodes with PANI 110
4-2-4 Current-voltage and AC impedance measurements 110
4-3 Results and Discussion 111
4-3-1 Preparation of PANI film with inbuilt hydrolysis products 111
4-3-2 Auger profile of oxygen concentration in PANI films 112
4-3-3 Electronic properties of Schottky barrier 113
4-3-4 AC impedance analysis 116
4-4 Conclusions 120

Chapter 5 Overall Conclusion 131

References 134
Publication List 148
Conference Papers 150
Curriculum Vitae 151
參考文獻 1. C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gua and A.G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).
2. T.A. Skotheim, Handbook of Conducting Polymers, vol. I and II, Marcel Dekker, New York, 1986.
3. H. Naarmann, Synth. Met., 17, 223 (1987).
4. H. Naarmann and N. Theophilou, Synth. Met., 22, 1 (1987).
5. R.S. Kohlman, A.J. Epstein, in: T. Skotheim, J.R. Reynolds, R.L. Elsenbaumer (Eds.), Handbook of Conducting Polymers, Marcel Dekker, New York, 1997 pp. 85-121.
6. H. Shirakawa, E.J. Louis, A.G.. MacDiarmid, C.K. Chiang and A.J. Heeger, J. Chem. Soc. Chem. Commun., 16, 578 (1977).
7. S Lefrant, L.S. Lichtman, M. Temkin, D.C. Fichten, D.C. Miller, G.E. Whitwell and J.M. Burlich, Solid State Commun., 29, 191 (1979).
8. H. Shirakawa, Angew. Chem. Int. Ed., 40, 2574 (2001).
9. A.G. MacDiarmid, Angew. Chem. Int. Ed., 40, 2581 (2001).
10. A.J. Heeger, Angew. Chem. Int. Ed., 40, 2591 (2001).
11. J.H. Schön, A. Dodabalapur, Z. Bao, Ch. Kloc, G. Schenker and B. Batlogg, Nature, 410, 189 (2001).
12. R.L. Greene and B.R. Street, L.J. Suter, Phys. Rev. Lett., 34, 577 (1975).
13. R.N. McDonald and T.W. Campbell, J. Am. Chem. Soc., 82, 4669 (1960).
14. G.A. Lapitskii, S.M. Makin and A.A. Berlin, Vysokomol. Soldin., 9, 1274 (1967).
15. W. Haertel, G. Kossmehl, G. Maneeke, W. Wille, D. Woehrle and D. Zerpner, Angew. Makromol. Chem., 29, 307 (1973).
16. G. Kossmehl and Ber. Bunsenges. Phys. Chem., 83, 417 (1979).
17. L.W. Shacklette, H. Eckhardt, R.R. Chance and R.H. Banghman, J. Chem. Soc. Chem. Commun., 854 (1980).
18. P. Pfluger and O.B. Street, J. Chem. Phys., 80, 544 (1984).
19. A.F. Diaz, J. Chem. Soc. Chem. Commun., 635 (1979).
20. A.F. Diaz, K.K. Kanazawa, J.I. Castillo, J.A. Logan, "Conductive Polymers", (R. B. Seymour, Ed.,) Plenum Press, New York (1981).
21. E.M. Genies, G. Bidan and A.F. Diaz, J. Electroanal. Chem., 149, 101 (1983).
22. R. Jansson, H. Arwin, R. Bjorklund and I. Lundstrom, Thin Solid Films, 125, 205 (1980).
23. A.F. Diaz, A. Matninez, K.K. Kanazawa and M. Salmon, J. Electroanal. Chem., 130, 181 (1980).
24. G. Tourillon and F. Garnier, J. Electroanal Chem., 135, 173 (1982).
25. G. Tourillon and F. Gamier, J. Electroanal. Soc., 130, 2042 (1983).
26. R.J. Waltman, J. Bargon and A.F. Diaz, J. Phys. Chem., 87, 1459 (1983).
27. J.J. Ohsawa, K. Kaneto and K. Yoshino, Jap. J. App. Phys., 23, L663 (1984).
28. G.B. Street, T.C. Clarke, R.H. Geiss, V.Y. Lee, A. Nazzal, P. Pflunger and J.C. Scott, J. Phys. (Paris), C3, 599 (1983).
29. K.K. Kanazawa, A.F. Diaz, M.T. Krounbi and G.B. Street, Synth. Met., 4, 119 (1981).
30. A.F. Diaz and J.A. Logan, J. Electroanal. Chem., 111, 111 (1980).
31. T. Ito, H. Shirakawa and S. Ikeda, J. Polym. Sci. Polym. Chem. Ed., 12, 11 (1974).
32. C.K. Chiang, S.C. Gua, C.R. Fincher, Y.W. Park and A.G.. MacDiarmid, Appl. Phys. Lett., 33, 18 (1978).
33. S.C. Gau, J. Milliken, A. Pron, A.C. MacDiarmid and A.J. Heeger, JCS Chem. Commun., 662 (1979).
34. K. Müllen, G. Wegner (Eds.), Electronic Materials: The Oligomer Approach, Wiley-VCH, Weinheim, 1998.
35. R.H. Friend, R.W. Gymer, A.B. Holmes, E.G.J. Staring, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. dos Santos, J.L. Brédas, M. Lögdlund and W.R. Salaneck, Nature, 397, 121 (1998).
36. B. Wessling, Mater. Corros., 47, 439 (1996).
37. J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti and A.B. Holmes, Nature, 376, 498 (1995).
38. R. Sivakumar and R. Saraswathi, J. Power Sources, 104, 226 (2002).
39. F. Fusalba, P. Gouerec, D. Villers and D. Belanger, J. Electrochem. Soc., 148, A1 (2001).
40. X.C. Li, H. Sirringhaus, F. Garnier, A.B. Holmes, S.C. Moratti, N. Feeder, W. Clegg, S.J. Teat and R.H. Friend, J. Am. Soc., 120, 2206 (1998).
41. H. Sirringhaus, N. Tessler and R.H. Friend, Science, 280, 1741 (1998).
42. G.H. Gelinck, T.C.T. Geuns and D.M.d. Leeuw, Appl. Phys. Lett., 77, 1487 (2000).
43. N. Tessler, G.J. Denton and R.H. Friend, Nature, 382, 695 (1996).
44. M.A. Diaz-Garcia, F. Hide, B.J. Schwartz, M.R. Andersson, Q.B. Pei and A.J. Heeger, Synth. Met., 84, 455 (1997).
45. J. Dresner, RCA Rev., 30, 322 (1969).
46. K. Kaneto, K. Yoshino, K. Kao and Y. Inuishi, Jpn. Appl. Phys., 13, 1023 (1974).
47. R.H. Partridge, Polymer, 24, 733 (1983).
48. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burn and A.B. Holmes, Nature, 347, 539 (1990).
49. J. Cornil, D. Beljonne, C.M. Heller, I.H. Campbell, B.K. Laurich, D.L. Smith and J.L. Brédas, Chem. Phys. Lett., 278, 139 (1997).
50. Q. Pei, G. Yu, C. Zhang, Y. Yang and A.J. Heeger, Science, 269, 1086 (1995).
51. Q. Pei, Y. Yang, G. Yu, C. Zhang and A.J. Heeger, J. Am. Chem. Soc., 118, 3922 (1996).
52. D.J. Dick, A.J. Heeger, Y. Yang and Q. Pei, Adv. Mater., 8, 985 (1996).
53. S. Yamasaki, K. Terayama and J. Yano, J. Electrochem. Soc., 143, L212 (1996).
54. A. Di Fabio, A. Giorgi, M. Mastragostino and F. Soavi, J. Electrochem. Soc., 148, A845 (2001).
55. R. Kötz and M. Carlen, Electrochim. Acta, 45, 2483 (2000).
56. M. Gerard, A. Charbey and B.D. Malhotra, Biosens. Bioelectron., 17, 345 (2002).
57. W.J. Sung and Y.H. Bae, Anal. Chem., 72, 2177 (2000).
58. P.R. Unwin and A.J. Bard, Anal. Chem., 64, 113 (1992).
59. A. Tsumura and M. Koezuka, T. Ando, Appl. Phys. Lett., 49, 1210 (1986).
60. J.H. Burroughes, C.A. Jones and R.H. Friend, Nature, 335, 137 (1988).
61. G. Guilaud, M. Al Sadoun, M. Maitrot, J. Simon and M. Bouvet, Chem. Phys. Lett., 167, 503 (1990).
62. A. Tsumura, H. Fuchigami and H. Koezuka, Synth. Met., 41-43, 1181 (1991).
63. G. Horowitz, F. Garnier, A. Yassar, R. Hajlaoui and F. Kouki, Adv. Mater., 8, 52 (1996).
64. F. Garneir, R. Hajlaoui, A. Yassar and P. Srivastava, Science, 265, 1684 (1994).
65. Y. Yang and A.J. Heeger, Nature, 372, 344 (1994).
66. C.J. Dury, C.M.J. Mutsaers, C.M. Hart, M. Matters and D.M. deLeeuw, Appl. Phys. Lett., 73, 108 (1998).
67. Y.Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao, W. Li, K. Baldwin, V.R. Raju and H.E. Katz, Appl. Phys. Lett., 74, 2714 (1999).
68. V. Saxena and B.D. Malhotra, Curr. Appl. Phys., 3, 293 (2003).
69. A.G. MacDiarmid, J.C. Chiang, A.F. Richter and A.J. Epstein, Synth. Met., 18, 285 (1987).
70. R. Pelster, G. Nimtz and B. Wessling, Phys. Rev., B49, 12718 (1994).
71. E.M. Genies and M. Lapkowski, J. Electroanal. Chem., 236, 189 (1987).
72. K. Sasaki, M. Kaya. J. Yano, A. Kitani and A. Kunai, J. Electroanal. Chem., 215, 401 (1986).
73. Y. Wei, X. Tang, Y. Sun and W.W. Focke, . J. Polym. Sci. Chem. Edn., 27, 2385 (1989).
74. T. Kobayashi, H. Yoneyama and H. Tamura, J. Electroanal. Chem., Interfacial Electrochem., 177, 281 (1984).
75. M. Kancko, H. Nagamura and T. Shimora, Makromol. Chem., Rapid Commun., 8, 179 (1987).
76. Y. Sun, A.G. MacDiarmid and A.J. Epstein, J. Chem. Soc. Chem. Commun., 529 (1990).
77. Y. Cao, A. Andreatta, A.J. Heeger, and P. Smith, Polymer, 30, 2305 (1989).
78. A.G. MacDiarmid, S.K. Manohar, J.C. Masters, Y. Sun, H. Weis and A.J. Epstein, Synth. Met., 41-43, 621 (1991).
79. K. Tzou and R.V. Gregory, Synth. Met., 47, 267 (1992).
80. H. Letheby, J. Chem. Soc., 15, 161 (1862).
81. S.K. Manohar, A.G. MacDiarmid and A.J. Epstein, Synth. Met., 41, 711 (1991).
82. Y. Wei, G.-W. Jang and C.C. Chan, J. Polym. Sci. Part-C. Polymer Letters, 28, 219 (1990).
83. Y. Wei, K.F. Hsueh and G.-W. Jang, Polymer, 35, 3572 (1994).
84. J. Stejskal, P. Kratochvil, and M. Spirkova, Polym., 36, 4135 (1995).
85. N. Gospodinova, L. Terlemezyan, P. Mokreva and K. Kossev, Polymer, 34, 2434 (1993).
86. N. Gospodinova, P. Mokreva and L. Terlemezyan, Polymer, 36, 3585 (1995).
87. A.O. Patil, A.J. Heeger and F. Wudl, Chem. Rev., 88, 183 (1988).
88. J. Bacon and R.N. Adams, J. Am. Chem. Soc., 90, 6596 (1968).
89. D.M. Mohilner, R.N. Adams and W.J. Argersinger, J. Am. Chem. Soc., 13, 680 (1992).
90. A.F. Diaz and J.A. Logan, J. Electroanal. Chem. Interfacial Electrochem., 115, 111 (1980).
91. T. Kobayashi, H. Yoneyama and H. Tamura, J. Electroanal. Chem. Interfacial. Electrochem., 177, 293 (1984).
92. T. Kobayashi, H. Yoneyama and H. Tamura, J. Electroanal. Chem. Interfacial. Electrochem., 161, 419 (1984).
93. A. Volkov, G. Tourillon, P.C. Lacaze and J.E. Dubois, J. Electroanal. Chem., 115, 279 (1980).
94. E.M. Genies and C. Tsintavis, J. Electroanal. Chem., 195, 109 (1985).
95. Y. Wei, Y. Sun, G.W. Jang and X. Tang, J. Polym. Sci. Part-C Polymer Letters, 28, 81 (1990).
96. D.M. Mohilner, R.N. Adams and W.J. Argersinger, J. Am. Chem. Soc., 84, 3618 (1962).
97. R.L. Hand and R.F. Nelson, J. Am. Chem. Soc., 125, 1059 (1978).
98. M. Breitenbach and K.H. Heckner, J. Electroanal. Chem., 43, 267 (1971).
99. E.M. Genies and M. Lapkowski, J. Electroanal. Chem., 236, 199 (1987).
100. A. Kitani, M. Kaya, J. Yano, K. Yoshikama and K. Sasaki, Synth. Met., 18, 34 (1987).
101. Y. Cao, P. Smith and A.J. Epstein, Synth. Met., 48, 91 (1992).
102. Y. Cao and P. Smith, Polymer, 34, 3139 (1993).
103. R.F. Bay, S.P. Armes, C.J. Pickett and K.S. Ryder, Polymer, 32, 2456 (1991).
104. L.A. Samuelson, A. Anagnostopoulos, K.S. Alva, J. Kumar and S.K. Tripathy, Macromolecules, 31, 4376 (1998).
105. P.J. Kinlen, J.L. Ding, C.R. Graham and E.E. Resen, Macromolecules, 31, 1735 (1998).
106. G.A. Planes, G.M. Morales, M.C. Miras and C. Barbero, Synth. Met., 97, 223 (1998).
107. N. Kuramoto and A. Tomita, Polymer, 38, 3055 (1997).
108. W. Yin and E. Ruckenstein, Synth. Met., 108, 39 (2000).
109. R.D. Loufty, J.H. Sharp, J. Chem. Phys., 71, 1211 (1979).
110. M.S. Setty, D.P. Amalnerkar, in: M. Prudenziati (Ed.), Thick Film Sensors, Elsevier, Amsterdam, 1994, p. 359.
111. M.C. Bernard and A. Hugot Le Goff, Surf. Interface Anal., 19, 27 (1992).
112. M.C. Bernard and A. Hugot Le Goff, J. Electrochem. Soc., 141, 2682 (1994).
113. A. Hugot Le Goff and M.C. Bernard, Synth. Met., 60, 115 (1993).
114. M.C. Bernad, A. Hugot Le Goff, V.T. Bich and W. Zeng, Synth. Met., 81, 215 (1996).
115. M.C. Bernard, V.T. Bich, S.C. De Torresi and A. Hugot Le Goff, Synth. Met., 84-86, 785 (1997).
116. M.A. Depaoli, A. Zanelli, M. Mastragostino and A.M. Rocco, J. Electroanal. Chem., 435, 217 (1997).
117. E. Kim, K.Y. Lee, M.H. Lee, J.S. Shim and S.B. Rhee, Synth. Met., 84-86, 1367 (1997).
118. V. F. Ivanov, A.A. Nekrasov, O.C. Gribkova and A.V. Vannikov, Synth. Met., 83, 249 (1996).
119. W.A. Gazotti Jr, M.J.D.M. Jannini, S.I. Cordoba De Torresi and M.A. Depaoli, J. Electroanal. Chem., 440, 193 (1997).
120. A. Malinauskas and R. Holze, Ber. Bussenger. Phys. Chem., 101, 1851 (1997).
121. A. Malinauskas and R. Holze, Synth. Met., 97, 31 (1998).
122. M. Leclerc, J. Guay and L.H. Dao, Macromolecules, 22, 649 (1989).
123. J.W. Chevalierr, J.Y. Bergeron and L.H. Dao, J. Am. Chem. Soc., 25, 3325 (1992).
124. M. Ranger and M. Leclerc, Synth. Met., 84, 85 (1997).
125. A.A. Athawale, B.A. Deore and M.V. Kulkami, Mater. Chem. Phys., 60, 262 (1999).
126. Y. Wei, W.W. Focke, G.E. Wuck, A.R. and A.G. MacDiarmid, J. Phys. Chem., 93, 495 (1989).
127. L.X. Wang, X.B. Jing and F.S. Wang, Synth. Met., 41, 745 (1991).
128. F.A. Viva, E.M. Andrade, F.V. Molina and M. Florit, J. Electroanal. Chem., 471, 180 (1999).
129. D. Goncalves, B. Matrenko and L.O.S. Bulhães, J. Electroanal. Chem., 415, 107 (1996).
130. Gazotti, N. Comisso, G.D’Aprano and M. Leclerc, Adv. Mater., 4, 749 (1992).
131. G. Pistoia and R. Rosati, Electrochim. Acta, 3, 333 (1994).
132. M. Mazur, P. Krysiński, Electrochim. Acta, 46, 3963 (2001).
133. F.R. Díaz, C.O. Sánchez, M.A. del Valle, L.H. Tagle, J.C. Bernede and Y. Tregouet, Synth. Met., 92, 99 (1990).
134. W.E. Rudzinski, L. Thrower, R. Sutcliffe and M. Bahrami, Synth. Met., 68, 199 (1995).
135. D. Zhou, P.C. Innis, G.G. Walace, S. Shimizu and S.I. Maeda, Synth. Met., 114, 287 (2000).
136. A. Malinauskas and R. Holze, Ber. Bussenger. Phys. Chem., 101, 1859 (1997).
137. A. Malinauska and R. Holze, Electrochim. Acta, 44, 2613 (1999).
138. A. Malinauska and R. Holze, J. Solid State Electrochem., 3, 239 (1999).
139. K. Chiba, T. Ohsaka and N. Oyama, J. Electroanal. Chem., 217, 239 (1987).
140. N. Comisso, S. Daoli, G. Zotti, S. Zecchin, R. Salsomaso and G. Mengoli, J. Electroanal. Chem., 255, 97 (1988).
141. L.H. Dao, J. Guay and M. Leclerc, Synth. Met., 29, E383 (1989).
142. J. Guay, R. Paynter and L.H. Dao, Macromolecules, 23, 23 (1990).
143. H. Santana, J.R. Matos and M.L.A. Temperini, Polym. J., 30, 315 (1998).
144. A.A. Athawale, B.A. Deore and V.V. Chobukswar, Mat. Chem. Phys., 58, 94 (1999).
145. S. Ye, N.T. Do, L.H. Dao and A.K. Vijh, Synth. Met., 97, 65 (1997).
146. C.Y. Chung, T.C. Wen and A. Gopalan, Mater. Chem. Phys., 71, 148, (2001).
147. M.S. Wu, T.C. Wen and A. Gopalan, J. Electrochem. Soc., 148, D65 (2001).
148. T.C. Wen, L.M. Huang and A. Gopalan, J. Electrochem. Soc., 148, D9 (2001).
149. W.C. Chen, T.C. Wen and A. Gopalan, J. Electrochem. Soc., 148, E427 (2001).
150. J.Y. Lee, X.H. Su and C.Q. Cui, J. Electroanal. Chem., 367, 71 (1994).
151. J.Y. Lee and C.Q. Cui, J. Electroanal. Chem., 403, 109 (1996).
152. H.S.O. Chan, S.C. Ng, W.S. Sim, K.L. Tan and B.T.G. Tan, Macromolecules, 25, 6029 (1992).
153. M.T. Nguyen and A.F. Diaz, Macromolecules, 28, 3411 (1995).
154. C.H. Yang and T.C. Wen, J. Electrochem. Soc., 141,2624 (1994).
155. C.H. Yang and T.C. Wen, J. Appl. Electrochem., 24, 166 (1994).
156. J.Y. Lee and A.J. Epstein, J. Am. Chem. Soc., 112, 2800 (1990).
157. H. Tang, A. Kitani, and S. Ho, Electrochim. Acta, 42, 3421 (1997).
158. S.A. Chen and G.W. Hwang, J. Am. Chem. Soc., 116, 7939 (1994).
159. Y. Yue, Z.H. Wang, K.R. Cromack, A.J. Epstein and A.G. MacDiarmid, J. Am. Chem. Soc., 113, 2665 (1991).
160. A.A. Karyakin, A.K. Stakhara and A.K. Yatstimirshy, J. Electroanal. Chem., 371, 259 (1994).
161. A.A. Karyakin, I.A. Maltsev and L.V. Lukachova, J. Electroanal. Chem., 402, 217 (1996).
162. T.A. Skotheim, in Handbook of Conducting Polymers, Vol. 1 and 2, Editor, Marcel Dekker, New York (1988).
163. J.L. Bredas and R.R. Chance, in Conjugates Polymeric Materials: Opportunities in Electronics, Optoelectronics and Molecular Electronics, Editors, Kluwer Acadamic Pub., Dordrecht (1990).
164. T.A. Skotheim, in Electroresponsive Molecular and Polymeric Systems, Vol. II, Editor, Marcel Dekker, Inc., New York (1992).
165. G.P. Evans, in Advances in Electrochemical Science and Engineering (Edited by H. Gerischer, C.H. Tobias), Vol. 1, VCH, New York (1990).
166. E.M. Genies, M. Lapkowski and C. Tsintavis, New J. Chem., 12, 181 (1988).
167. C.C. Hu and C.H. Chu, Mat. Chem. Phys., 65, 329 (2000).
168. C.C. Hu and C.H. Chu, J. Electroanal. Chem., 503, 105 (2001).
169. E.T. Kang, K.G. Neoh, K.L. Tan, in Handbook of Organic Conductive Molecules and Polymers (Edited by H. S. Nalwa), Vol. 3, John Wiley & Sons (1997).
170. K. Roβberg, G. Paasch, L. Dunsch and S. Ludwig, J. Electroanal. Chem., 443, 49 (1998).
171. D.E. Stilwell and S.M. Park, J. Electrochem. Soc., 135, 2254 (1988).
172. D.E. Stilwell and S.M. Park, J. Electrochem. Soc., 135, 2491 (1988).
173. D.E. Stilwell and S.M. Park, J. Electrochem. Soc., 135, 2497 (1988).
174. S.M. Lin and T.C. Wen, Electrochim. Acta, 39, 393 (1994).
175. S.A. Boctor, in Electric Circuit Analysis, 2nd Edition, Prentice-Hall, Englewood Cliffs (1992).
176. R.C. Dorf, in Introduction to Electric Circuits, John Wiley & Sons, New York (1989).
177. C. Deslouis, M.M. Musiani and B. Tribollet, J. Phs. Chem., 98, 2936 (1994).
178. R. Cordova, M.A. Delvalle, A. Arratia, H. Gomez and R. Schrebler, J. Electroanal. Chem., 377, 75 (1994).
179. H.J. Yang and A.J. Bard, J. Electroanal. Chem., 339, 423 (1992).
180. G.S. Popkirov, E. Barsoukov and R.N. Schindler, J. Electroanal. Chem., 425, 209 (1997).
181. C. Deslouis, M.M. Musiani, B. Tribollet and M.A. Vorotyntsev, J. Electrochem. Soc., 142, 1902 (1995).
182. G. Lang and G. Inzelt, Electrochim. Acta, 36, 847 (1991).
183. P. Fiordiponti and G. Pistoia, Electrochim. Acta, 34, 215 (1989).
184. M.A. Vorotyntsev, J.P. Badiali and G. Inzelt, J. Electroanal. Chem., 472, 7 (1999).
185. N.G. Skinner and E.A.H. Hall, Synth. Met., 63, 133 (1994).
186. C. Gabrielli, H. Takenouti, O. Haas and A. Tsukada, J. Electroanal.Chem., 302, 59 (1991).
187. W.A. Gazotti, T. Matencio and M.A. Depaoli, Electrochim. Acta, 43, 457 (1998).
188. A. Benyaich, C. Deslouis, T. Elmoustafid, M.M. Musiani and B. Tribollet, Electrochim. Acta, 41, 1781 (1996).
189. G. Lang and G. Inzelt, Electrochim. Acta, 44, 2037 (1999).
190. Y.F. Li and R.Y. Qian, Synth. Met., 57, 3637 (1993).
191. Y.B. Shim, M.S. Won and S.M. Park, J. Electrochem. Soc., 137, 538 (1990).
192. D.E. Stilwell and S.M. Park, J. Electrochem. Soc., 136, 427 (1989).
193. S.H. Glarum and J.H. Marshall, J. Electrochem. Soc., 134, 2160 (1987).
194. G. Inzelt and G. Lang, J. Electroanal. Chem., 378, 31 (1994).
195. R.P. Buck and C. Mundt, Electrochim. Acta, 44, 1999 (1999).
196. G. Lang, J. Bacskai and G. Inzelt, Electrochim. Acta, 38, 773 (1991).
197. R.D. Armstrong, J. Electroanal. Chem., 198, 177 (1986).
198. P.H. Nguyen and G. Paasch, J. Electroanal. Chem., 460, 63 (1999).
199. C. Ehrenbeck, K. Juttner, S. Ludwig and G. Paasch, Electrochim. Acta, 43, 2781 (1998).
200. J. Tanguy, N. Mermilliod and M. Hoclet, J. Electrochem. Soc., 134, 795 (1987).
201. T. Komura, T. Yamaguti and K. Takahasi, Electrochim. Acta, 41, 2865 (1996).
202. O. Genz, M.M. Lohrengel and J.W. Schultze, Electrochim. Acta, 39, 179 (1994).
203. S.Y. Ye, S. Besner, L.H. Dao and A.K. Vijh, J. Electroanal. Chem., 381, 71 (1995).
204. A. Lewandowski, M. Zajder, E. Frackowiak and F. Beguin, Electrochim. Acta, 46, 2777 (2001).
205. M. Endo, Y.J. Kim, T. Takeda, T. Maeda, T. Hayashi, K. Koshiba, H. Hara and M.S. Dresselhaus, J. Electrochem. Soc., 148, A1135 (2001).
206. T.C. Weng and H. Teng, J. Electrochem. Soc., 148, A368 (2001).
207. H. Shi, Electrochim. Acta, 41, 1633 (1996).
208. M.D. Ingram, A.J. Pappin, F. Delalande, D. Poupard and G. Terzulli, Electrochim. Acta, 43, 1601 (1998).
209. J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang and H. Fang, J. Electrochem. Soc., 148, A1362 (2001).
210. C.C. Hu and C.C. Wang, Electrochem. Comm., 4, 554 (2002).
211. H. Kim and B.N. Popov, J. Power Sources, 104, 52 (2002).
212. K. Naoi, K.I. Kawase, M. Mori and M. Komiyama, J. Electrochem. Soc., 144, L173 (1997).
213. T. Sotomura, H. Uemachi, K. Takeyama, K. Naoi and N. Oyama, Electrochim. Acta, 37, 1851 (1992).
214. B.E. Conway, Electrochemical Supercapacitors, Kluwer-Plenum, New York (1999).
215. M.G. Han and S.S. Im, Polymer, 41, 3253 (2000).
216. I. Tanahashi, A. Yoshida and A. Nishino, J. Electrochem. Soc., 137, 3052 (1990).
217. Y.R. Nian and H. Teng, J. Electrochem. Soc., 149, A1008 (2002).
218. W.C. Chen, T.C. Wen, C.C. Hu and A. Gopalan, Electrochim. Acta, 47, 1305 (2002).
219. C. Gabrielli, M. Keddam, N. Nadi and H. Perrot, J. Electroanal. Chem., 485, 101 (2000).
220. C. Gabrielli, M. Keddam, N. Nadi and H. Perrot, Electrochim. Acta, 44, 2095 (1999).
221. C. Gabrielli, M. Keddam, H. Perrot, M.C. Pham and R. Torresi, Electrochim. Acta, 44, 4217 (1999).
222. T. Osaka, X. Liu, M. Nojima and T. Momma, J. Electrochem. Soc., 146, 1724 (1999).
223. V.C. Nguyen and K. Potje-Kamloth, Thin Solid Films, 338, 142 (1999).
224. D.M. de Leeuw and E.J. Lous, Synth. Met., 65, 45 (1994).
225. R. Gupta, S.C.K. Misra, B.D. Malhotra, N.N. Beladakere and S. Chandra, Appl. Phys Lett., 58, 51 (1991).
226. W. Bantikassegn and O. Inganäs, Thin Solid Films, 293, 138 (1997).
227. K. Kaneto and W. Takashima, Curr. Appl. Phys., 1, 355 (2001).
228. S.C.K. Misra, M.K. Ram, S.S. Pandey, B.D. Malhotra and S. Chandra, Appl. Phys. Lett., 61, 1219 (1992).
229. R. Singh and A.K. Narula, Appl. Phys. Lett., 71, 2845 (1997).
230. C.H. Yang, J. Electrochem. Soc., 146, 1939 (1999).
231. W. Bantikassegn and O. Inganäs, J. Phys. D: Appl. Phys., 29, 2971 (1996).
232. W. Bantikassegn and O. Inganäs, Synth. Met., 87, 5 (1997).
233. W. Bantikassegn, P. Dannetun, O. Inganäs and W.R. Salaneck, Thin Solid Films, 224, 232 (1993).
234. P. Dannetun, M. Lögdlund, M. Fahlman, M. Boman, S. Stafström and W.R. Salaneck, Synth. Met., 55-57, 212 (1993).
235. P. Dannetun, M. Boman, S. Stafström and W.R. Salaneck, J. Chem. Phys., 99, 664 (1993).
236. A. Lachkar, A. Selmani, E. Sacher, M. Leclerc and R. Mokhliss, Synth. Met., 66, 209 (1994).
237. W.C. Chen, T.C. Wen and A. Gopalan, Electrochim. Acta, 47, 4195 (2002).
238. W.C. Chen, T.C. Wen and A. Gopalan, Synth. Met., 128, 179 (2002).
239. S.S. Pandey, S.C.K. Misra, B.D. Malhotra and S. Chandra, J. Appl. Polym. Sci., 44, 911 (1992).
240. Lj. Duic and S. Grigic, Electrochim. Acta, 46, 2795 (2001).
241. Z. Mandic and Lj. Duic, J. Electroanal. Chem., 403, 133 (1996).
242. S.M. Sze, Physics of Semiconductor Devices, p. 245, Wiley, New York (1993).
243. S. Angappane, N. Rajeev Kini, T.S. Natarajan, G. Rangarajan and B. Wessling, Thin Solid Films, 417, 202 (2002).
244. A. Bozkurt, C. Ercelebi and L. Toppare, Synth. Met., 87, 219 (1997).
245. R. Lazzaroni, J.L. Brédas, P. Dannetun, C. Fredriksson, S. Stafström and W.R. Salaneck, Electrochim. Acta, 39, 235 (1994).

------------------------------------------------------------------------ 第 4 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910380080
論文名稱(中文) 發展自動化樣品淨化暨串連式質譜儀裝置來定量偵測尿液中苯暴露生物指標S-PMA
論文名稱(英文) An automatic sample clean-up and ESI-MS/MS system for the quantitative detection of benzene exposure biomarker S-PMA in urine
校院名稱 成功大學
系所名稱(中) 環境醫學研究所
系所名稱(英) Institute of Environmental and Occupational Health
學年度 91
學期 2
出版年 92
研究生(中文) 林隆晟
學號 s7689109
學位類別 碩士
語文別 中文
口試日期 2003-01-24
論文頁數 69頁
口試委員 指導教授-廖寶琦
召集委員-石東生
口試委員-蔡朋枝
口試委員-李俊璋
口試委員-張火炎
關鍵字(中) 尿液
苯基硫醇酸
電灑離子化法串聯式質譜儀
關鍵字(英) urine
S-phenylmercapturic acid (S-PMA)
benzene
學科別分類
中文摘要 苯已被證實會導致白血病,國際癌症研究中心 (International Agency for Research on Cancer, IARC)已經將苯列為group1的致癌性物質。目前苯基硫醇酸 (S-phenylmercapturic acid, S-PMA)被證實是一個具有高特異性的苯暴露生物指標,然而以往缺乏敏感度與繁複前處理的分析方法較不適於評估苯暴露量。因此為了例行性樣本分析,發展一個高敏感度且能免除繁複樣本前處理的自動化分析方法是有必要的。本研究的目的在於發展自動化固相萃取技術並利用電灑離子化法串聯式質譜儀(electrospray ionization-tandem mass spectrometry, ESI-MS/MS)來分析定量尿中苯的生物指標S-PMA,此系統可以自動化分析並免除繁複的前處理。本實驗室已將自動化固相萃取技術與電灑離子化法串聯式質譜儀系統已架構完畢,所欲發展的分析方法之檢量線、精密度、回收率、準確度、方法偵測極限與樣本儲存穩定度都有被加以描述,檢量線利用13C6 S-PMA當作內標準品其相關係數達 (R2=0.998),本方法在尿液基質內之偵測極限達2.09 μg/g creatinine,尿液樣本添加S-PMA濃度相當為12.5、25、50 μg/g creatinine經過重複分析變異係數各別為4.82 %、5.62 %、6.24 %。尿液樣本以4 ℃與-20 ℃儲存,其樣本儲存穩定度結果是令人滿意的,分析相當12.5與50 μg/g creatinine濃度尿液樣本儲存8週後回收率介於88.9 %~105.7 %之間。本研究亦有探討解凍次數對樣品儲存穩定度的影響,樣本在10次的解凍後仍有相當良好的回收率 (93.2 % ~101.5 %)。另外此分析方法的適用性亦藉由台灣國家衛生研究院實驗室來加以驗證。
英文摘要 Benzene exposure has been linked to the occurrence of various types of leukemia. International Agency for Research on Cancer (IARC) has classified benzene as a group 1 carcinogen. S-phenylmercapturic acid (S-PMA) is so far considered to provide best specificity for benzene exposure. However, traditional analytical methods employed for assessing benzene exposure have been considered either lacking necessary sensitivities or require tedious procedures in the sample preparation. This study aims to develop a sensitive and automatic analytical systems to eliminate tedious sample preparation for the routine analysis of urinary S-PMA.An on-line solid phase extraction and electrospray ionization-tandem mass spectrometry (ESI-MS/MS) system was developed for the quantitative detection of benzene exposure biomarker, S-PMA, in urine. The system is easily automated and eliminates time-consuming sample preparation procedures.The calibration curve, precision, recovery, accuracy, detection limit, and stability of the system have been characterized. Good linear correlation (R2 = 0.998) was observed for calibration curves established for S-PMA-spiked urines with the use of stable isotope-labeled 13C6 S-PMA as internal standard. The detection limit of the method for S-PMA in urine matrix was determined to be 2.09 μg/g creatinine. The coefficients of variation (CV) generated by repeated analyses of urine samples containing 12.5, 25, and 50 μg/g creatinine were calculated to be 4.82 %, 5.62 %, 6.24 %, respectively. The stability of sample storage at 4 ℃ or -20 ℃ was assessed and the results were satisfactory. The analytical recovery of urine sample containing 12.5 and 50 μg/g of creatinine were very good (88.9 % ~ 105.7 %) after 8-week storage using two different conditions. The stability for frozen-and-thaw cycles was also described. The samples were stable up to 10 frozen-and-thaw cycles with good recovery (93.2 % ~ 101.5 %). The method was validated by another analytical laboratory located in the National Health Research institutes, Taiwan.
論文目次 摘 要 i
Abstract ii
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 苯在環境中的來源 4
2-2 苯的毒性作用 4
2-3 苯的生物指標 5
2-3-1 苯的代謝途徑 8
2-3-2苯各種生物指標之優劣 10
2-4目前苯生物指標的相關規範 13
2-5 過去分析尿液中S-PMA之方法及其優劣比較 14
第三章 研究方法與材料 16
3-1 研究架構 16
3-2 分析方法雛型之架構 18
3-2-1 分析方法雛型之架構原理 18
3-2-2 分析儀器與設備 20
3-2-3 樣本前處理 21
3-3 分析參數之尋找方式 23
3-3-1 找尋S-PMA與內標準品之前驅離子 (precursor ion)與產物離子 (product ion) 23
3-3-2 電壓參數 23
3-3-3 離子源參數 25
3-3-4 自動化淨化系統參數 25
3-4 分流系統的使用 26
3-5 內標準法的使用與內標準品之合成 27
3-6 空白分析 29
3-6-1 試劑空白分析 29
3-6-2 尿液基質空白分析 29
3-7 驗證程序 33
3-7-1 檢量線之製備標準 33
3-7-2 方法偵測極限 33
3-7-3 回收率 34
3-7-4 精密度 35
3-7-5 準確度 35
3-7-6 樣品儲存穩定性 36
第四章 結果與討論 37
4-1 S-PMA之前驅離子與產物離子 37
4-2 自動化淨化系統參數之結果 37
4-2-1 甲醇流速之最佳化 37
4-2-2 水沖提時間之最佳化 39
4-3 使用分流系統與非使用分流系統之結果 40
4-4分析方法參數之使用 42
4-5 內標準品之適用性 44
4-6空白分析 44
4-6-1 試劑空白分析 44
4-6-2 尿液基質空白分析 44
4-7 驗證程序之結果 53
4-7-1 檢量線 53
4-7-2 方法偵測極限 55
4-7-3 回收率 55
4-7-4 精密度 56
4-7-5 準確度 56
4-7-6 樣品儲存穩定性 57
第五章 結論 62
第六章 參考文獻 65
附錄一 69

參考文獻 Boogaard PJ, van Sittert NJ. Suitability of S-phenyl mercapturic acid and trans-trans-muconic acid as biomarkers for exposure to low concentrations of benzene. Environmental Health Perspectives 104:1151-7(1996).

Bruins AP. Mechanistic aspects of electrospry ionization. Journal of Chromatography A 794:345-57(1998).

Dor F, Dab W, Empereur-Bissonnet P, Zmirou D. Validity of biomarkers in environmental health studies: the case of PAHs and benzene. Critical Reviews in Toxicology 29:129-68(1999).

Einig T, Dehnen W. Sensitive determination of the benzene metabolite S-phenylmercapturic acid in urine by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A 697:371-5(1995).

Einig T, Dunemann L, Dehnen W. Sensitive gas chromatographic method for determination of mercapturic acids in human urine. Journal of Chromatography-Biomedical Applications 687:379-85(1996).

Fang MZ, Shin MK, Park KW, Kim YS, Lee JW, Cho MH. Analysis of urinary S-phenylmercapturic acid and trans, trans-muconic acid as exposure biomarkers of benzene in petrochemical and industrial areas of Korea. Scandinavian Journal of Work Environment & Health 26:62-6(2000).

Ghittori S, Imbriani M, Maestri L, Capodaglio E, Cavalleri A. Determination of S-phenylmercapturic acid in urine as an indicator of exposure to benzene. Toxicology Letters 108:329-34(1999).

Ghittori S, Maestri L, Fiorentino ML, Imbriani M. Evaluation of occupational exposure to benzene by urinalysis. International Archives of Occupational & Environmental Health 67:195-200(1995).

Hayes RB, Yin SN, Dosemeci M, Li GL, Wacholder S, Travis LB, Li CY, Rothman N, Hoover RN, Linet MS. Benzene and the dose-related incidence of hematologic neoplasms in China. Journal of the National Cancer Institute 89:1065-71(1997).

Inoue O, Kanno E, Kakizaki M, Watanabe T, Higashikawa K, Ikeda M. Urinary phenylmercapturic acid as a marker of occupational exposure to benzene. Industrial Health 38:195-204(2000).

International Agency for Research on Cancer (IARC). Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans. Chemicals, Industrial processes and industries associated with cancer in humans. Supplement7, Lyon, France, 1987.

Jongeneelen FJ, Dirven HA, Leijdekkers CM, Henderson PT, Brouns RM, Halm K. S-phenyl-N-acetylcysteine in urine of rats and workers after exposure to benzene. Journal of Analytical Toxicology 11:100-4(1987).

Melikian AA, O'Connor R, Prahalad AK, Hu P, Li H, Kagan M, Thompson SM. Determination of the urinary benzene metabolites S-phenylmercaturic acid and trans,trans-muconic acid by liquid chromatography-electrospray ionization-tandem mass spectrometry. Carcinogenesis 20:719-726(1999).

Ong CN, Kok PW, Ong HY, Shi CY, Lee BL, Phoon WH, Tan KT. Biomarkers of exposure to low concentrations of benzene: a field assessment. Occupational & Environmental Medicine 53:328-33(1996).

Ong CN, Lee BL. Determination of benzene and its metabolites: application in biological monitoring of environmental and occupational exposure to benzene. Journal of Chromatography-Biomedical Applications 660:1-22(1994).

Popp W, Rauscher D, Muller G, Angerer J, Norpoth K. Concentrations of benzene in blood and S-phenylmercapturic and t,t-muconic acid in urine in car mechanics. International Archives of Occupational & Environmental Health 66:1-6(1994).

Qu Q, Melikian AA, Li G, Shore R, Chen L, Cohen B, Yin S, Kagan MR, Li H, Meng M, Jin X, Winnik W, Li Y, Mu R, Li K. Validation of biomarkers in humans exposed to benzene: urine metabolites. American Journal of Industrial Medicine 37:522-31(2000).

Stanek W, Krenmayr P, Scherer G, Schmid ER. Quantitative determination of N-acetyl(-L-)cysteine derivatives in human urine by tandem mass spectrometry. Biological Mass Spectrometry 22:133-42(1993).

Stommel P, Muller G, Stucker W, Verkoyen C, Schobel S, Norpoth K. Determination of S-phenylmercapturic acid in the urine--an improvement in the biological monitoring of benzene exposure. Carcinogenesis 10:279-82(1989).

Van Sittert NJ, Boogaard PJ, Beulink GD. Application of the urinary S-phenylmercapturic acid test as a biomarker for low levels of exposure to benzene in industry. British Journal of Industrial Medicine 50:460-9(1993).

Wallace LA. Major sources of benzene exposure. Environmental Health Perspectives 82:165-9(1989).

Weaver VM, Buckley T, Groopman JD. Lack of specificity of trans,trans-muconic acid as a benzene biomarker after ingestion of sorbic acid-preserved foods. Cancer Epidemiology, Biomarkers & Prevention 9:749-55(2000).

World Health Organization (WHO). Biological Monitoring of Chemical Exposure in the Workplace Guidelines. Geneva, World Health Organization,1996.

------------------------------------------------------------------------ 第 5 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910390477
論文名稱(中文) 台灣與東協加三各國之貿易競爭力分析
論文名稱(英文) Trade competitiveness Analysis of Taiwan and countries of ASEAN Plus Three
校院名稱 成功大學
系所名稱(中) 政治經濟學研究所
系所名稱(英) Graduate Institute of Political Economy
學年度 91
學期 2
出版年 92
研究生(中文) 陳威杉
學號 u1689104
學位類別 碩士
語文別 中文
口試日期 2003-06-05
論文頁數 123頁
口試委員 指導教授-謝文真
口試委員-宋鎮照
口試委員-康信鴻
關鍵字(中) 固定效果模型
東協加三
顯示性比較利益
出口競爭力
勞動生產力
資本生產力
亞洲金融風暴
研發比重
關鍵字(英) fixed effect model
export competitiveness
RCA
ASEAN Plus Three
labor productivity
capital productivity
Asian financial crisis
R&D
學科別分類
中文摘要 本論文使用顯示性比較利益指數(Revealed Comparative Advantage, RCA),對東協加三各國與台灣的貿易競爭力進行評比,並且對台灣幾個主要出口產業之比較利益,進行追蹤資料之實證分析。本文在計量方法上使用固定效果模型(fixed effect model),希望能藉此找出提升台灣出口競爭力的方法,減少貿易區塊化對台灣可能造成的衝擊。

本文分別對機械業、電子業、紡織業及運輸設備業進行研究,由實證結果發現:(1)勞動生產力提升,有利於台灣機械業於主要市場之出口競爭優勢,而金融風暴對機械業於世界市場中的出口競爭力有負面影響。(2)電子業之勞動生產力、資本生產力及研發經費比重的提高,皆能提升我國電子業於歐美東亞主要市場之出口競爭優勢。而亞洲金融風暴在三個市場中,對我國電子業出口競爭力都沒有顯著的影響。(3)由迴歸結果顯示,我國在歐美東亞主要出口地區紡織業的勞動、資本生產力提升及研發比重增加,皆會顯著地使得之紡織出口競爭力增加,而亞洲金融風暴在三個市場中,對我國紡織業出口競爭力都沒有顯著地影響,顯示出台灣在紡織業的出口相當的穩健,不易因短期的衝擊而使競爭力受到波動。(4)運輸設備業之迴歸結果,顯示出台灣運輸設備業在勞動、資本生產力、研發經費比重的提升,以及亞洲金融風暴,對其產業出口競爭力都沒有顯著影響力。

台灣商品的出口競爭力,須仰賴國內勞動及資本生產力的提升、研究發展的推動,以及其它與國家整體競爭力相關的要素,如國內經營環境、國內產業結構轉型等,來維持或提升在世界各大市場中的比較優勢。故若能使我國產業在技術或生產力方面有所提升,增進在世界市場中的出口競爭力,未來在面對自由貿易區的關稅障礙或是國際間商品激烈競爭,縱然不能完全不受關稅的影響,應能降低台灣未來可能受到的貿易衝擊。
英文摘要 This Thesis employs revealed comparative advantage (RCA) to analyze and compare Taiwan’s trade competitiveness with the countries of “ASEAN Plus Three” (China Japan, and South Korea). The author uses fixed effect model of panel data to estimate if the advancement of labor productivity, fixed capital productivity, and research and development (R&D) can stimulate the RCA of Taiwan’s main export industries. Additionally, a dummy variable of Asian financial crisis has been included to estimate the impact on the RCA. In light of the coming formation of trade blocs, Taiwan has to mitigate the possible damage from trade diversion effects by further enhancement in industrial competitiveness in exports.

The four industries analyzed in the thesis are the machinery, electrical equipment, textile products, and transportation equipment. The estimated results suggest: (1) improving labor productivity is beneficial for export competitiveness of Taiwan’s machinery, while Asian financial crisis has a negative impact on Taiwan’s machinery exports; (2) advancing labor and capital productivity, and R&D can promote Taiwan’s electrical equipment exports, meanwhile Asian financial crisis has no significant impact on electrical equipment exports. In turn, it may indicate that Taiwan’s electrical equipment industry is capable of refraining from the effect of short-term impact; (3) enhancing labor and capital productivity, and R&D can improve Taiwan’s textile exports; (4) none of labor productivity, capital productivity, R&D and Asian financial crisis has significant impact on the RCA of the transportation equipment industry.

In general, from the estimated results of the fixed effect model, labor and capital productivity, and R&D contribute to Taiwan’s highly competitive industries. These factors can either mitigate the possible damage from trade diversion effects or further enhance industrial competitiveness in exports.
論文目次 第一章 研究動機及研究目的---------------------------------------1

第二章 東協加三自由貿易區經貿環境總論---------------------------5

第一節 東協加三經貿概況-----------------------------------------5
第二節 東協區域內外貿易整合及變動分析---------------------------9
第三節 台灣與東協加三的經貿現況--------------------------------13

第三章 相關理論與文獻之探討------------------------------------21
第一節 相關理論探討--------------------------------------------21
第二節 相關文獻回顧及探討--------------------------------------27

第四章 台灣與東協加三各國的貿易競爭力比較----------------------35
第一節 東協「加三」各別產業之顯示性比較利益分析----------------35
第二節 東協十國於世界四大市場中的顯示性比較利益分析------------44
第三節 台灣與東協加三各國貿易競爭優勢之比較--------------------68

第五章 研究方法------------------------------------------------74

第六章 台灣主要出口產業之貿易競爭力因素分析--------------------78
第一節 顯示性比較利益之數據資料來源及換算方式------------------79
第二節 台灣主要出口產業於世界各國之出口競爭力表現--------------80
第三節 出口競爭力因素分析模型----------------------------------93
第四節 生產力變數資料來源及換算方式----------------------------95
第五節 勞動、資本生產力及研發比重分析--------------------------96
第六節 機械、電子、紡織、運輸產業出口競爭力迴歸估計結果 ------103

第七章 結論---------------------------------------------------115


參考文獻----------------------------------------------------------118

附錄--------------------------------------------------------------122
參考文獻 (中文部分)
1.一銀徵信室:〈棉紡織業---紡紗業〉,《一銀產經資訊》,第444期(2002年3月25日),頁82~84。
2.一銀徵信室:〈機車及其零件製造業〉,《一銀產經資訊》,第453期(2002年12月25日),頁119~122。
3.工研院機械所市場部:〈中、韓兩國產業別出口競爭力之比較〉,《機械工業雜誌》,第121期(1993年4月),頁181-194。
4.中華經濟研究院編撰:《貿易趨勢預測季刊》(台北市)第25期(2002年11月30日),附錄部分。
5.中華民國海關:《中華民國海關出口統計月報》,(台北市:海關總局1989~2001年)。
6.王文娟:〈區域經貿情勢---東南亞國協〉,《貿易趨勢預測季刊》,第25期(2002年11月30日),頁31-35。
7.尹昌光:《兩岸產品於美日出口市場之競爭分析》,台大國企所碩士論文,1998年5月。
8.尤敏君:〈出口競爭力指標之研究兼論我國出口產業競爭力〉,《台灣經濟研究月刊》,第20巻第4期(1997年4月),頁35-44。
9.左峻德:《台灣於亞太APEC市場出口競爭力之比較研究》,(由行政院經建會委託台灣經濟研究院進行研究,1998年3月)。
10.左峻德:《金融風暴後東亞國家出口競爭力之分析》,(由行政院經建會委託台灣經濟研究院進行研究,1999年6月)。
11.江雪嬌:〈我國政府相關措施對中小企業創業活動影響之研究〉,《經濟情勢暨評論》,第8卷第1期(2002年6月),頁57-68。
12.合作金庫銀行調查研究室:〈兩岸汽車產業之現況與展望〉,《產業經濟》,第250期(2002年6月),頁60-92。
13.合作金庫銀行調查研究室:〈我國機械產業之發展概況與趨勢〉,《產業經濟》,第251期(2002年7月),頁2-4。
14.合作金庫銀行調查研究室:〈我國積體電路(IC)產業現況與發展趨勢〉,《產業經濟》,第255期(2002年11月),頁12-13。
15.合作金庫銀行調查研究室:〈我國人造纖維產業發展概況〉,《產業經濟》,第256期(2002年12月),頁6-7。
16.朱菁、王謹著:〈論當今全球性的區域經貿集團化〉,《國際貿易問題》,第2期(1993年),頁20-23。
17.行政院國科會:《中華民國科學技術統計要覽》,(台北市:國科會1984~2002年)。
18.行政院國科會:《中華民國科學技術年鑑》,(台北市:國科會1984~2002年)。
19.佐藤和美:〈日本推動FTA策略之探討〉,《台灣經濟研究月刊》,第25卷第7期(2002年),頁27。
20.巫英臣、謝燦卿、張銘欽、黃德昌、陳俊郎:《我國出口產品在主要目標市場競爭力之研究》,(外貿協會,1995年)。
21.周濟、賴萬財:《比較利益階段論之實證與應用》,(台北市:中華經濟研究院,經濟專論81集,1986年)。
22.林灼榮、施雅琴:《國際貿易理論、政策、實證》,(台北:新陸書局,1998年),頁359-370。
23.林師模、許書銘:〈APEC國家農業生產結構、貿易轉型與農業競爭優勢〉,《農業經濟叢刊》, 第5卷第1期(1999年12月),頁39-87。
24.吳家聲:《台灣製造業生產力與工資結構之分析》,(台北:華泰書局,民國七十五年)。
25.吳進泰:〈兩岸產業國際競爭力消長---雁行理論說明〉,《台灣經濟研究月刊》,第24卷第5期(2001年5月),頁91-97。
26.吳榮義、左峻德:《我國在東南亞區域產業競爭力之分析》,(由經濟部委託台灣經濟研究院進行研究,1999年)。
27. 張冠雄:《台灣與大陸產品在美國及日本市場的競爭分析》,東吳經濟研究所研士論文,1993年7月。
28.陳鴻瑜:〈評析東協與中共籌組自由貿易區〉,《共黨問題研究》,第27卷第12期(2001年12月),頁1-7。
29.陳木彬:〈從出口競爭力看我國新興產業之發展〉,《台灣經濟研究月刊》,第26卷第2期(2003年2月),頁44-52。
30.陳永生:〈外國直接投資與中國大陸經濟發展〉,《中國大陸研究》,第44卷第3期(2001年3 月), 頁17-42。
31.陳美菊、李淑麗:〈我國資訊通訊產品在美國市場競爭力之分析〉,《經濟研究》,第3期(2003年3月),頁149-161。
32.許書銘:《產業國際競爭力之發展及其影響因素分析---國家競爭力觀點》,台大商研所博士論文,2000年6月。
33.趙文衡:〈東協與中共成立自由貿易區初探〉,《台灣經濟研究月刊》,第25卷第2期(2002年2月),頁103-108。
34.黃登興:〈雁行產業發展模式在亞洲地區的驗證〉,《東南亞區域研究通訊》,第12期(2000年12月),頁6-29。
35.經建會綜合計劃處:〈中、韓製造業結構變化與出口競爭力比較〉,《自由中國之工業》,第74卷第6期(1990年12月),頁7-19。
36.僑務委員會:《華僑經濟年鑑東協篇》,(台北市:僑務委員會,2001年)。
37.劉邦典、簡貞玲:〈我國製造業出口競爭力之比較分析〉,《台灣經濟研究月刊》,第11卷第11期(1988年11月),頁96-102。
38.謝文真、薛天棟:〈台灣國際貿易的潛力和前景〉,由薛天棟主編《台灣的未來》(台北市),(2002年10月),頁119-153。
39.蘇顯揚:〈由美日技術貿易分析日本的經濟實力〉,《經濟情勢暨評論》,第8卷第3期(2002年12月),頁67-86。
40.Porter, Michael E.原著,李明軒、邱如美合譯:《國際競爭優勢》(台北:天下文化出版,1996年)。


(英文部分)
1.Balassa, Bela, The Theory of Economic Integration (London: Allen & Unwin, 1962).
2.Balassa, Bela, “Trade Liberalization and Revealed Comparative Advantage,” The Manchester School of Economic and Social Studies, Vol. 33 (1965), pp. 99-123.
3.Balassa, Bela, “A Stages Approach to Comparative Advantage,” in Irma Adelman(ed.) Economic Growth and Resources, Vol. 4, pp. 121-156.
4.Balassa, Bela, The newly Industrializing Countries in the World Economy (New York: Pergamon Press,1981), World Bank Reprint Series No.136. Cited as Balassa, 1979b.
5.BernaR&D, A. and C. I. Jones, “Comparing Apples to Oranges: Productivity Convergence and Measurement Across Industries and Countries,” American Economic Review, Vol.86 (1996), pp.1216-1238.
6.EIU, Country Report 2002 (China, Japan, South Korea, Malaysia, Indonesia, Thailand, Singpore, Philippines, Laos, Myammar, Vietnam, Brunei, Taiwan) (London: Economic Intelligence Unit, 2003).
7.Frobel, Heinrichs F. J. and O. Kreye, The New International Division of Labor (Cambridge: Cambridge University Press, 1980).
8.Harvey, D. , The Condition of Postmodernity (OxfoR&D: Blackwell, 1989).
9.Irvine, Roger, “The Formative Years of ASEAN, 1967~1975,” in Understanding ASEAN, edited by Alison Broinowski (New York: St. Martin’s Press, 1982).
10.Kato, Toshiyasu, “Cambodia’s Accession to AFTA:Impact, Challenges, and Policy Implications,” ASEAN Enlargement Impacts and Implications edited by Mya Than and Carolyn L. Gates (Singapore: Institute of Southeast Asian Studies, 2001), pp.174-175.
11.Kendrick, J.W. ,Understanding Productivity, (Baltimore: Johns Hopkins University Press, 1977).
12.Kennedy, Peter, A Guide to Econometrics (Cambridge, Massachusetts: The MIT Press, 3th ed, 1992).
13.Pindyck, Robert S. and Daniel L. Rubinfeld, Econometric Models and Economic Forecasts (New York: Ir.Win and Mc.Graw-Hill, 4th ed, 1998).
14.Thongpakde, Nattapong, “Impact and Implications of ASEAN Enlargement on Trade,” ASEAN Enlargement Impacts and Implications, Edited by Mya Than and Carolyn L.Gates (Singapore: Institute of Southeast Asian Studies, 2001), pp.45-79.
15. United Nations, International Trade Statistics Yearbook, (New York: United Nations 1989~2001).

(網站資料)
1. 台經院,東南亞產經資訊網:http://idic.tier.org.tw(2003年5月10日)。
2. 國貿局網址:http://www.trade.gov.tw(2002年3月28日)。
3. 國貿局四組二科,〈東南亞國家協會暨東協自由貿易區發展現況〉,http://www.trade.gov.tw/bi_trade/index_4.htm (2001年11月25日)。
4. 東南亞國協秘書處網站, Asean Secretariate, “Press Release: ASEAN to Hold AFTA Workshops, ” http://www.aseansec.org (2001年6月20日)。
5. 連文榮:〈貿易競爭力分析模式之探討〉,資料來自國貿局網站http://www.trade.gov.tw/trend/trend4/chaat15/chaat_4_4.html (2003年6月20日)。


(資料庫)
教育部Aremos統計資料庫之「薪資與勞動生產力資料庫」、「進出口統計資料庫」及「多因素生產力資料庫」,2003版。
國際貨幣基金會(international monetary fund, IMF)出版之International Financial Statistics Yearbook 2002電子資料庫。

------------------------------------------------------------------------ 第 6 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911075038
論文名稱(中文) 2-巰基乙醇在Cu(111)及Cu(100)表面上的熱反應研究
論文名稱(英文) Study of Thermal Reactions of 2-Mercaptoethanol on Cu(111) and Cu(100) Surface
校院名稱 成功大學
系所名稱(中) 化學系碩博士班
系所名稱(英) Department of Chemistry
學年度 92
學期 2
出版年 93
研究生(中文) 石建中
學號 l3691137
學位類別 碩士
語文別 中文
口試日期 2004-07-01
論文頁數 85頁
口試委員 指導教授-林榮良
口試委員-蔣昭明
口試委員-林弘萍
關鍵字(中) 反射式紅外光譜
X光光電子能譜
程溫反應/脫附
銅(100)
2-巰基乙醇
銅(111)
醇類
硫醇
關鍵字(英) XPS
RAIRS
TPR/D
Cu(100)
Cu(111)
alcohol
thiol
2-Mercaptoethanol
學科別分類
中文摘要   本篇論文研究在超高真空系統中2-巰基乙醇(HSCH2CH2OH)吸附於銅單晶表面上的熱反應與其反應中間物。分別藉由程序控溫反應/脫附(Temperature-programmed reaction/desorption, TPR/D)、X-光光電子能譜(X-ray photoelectron spectroscopy, XPS)和反射式吸收紅外光譜(Reflection-absorption infrared spectroscopy,RAIRS)研究Cu(111)和Cu(100)的表面吸附和反應。在Cu(111)表面研究中發現,HSCH2CH2OH在溫度低於123K時會分解吸附於表面上形成-SCH2CH2OH,在較低的曝露量(0.6L),-SCH2CH2OH在~223-323K之間完全轉變形成環狀中間物-SCH2CH2O-。當溫度繼續升至350K後,-SCH2CH2O-則再分解形成CH4、H2O、C2H4和CH3CHO。這兩種中間物在表面上的吸附情形會隨著曝露量的不同以及升溫過程而產生變化。較高的曝露量(≧6L),-SCH2CH2OH僅有一部份會轉換成-SCH2CH2O-,在~225-300K還可發現有來自於一部份-SCH2CH2OH分解形成的C2H5OH產物脫附。在Cu(100)表面上,HSCH2CH2OH的熱分解過程除了與Cu(111)同樣會在表面上產生-SCH2CH2OH和-SCH2CH2O-之外,在455K的高溫環境下還可能存在著含C=C=O或C=C=S的表面物種。最後的反應產物CH4、C2H4和CH3CHO則在300-400K之間脫附。無論在Cu(111)或是Cu(100)表面上我們都沒有發現任何含有硫的產物脫附。

英文摘要   The thermal reactions and surface intermediates of HSCH2CH2OH on Cu(100) and Cu(111) under ultra-high vacuum have been studied by temperature-programmed reaction/desorption (TPR/D), X-ray photoelectron spectroscopy (XPS), and reflection-absorption infrared spectroscopy. In the case of Cu(111), -SCH2CH2OH is generated from HSCH2CH2OH dissociative adsorption on Cu(111) below 123K. At lower coverages, -SCH2CH2OH transforms to -SCH2CH2O-, a cyclic intermediate between 223-323K. Above 350K, -SCH2CH2O- decomposes to form carbon-containing products of CH4, C2H4, and CH3CHO. The relative amount of these two intermediates is dependent on temperature and surface coverage. In the case of Cu(100), thermal decomposition of HSCH2CH2OH is similar to Cu(111) and produces intermediates of -SCH2CH2OH, -SCH2CH2O-, and surface species containing C=C=O or C=C=S. Carbon-containing products of CH4, C2H4, and CH3CHO evolve between 300-400K. Desorption of sulfur-containing products are not observed in both cases.

論文目次 目錄

第一章、緒論......................................1

第二章、表面研究之分析技術
2.1 歐傑電子能譜..................................6
2.2 程式控溫反應/脫附............................11
2.3 X光光電子能譜................................13
2.4 反射式紅外光譜儀.............................19

第三章、實驗系統與方法
3.1 超高真空系統.................................22
3.2 單晶表面的清潔及氧化表面的製備...............25
3.3 藥品及其前處理...............................27

第四章、結果與討論
4.1 HSCH2CH2OH在Cu(111)表面上的表面化學..........28
4.1.1 程序控溫反應/脫附實驗......................28
4.1.2 X光光電子能譜實驗..........................37
4.2 HSCH2CH2OH在Cu(100)表面上的表面化學..........66
4.2.1 程序控溫反應/脫附實驗......................66
4.2.2 反射式吸收紅外光光譜實驗...................72

第五章、結論.....................................80

參考文獻.........................................82
參考文獻 1. G. M. Whitesides, P. E. Laibinis, Langmuir 1990, 6, 87.
2. D. Oyamatsu, M. Nishizaea, S. Kuwabata, H. Yoneyama, Langmuir 1998, 14, 3298.
3. T. Vondrak, H. Wang, P. Winget, C. J. Cramer, X.-Y. Zhu, J. Am. Chem. Soc. 2000, 122, 4700.
4. Y.-D. Zhao, D.-W. Pang, S. Hu, Z.-L. Wang, J.-K. Cheng, H.-P. Dai, Talanta. 1999, 49, 751.
5. S. C. Schuman, H. Shalit, Catal. Rev. Sci. Eng. 1970, 4, 245.
6. B. A. Sexton, Surf. Sci. 1979, 88, 299.
7. Y.-H. Lai, C. -T. Yeh, S. -H. Cheng, P. Liao, W. –H. Hung, J. Phys. Chem. B 2002, 106, 5438.
8. I. E. Wachs, R. J. Madix, Appl. Surf. Sci. 1978, 1, 303.
9. A. J. Gellman, Q. Dai, J. Am. Chem. Soc. 1993, 115, 714.
10. M. Bowker, R. J. Madix, Surf. Sci. 1982, 116, 549.
11. J. C. Vickerman, Surface Analysis-The Principle Techniques, John Wiley & Sons. New York, p43-98, 1997.
12. J. C. Vickerman, Surface Analysis-The Principle Techniques, John Wiley & Sons. New York, p99-133, 1997.
13. G. Ertl, and J. Kuppers, Low Energy Electrons and Surface Chemistry, Verlag Chemie, Germany, p22, 1974.
14. 林敬二, 林宗義, 儀器分析(下), 美亞書版, 第384頁, 1994年
15. M. Prutton, Surface Physics, Oxford University Pres, 1983
16. 國立成功大學化學所 李明羲碩士論文 2001
17. 國家同步輻射研究中心網站(http://www.srrc.gov.tw/index.html)
18. L. J. Lai, P. C. Tseng, Y. W. Yang, S. C. Chung, Y. F. Song, N. F. Cheng, C. C. Chen, C. T. Chen, and K. L. Tsang, “Current status of the wide-range (10-1,500eV) spherical grating monochromator beamline at SRRC”, Nuclear Instruments and Methods in Physics Research A, 2001, 467-468, 586.
19. J. C. Vickerman, Surface Analysis-The Principle Techniques, John Wiley & Sons, New York, p278, 1997
20. 國立中山大學化學所 吳毓瑞碩士論文 2001
21. M. Wuttig, R. Franchy, H. Ibach, Surf. Sci. 1989, 213, 103.
22. Elight Peak Index of Mass Spectra, 4th ed.; The Royal Society of Chemistry, Vol. 1, ISBN-0-85186-417-1, 1991.
23. NIST Chemistry WebBook (http://webbook.nist.gov/chemistry)
24. M. S. Kariapper, G. F. Grom, G. T. Jackson, C. F. Mc Conville, D. P. Woodruff, J. Phys. : Condens. Matter 1998, 10, 8661.
25. J. J. Roberts, C. M. Friend, J. Phys. Chem. 1988, 92, 5205.
26. K. T. Queeney, C. R. Arumaimayagam, M. K. Weldon, C. M. Friend, N. Q. Blumberg, J. Am. Chem. Soc. 1996, 118, 3896.
27. T. J. Chuang, Y. L. Chan, P. Chuang, R. Klauser, J. Electr. Spectr. Relat. Phenom. 1999, 98, 149.
28. F. Zaera, H. Hoffmann, J. Phys. Chem. 1999, 95, 6297.
29. T. S. Rufael, D. R. Huntley, D. R. Mullins, J. L. Gland, J. Phys. Chem. 1995, 99, 11472.
30. G. J. Jackson, D. P. Woodruff, R. G. Jones, N. K. Singh, A. S. Y. Chan, B. C. C. Cowie, V. Formoso, Phys. Rev. Lett. 2000, 84, 119.
31. S. Linic, J. M. Medlin, M. A. Barteau, Langmuir 2002, 18, 5197.
32. G. S. Jones, M. Marrikakis, M. A. Barteau, J. Am. Chem. Soc. 1998, 120, 3196.
33. P.-T. Chang, J.-J. Shih, K.-H. Kuo, C.-Y. Chen, T.-W. Fu, D.-L. Shieh, Y.-H. Liao, J.-L. Lin, submitted to J. Phys. Chem. B.
34. T. R. Bryden, S. T. Garrett, J. Phys. Chem. B 2001, 105, 9280.
35. C. K. Kwon, K. Kim, M. S. Kim, Y. S. Lee, J. Mol. Struct. 1989, 197, 171.
36. C.-Y. Chen, P.-T. Chang, K.-H. Kuo, J.-J. Shih, J.-L. Lin, J. Phys. Chem. 2003, 107, 10488.
37. J.-L. Lin, C.-M. Chiang, C. J. Jenks, M. X. Yang, T. H. Wentzlaff, B. E. Bent, J. Catal. 1994, 147, 250.
38. A. S. Y. Chan, R. G. Jones, J. Vac. Sci. Technol. A 2001, 19, 1474.
39. C. L. Roe, K. H. Schulz, J. Vac. Sci. Technol. A 1998, 16, 1066.
40. N. B. Colthup, L. H. Daly, S. E. Wibley, Introduction to Infrared and Raman Spectroscopy, 3rd. Ed., Academic Press, Inc., New York, 1990.

------------------------------------------------------------------------ 第 7 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911123041
論文名稱(中文) 以陽極沈積法製備之氧化錳電極的材料特性與擬電容性質
論文名稱(英文) The material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 92
學期 2
出版年 93
研究生(中文) 陳怡倫
學號 n5691104
學位類別 碩士
語文別 中文
口試日期 2004-06-23
論文頁數 79頁
口試委員 口試委員-鍾自強
指導教授-蔡文達
口試委員-李汝桐
口試委員-黃啟祥
口試委員-胡啟章
關鍵字(中) 氧化錳
陽極沈積
超高電容器
擬電容
關鍵字(英) anodic deposition
manganese oxide
pseudo-capacitive
supercapacitor
學科別分類
中文摘要   本研究以製程簡單之陽極沈積法,於0.5M的醋酸錳水溶液中,嘗試於鎳基材上直接沈積含水錳氧化物,探討不同陽極化電位(0.5V、0.65V、0.8V和0.95V)及熱處理溫度(100-500℃)對含水氧化錳電極的材料特性和擬電容行為之影響。並尋找以鎳為基材之氧化錳電極可適用的電解質溶液。
  就電極之材料分析方面,以掃描式電子顯微鏡觀察電極的表面型態,皆為奈米級的絲狀組織;由低掠角X光繞射圖譜得知氧化錳結晶性不佳,而熱處理有助於氧化錳結晶性之提升;利用X光光電子能譜儀來分析鍍層之表面成分組成及化合狀態,結果顯示陽極電位為0.5V時可得三價和四價錳之混合氧化物,當電位增為0.65V或以上時,則鍍膜主要為四價錳的氧化物。而氧元素則由Mn-O-Mn、Mn-O-H和H-O-H所組成;經過熱處理後的氧化錳也是三價和四價錳的混合態,當熱處理溫度增加至500℃,氧化物發生還原反應轉變為以三價錳為主的Mn2O3,結晶水大部分在100℃時被去除,最終無水之錳氧化物成為氧化錳電極的主要成分。
  而就電極材料之電化學性質方面,將氧化錳電極於0.1M的硫酸鈉水溶液中進行循環伏安測試,以0.5V陽極化電位製備的氧化錳電極具最大比電容值;隨著陽極化電位和熱處理溫度的增加,氧化錳電極之比電容值逐漸降低,當熱處理溫度為500℃時喪失擬電容特性。然而,熱處理能有效地改善氧化錳電極之循環穩定性。
  最後,氧化錳電極僅於中性的Na2SO4水溶液中具有優異之擬電容行為,於KCl、Na2SO3或Na2S2O3水溶液中則否。
英文摘要   Hydrous manganese oxide are prepared by anodic deposition on the nickel substrate in manganese acetate solution. The effects of deposition potential (0.5V, 0.65V, 0.8V and 0.95V) and heat treatment (100-500°C) on the material characteristics and electrochemical performances of the hydrous manganese oxide were investigated.
  The surface morphology of the oxide prepared was examined by scanning electron microscope. X-ray diffraction patterns of manganese oxide electrodes indicated that the as-deposited oxides have poor crystallinity. The heat treatment improved the crystallinity of the as-deposited oxide. X-ray photoelectron spectroscopy was carried out to examine the chemical state of the deposit. Analytical results displayed that the oxide was composed of both trivalent and tetravalent manganese oxide at a deposition potential of 0.5 VSCE. However, the tetravalent manganese oxide became the dominant species in the film deposited at above 0.65 VSCE. The O 1s spectra of deposited manganese oxide could be deconvoluted into three constituents that corresponded to different oxygen-containing species such as Mn-O-Mn, Mn-O-H and H-O-H. Deposited manganese oxide annealed at various temperature were composed of both trivalent and tetravalent species, too. When the annealing temperature was increased to 500℃, reduction of the oxide occurred and nearly trivalent manganese could be obtained. The release of structural water and the dehydration of deposited manganese oxide could occur at 100℃. When the annealing temperature was increased further to 500℃, the hydroxide component was decreased drastically and anhydrous Mn-O-Mn became the dominant species in the oxide.
  The manganese oxide formed at 0.5VSCE exhibited the highest specific capacitance. Increasing the anodic potential and the heat temperature reduced the specific capacitance and manganese oxide annealed at 500ºC lost the pseudo-capacitive property. However, the cyclic stability of as-deposited manganese oxide was significantly improved by introducing proper heat treatment.
  Finally, the manganese oxide electrode exhibited excellent pseudo-capacitive performance only in the neutral Na2SO4 electrolyte, not in KCl, Na2SO3 or Na2S2O3 solution.
論文目次 總目錄
中文摘要………………………………………………………………………………Ⅰ
英文摘要………………………………………………………………………………Ⅲ
總目錄…………………………………………………………………………………Ⅴ
表目錄…………………………………………………………………………………Ⅷ
圖目錄…………………………………………………………………………………Ⅸ

第一章 前言………………………………………………………………………1
第二章 基礎理論和文獻回顧……………………………………………………4
2-1 儲能元件概述 ……………………………………………………………4
2-2 電化學電容器 ……………………………………………………………6
2-2.1 電化學電容器的工作原理 ……………………………………………6
2-2.2 電化學電容器的電極材料 ……………………………………………7
2-2.3 電化學電容器電解液的種類 …………………………………………8
2-2.4 電化學電容器的電容量測 ……………………………………………9
2-3 金屬氧化物電極…………………………………………………………12
2-3.1 金屬氧化物電極的製備方法…………………………………………12
2-3.2 金屬氧化物電極應用實例……………………………………………14
第三章 實驗方法和步驟 ………………………………………………………26
3-1 電極製作…………………………………………………………………26
3-1.1 電極基材前處理………………………………………………………26
3-1.2 不同陽極化電位製備氧化錳電極……………………………………26
3-1.3 氧化錳之熱重分析(TG/DTA)………………………………………27
3-1.4 氧化錳電極之熱處理…………………………………………………27
3-2 材料分析…………………………………………………………………28
3-3 電化學性質測試…………………………………………………………28
3-3.1 擬電容特性之評估……………………………………………………28
3-3.2 不同電解質……………………………………………………………29
第四章 實驗結果與討論 ………………………………………………………31
4-1 氧化錳之熱重熱差分析…………………………………………………31
4-2 氧化錳電極之表面型態觀察……………………………………………31
4-3 氧化錳電極之結晶結構…………………………………………………33
4-4 氧化錳電極之X射線光電子能譜分析 …………………………………33
4-5 氧化錳電極之電化學性質………………………………………………36
4-5.1 擬電容特性之評估……………………………………………………36
4-5.2 循環穩定性之測試……………………………………………………38
4-5-3 經多次循環伏安測試後之氧化錳電極表面型態……………………39
4-6 不同電解質溶液之測試……………………………………………………40
第五章 結論 ……………………………………………………………………72

參考文獻………………………………………………………………………………74
參考文獻 【1】M. Carlen and R. Kotz, “Principles and applications of electrochemical capacitors”, Electrochimica Acta, vol.45, p.2483, 2000.
【2】B.E. Conway, “Transition from 'supercapacitor' to 'battery' behavior in electrochemical energy storage”, J. Electrochem. Soc., vol.138, p.1539, 1991.
【3】J. P. Zheng, J. Huang, and T.R. Jow., “The limitation of energy density for electrochemical capacitors”, J. Electrochem. Soc., vol.144, p.2026, 1997.
【4】B. Pillay and J. Newman, “The influence of side reactions on the performance of electrochemical double-layer capacitors”, J. Electrochem. Soc., vol.143, p.1806 , 1996.
【5】J.P. Zheng, T.R. Jow, “High energy and high power density electrochemical capacitors.”, J. Power Sourses, v.62, p.155, 1996.
【6】H-Hwan Kim, Kwang-Bum Kim, “Ruthenium oxide thin film electrodes for supercapacitors”,Electrochem. Solid-State Lett., vol.4, n5, p.A62, 2001.
【7】J.P. Zheng, P.J. Cygan, T.R. Jow, “Hydrous Ruthenium oxide as an electrode material for electrochemical capacitors.”, J. Electrochem. Soc., vol.142, p.2699, 1995.
【8】J.P. Zheng, T.R. Jow, “A new charge storage mechanism for electrochemical capacitors”, J. Electrochem. Soc., vol.142, p. L6, 1995.
【9】H.Y. Lee, J.B. Goodenough, V. Manivannan, “Electrochemical capacitors with KCl electrolyte”, Comptes Rendus Chimie, vol.2, p.565, 1999.
【10】Suh-Cem Pang, Marc A. Anderson, “Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide”, J. Electrochem. Soc., vol.147, p.444, 2000.
【11】J. Jiang, A. Kucernak, “Electrochemical supercapacitor material based on manganese oxide: preparation and characterization”, Electrochim. Acta, vol.47, p.2381, 2002.
【12】Chi-Chang Hu, Ta-Wang Tsou, “Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition”, Electrochemistry Communications, vol.4, p.105, 2002.
【13】Kuo-Chuan Liu, Marc A. Anderson, “Porous Nickel oxide/Nickel films for electrochemical capacitor”, J. Electrochem. Soc., vol.143, p.124, 1996.
【14】黃耀煌、胡啟章,『循環伏安法製備之含水釕氧化物於電化學電容器的應用』,國立中正大學化工所碩士論文。
【15】Chi-Chang Hu, Ta-Wang Tsou, “Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition”, Electrochim Acta, vol.47, p.3523, 2002.
【16】Nae-Lih Wu, “Electrochemical capacitor of magnetite in aqueous electrolytes”, J. Power Sources, vol.113, p.173, 2003.
【17】Y.U. Jeong, A. Manthriram, “Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes”, J. Electrochem. Soc., vol.149, p.A1419, 2002.
【18】S. Sarangapani, B.V. Tilak, C.-P. Chen, “Materials for electrochemical capacitors”, J. Electrochem. Soc., vol.143, p.3791, 1996
【19】D. Qu, H. Shi, “Studies of activated carbons used in double-layer capacitors”, J. Power Sources, vol.74, p.99, 1998.
【20】M. Nakamura, M. Nakanishi, K. Yamamoto, “Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors”, J. Power Sources, vol.60, p.225, 1996.
【21】B.E. Conway, “Electrochemical Supercapacitors”, Kluwer Academic Publishers, New York, 1999.
【22】J. H. Park, O Ok Park, “Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes”, J. Power Sourses, v.111, p.185, 2002
【23】J.P. Zheng and T.R. Jow, “Effect of salt concentration in electrolytes on the maximum energy storage for double layer capacitors”, J. Electrochem. Soc., vol.144, p2417, 1997.
【24】蔡文達,張仍奎,金屬氧化物系列超高電容器簡介,材料會訊,8[3], 35, 2001。
【25】M. Ue, K. Ida, and S. Mori, “Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors”, J. Electrochem. Soc., vol.141, p.2989, 1994.
【26】A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Applications”, John Wiley & Sons, Singapore, 1980.
【27】H.Y. Lee, S.W. Kim, “Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode”, Electrochem. Solid-State Lett., vol.4, n3, p.A19, 2001.
【28】H.Y. Lee, J.B. Goodenough, “Brief communication Supercapacitor Behavior with KCl Electrolyte”, J. Solid State Chem., vol.144, p220, 1999
【29】Chi-Chang Hu, Yao-Huang Huang, “Cyclic voltammetric deposition of hydrous Ruthenium oxide for electrochemical capacitors”, J. Electrochem. Soc., vol.146, n7, p2465, 1999.
【30】Chi-Chang Hu, Ta-Wang Tsou, “The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitor using experimental strategies”, J. Power Sources, vol.115, p.179, 2003.
【31】Y.C. Zhang, H. Wang, B. Wang, H. Yan, A. Ahniyaz, and M. Yoshimura, “Low temperature synthesis of nanocrystalline Li4Mn5O12 by a hydrothermal method”, Mater. Res. Bull., vol.37, p.1411, 2002.
【32】S. Ardizzone, G. Fregonara, S. Trasatti, ““Inner” and “outer” active surface of RuO2 electrodes”, Electrochim. Acta, v.35, p.263, 1990.
【33】R. Kotz, S. Stucki, “Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media”, Electrochim. Acta, v.31, p.1311, 1986.
【34】C. Tsang, J. Kim, A. Manthiram, “Synthesis of Manganese Oxides by Reduction of KMnO4with KBH4in Aqueous Solutions”, J. Solid State Chem., vol.137, p.28, 1998.
【35】H. Kim, B.N. Popov, “Synthesis and characterization of MnO2-based mixed oxides as supercapacitors”, J. Electrochem. Soc., vol.150, p.D56, 2003.
【36】J.K. Chang, W.T. Tsai, “Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors”, J. Electrochem. Soc., vol.150, p.A1333, 2003.
【37】M. Chigane, M. Ishikawa, “Manganese oxide Thin film preparation by potentiostatic Electrolyses and Electrochromism”, J. Electrochem. Soc., vol.147, p.2246, 2000.
【38】B. R. Strohmeier and D. M. Hercules, “Surface spectroscopic characterization of manganese/aluminum oxide catalysts”, J. Phys. Chem., vol.88, p.4922, 1984.
【39】M. Chigane, M. Ishikawa, M. Izaki, “Preparation of Manganese Oxide Thin Films by Electrolysis/Chemical Deposition and Electrochromism”, J. Electrochem. Soc., vol.148, p.D96, 2001.
【40】Earl M. Otto, “Equilibrium pressures of oxygen over MnO2- Mn2O3 at various temperatures”, J. Electrochem. Soc., vol.112, p.367, 1965.
【41】A. N. Grundy, B. Hallatedt and Ludwig J. Gauckler, “Assessment of the M n-O System”, Journal of Phase Equilibria, v. 24, p.21, 2003.
【42】C. Lin, J. A. Ritter, B.N. Popov, “Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogel”, J. Electrochem. Soc., vol.146, p.3155, 1999.

------------------------------------------------------------------------ 第 8 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911150920
論文名稱(中文) 水熱電化學法陽極沈積錳氧化物之電極製備及其特性之研究
論文名稱(英文) Preparation and characteristics of manganese oxides electrode by hydrothermal electrochemical anodic deposition
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 92
學期 2
出版年 93
研究生(中文) 朱聖凱
學號 n5691146
學位類別 碩士
語文別 中文
口試日期 2004-06-28
論文頁數 104頁
口試委員 口試委員-楊聰仁
口試委員-蔡文達
口試委員-卓錦江
口試委員-林文豪
指導教授-黃啟祥
關鍵字(中) 擬電容
超級電容器
超高電容器
電化學電容器
陽極沈積
水熱法
關鍵字(英) hydrothermal method
supercapacitors
pseudo-capacitance
ultracapacitors
electrochemical capacitor
anodic deposition
學科別分類
中文摘要   目前的錳氧化物薄膜電極不論以溶膠-凝膠法或陽極沈積法所製備的電極材料皆為非結晶構造,使用在電解液下反應時,由於結構鬆散,往往易有錳氧化物薄膜溶損之行為發生,需另外藉由熱處理程序才能改善其電化學穩定性,但其比電容值易因熱處理溫度的增加而減小。基於此觀點考量下,若能將錳氧化物電極材料製成比表面積大且為結晶性的錳氧化物薄膜,則將之作為電極材料時,應可提升其比電容值及其電化學特性。
  本研究目的旨在以水熱法陽極沈積錳氧化物於鈦片電極基材上,並將之作為超高電容器之電極,檢討水熱處理條件對錳氧化物電極的電化學特性及其表面積對電容量之影響。在電化學特性分析方面,主要是以循環伏安法於0.1M Na2SO4溶液中進行擬電容行為測試及比電容量之評估。
  實驗結果顯示錳氧化物薄膜電極在100℃水熱溫度下,陽極沈積0.5分鐘,具有最佳的比電容量。在水熱環境下進行之陽極沈積之錳氧化物薄膜,經循環伏安測試其電化學特性,可看出其循環伏安曲線是隨著掃瞄圈數的增加,而逐漸變大,顯示在水熱環境下成長作為電極表面的錳氧化物薄膜其表面活性物質在電解液中未能瞬間完全參與反應所致。





英文摘要   No matter the electrode material of manganese oxides thin films made by sol-gel or anodic deposition are not crystallization, and manganese oxides thin films are easy to be dissolved under the reaction of electrolyte. It is helpful to stabilize the electroanalysis by the process of heat treatment, but the specific capacitance will decrease by the increase of temperature. According to the above, if electrode of manganese oxides could made to be crystallinity and larger than the measure of surface, it will strengthen the property of specific capacitance and electroanalysis.
  My research is to anodic deposition manganese oxides on electrode titanium by hydrothermal method, and be used as the electrode of supercapacitor to discuss the effect of electric capacity by the electrode of manganese oxides property of electroanalysis and the measure of surface under anodic deposition. At the electroanalysis property analysis, it uses the cyclic voltammetry to test the pseudocapacitor behavior on 0.1 M Na2SO4 and specific capacitance.
  The experiment proves that the electrode of manganese oxides thin films has better specific capacitance under 100℃ and 0.5 minutes by hydrothermal method will getting larger in scanned circles. It reveals that the surface active species of manganese oxides thin films as electrode surface grow by hydrothermal method can not react completely soon on the electrolyte.





論文目次 中文摘要
…………………………………………………………I
英文摘要
…………………………………………………………II
目錄
…………………………………………………………IV
表目錄
…………………………………………………………VIII
圖目錄
…………………………………………………………IX
第一章 緒論
…………………………………………………………1
1-1 前言
…………………………………………………………1
1-2 研究動機與目的
…………………………………………………………3
1-3 電解液材料
…………………………………………………………4
第二章 理論基礎與前人研究
…………………………………………………………7
2-1 電化學電容器發展史
…………………………………………………………7
2-2 電容器簡介
…………………………………………………………9
2-3 電容器特性
…………………………………………………………10
2-3-1 電容量
…………………………………………………………10
2-3-2 能量儲存
…………………………………………………………11
2-3-3 電容器的頻率特性
…………………………………………………………12
2-3-4 介電質對電容的影響
…………………………………………………………13
2-3-5 使用電壓
…………………………………………………………15
2-3-6 介電理論
…………………………………………………………15
2-4 電化學電容器
…………………………………………………………17
2-4-1 電化學電容器之特性
…………………………………………………………17
2-4-2 電化學電容器之分類
…………………………………………………………19
2-5 電化學電容器電極材料
…………………………………………………………21
2-5-1 金屬氧化物電極
…………………………………………………………25
2-5-2 金屬氧化物電極種類及用途
…………………………………………………………25
2-5-3金屬氧化物電極製備方法
…………………………………………………………27
2-6 水熱合成法
…………………………………………………………31
2-6-1 水熱法概述
…………………………………………………………31
2-6-2 水熱合成法之原理
…………………………………………………………32
2-6-3 水熱法的類型
…………………………………………………………35
2-6-4 高壓反應釜反應容積與溫度之關係
…………………………………………………………36
2-6-5 水熱法製備粉體的優點
…………………………………………………………39
2-6-6 水熱製程的改進
…………………………………………………………40
第三章 實驗方法與步驟
…………………………………………………………42
3-1 電極材料製備
…………………………………………………………42
3-1-1 鈦箔電極片前處理
…………………………………………………………42
3-1-2 水熱電化學實驗
…………………………………………………………43
3-2 藥品與裝置
…………………………………………………………46
3-3 錳氧化物薄膜電極製作流程
…………………………………………………………48
3-4 性質分析及實驗設備
…………………………………………………………49
3-4-1 X射線繞射儀
…………………………………………………………49
3-4-2 掃瞄式電子顯微鏡
…………………………………………………………50
3-4-3 化學分析電子儀
…………………………………………………………50
3-4-4 膜厚量測
…………………………………………………………51
3-4-5 薄膜電極之命名
…………………………………………………………52
第四章 結果與討論
…………………………………………………………53
4-1 循環伏安之結果
…………………………………………………………53
4-1-1 錳氧化物之比電容量
…………………………………………………………53
4-1-2 錳氧化物披覆電極之循環伏安行為比較
…………………………………………………………55
4-1-3 錳氧化物之可逆性
…………………………………………………………55
4-1-4 錳氧化物之穩定性
…………………………………………………………56
4-1-5 掃瞄速率對含水錳氧化物的影響
…………………………………………………………57
4-2 電極表面微結構分析
…………………………………………………………57
4-2-1 結晶相分析
…………………………………………………………57
4-2-2 掃瞄式電子顯微鏡(SEM)薄膜分析
…………………………………………………………58
4-2-3 循環伏安測試對錳氧化物表面型態的影響
…………………………………………………………59
4-2-4 X-ray光電子光譜(XPS)分析
…………………………………………………………60
4-3 熱處理對錳氧化物電容特性之影響
…………………………………………………………61
4-3-1 熱處理後對錳氧化物循環伏安行為之影響
…………………………………………………………61
4-3-2 熱處理後對錳氧化物可逆性性之影響
…………………………………………………………62
4-4 陽極沈積錳氧化物薄膜
…………………………………………………………63
4-5 綜合討論
…………………………………………………………63
第五章 結論
…………………………………………………………98
參考文獻
…………………………………………………………100


參考文獻 1. J. P. Zheng, P. J. Cygan, and T. R. Jow, ”Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors”, J. Electrochem. Soc., 142, 2699-2703 (1995)

2. Chi-Chang Hu, Ta-Wang Tsou, “Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition”, Electrochim. Acta,47, 3523-3532 (2002)

3. L. Mao, T. Sotomura, K. Nakatsu, N. Koshiba, D. Zhang, T. Ohsaka, “Electrochemical Characterization of Catalytic Activities of Manganese Oxides to Oxygen Reduction in Alkaline Aqueous Solution”, J. Electrochem. Soc., 149, A504-A507 (2002)

4. Y. U. Jeong, A. Manthiram, “Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes”, J. Electrochem. Soc., 149, A1419-A1422 (2002)

5. Chi-Chang Hu, Ta-Wang Tsou, “Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition”, Electrochem. Comm., 4, 105-109 (2002)

6. 江鴻儒, “循環伏安法及電鍍法製備釕電極在電化學電容器之應用”, 國立中正大學化工研究所碩士論文 (2001)

7. Sun-Cem Pang, Marc A. Anderson, Thomas W. Chapman, “Novel Electrode Materials for Tin-Film Ultracapacitors:Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide”, J. Electrochem. Soc., 147, 444-450 (2000)

8. H. Y. Lee, J. B. Goodenough, V. Manivannan, “Electrochemical capacitors with KCl electrolyte”, Comptes Rendus Acad. Sci. Paris, t. 2, Serie II c, 5650-577 (1999)

9. 鄒達旺, “陽極沈積含水錳氧化物於電化學電容器之研究”, 國立中正大學化工研究所碩士論文 (2002)

10. 高志勇,陳耿陽,吳富其,江萬爵,賴志坤, ”超高電容器製程技術簡介”, 工業材料166期, 114 (2000)

11. 黃孟娟,張榮錡, ”釕氧化物超高電容器材料特性簡介”, 工業材料182期, 122 (2002)

12. 黃瑞雄,顏溪成, ”漫談電化學”, 科學發展 359期, 22 (2002)

13. R. K tz, M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochimica Acta., 45, 2483-2484 (2000)

14. A. Nishino, ”Capacitors: operating principles,current market and technical trends”, J. Power Sources, 60, 137 (1996).

15. 薛立人, ”高性能電容器”, 工業材料 166期, 121 (2000)

16. 曾文男, ”導電高分子於高儲能電容器上之應用”, 工業材料 176期, 145-148 (2001)

17. H. Neugebauer, A. Cravino, S. Luzzati, M. Catellani, A. Petr, L. Dunsch, N.S. Sariciftci, “Spectral signatures of positive and negative charged states in doped and photoexcited low band-gap polydithienothiophenes”, Synthetic Metals, 748, 139 (2003)

18. H. Neugebauer, “Infrared signatures of positive and negative charge carriers in conjugated polymers with low band gaps”, J. Electroanalytical Chemistry, 154, 563 (2004)

19. M. Wolszczak, J.Kroh and M. M. Abdel-Hamid, ”Some aspects of the radiation processing of conducting polymers,” Radiat. Phys. Chem. Vol. 45, No. 1, 72 (1995)

20. C. Arbizzani, M. Mastragostino, and B. Scrosati in Handbook of Organic Conductive Molecules and Polymers, Vol. 4, H. S. Nalwa, Editor, 595, John Wiley & Sons, Chichester, U. K. (1997)

21. A. M. Couper, D. Pletcher, F.C. Walsh, Chem. Rev., 90, 837 (1990)

22. H. Wendt, “Electrocatalysis in Organic Electrochemistry”, Electrochim. Acta., 29, 1513 (1991)

23. S. Trasatti, “Physical Electrochemistry of Ceramic Oxide”, Electrochim. Acta., 36, 225 (1991)

24. B. Marsan, N. Fradette, G. Beaudoin, J. Electrochem. Soc. 139, 1889 (1992)

25. F.I. Mattos-Costa, P. de Lima-Neto, S.A.S. Machado, L.A. Avaca, “Characterisation of surfaces modified by sol-gel derived RuxIr1-xO2 coatings for oxygen evolution in acid medium”, Electrochimica. Acta., 44, 1515-1523 (1998)

26. J. G. D. Haenen, W. Visscher, E. Barendrecht, “Oxygen Evolution on NiCo2O4 Electrodes”, J. Electrochem. Soc., 15, 29-38 (1985)

27. J. Livage, M. Henry, “Ultrastructure Processing of Advanced Ceramics”, (J. D. Mackenzie and D. R. Ulrich, eds.), Wiley, New York, 183 (1988)

28. 張光輝, “循環伏安法置備釕銥氧化物於電化學電容器的應用”, 國立中正大學化工研究所碩士論文 (2000)

29. J. P. Zheng, and T. R. Jow, J. Electrochem. Soc., 142, L6-L8 (1995)

30. G. Lodi, E. Sivieri, A. DeBattisti and S. Trasatti, J. Electrochem. Soc., 8, 135-143 (1978)

31. G. W. Morey, “Hydrothermal Synthesis”, J. Am. Ceram. Soc., 36, 279 (1953)

32. R. A. Laudise, “Crystal Growth of Electronic Materials”, ed. by E. Kaldes, Elsevier Science, 159 (1985)

33. L. M. Demetsyanets and A. N. Lopachev, Some Problems of Consaltants Bureau, London Press, 1 (1973)

34. W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders”, Ceram. Bull., 67 (10), No. 10, 1673 (1988)

35. S. Wada, T. Suzuki and T. Noma, J. Ceram. Soc. Jpn., 103 (12), 1220 (1995)

36. A. Chittofratt and E.Matijevic, Colloids and Surf., 48, 65 (1990)

37. 李鳳生, “水熱法”, 超細粉體技術, 136 (2001)

38. 張立德,牟季美, “水熱法(高溫水解法)”, 奈米材料和奈米結構, 111-112 (2002)

39. 史宗淮, “水熱法合成鋇鐵氧磁粉之研究”, 國立清華大學化工研究所博士論文 (1986)

40. J. Trindade, D. Pedrosa de Jesus and P. Obrien, J. Mater. Chem., 4, 10, 1611 (1994)

41. C. H. Lu. and W. J. Hwang, Mater. Lett., 27, 229 (1996)

42. S. T. Chung, K. Nagata and H. Igarashi, Ferroelectrics, 94, 43 (1989)

43. 呂宗昕,王憲程, “水熱法製備超微細電子陶瓷粉體及其電子元件之應用”.

44. H. P. Klug and L. E. Alexander, X-ray Diddraction Procedures (Wiley, New York, 1974) Chap. 9.

45. S. Ardizzone, C.L. Bianchi, D. Tirelli, “Mn3O4 and γ-powders, preparation, phase composition and XPS characterization”, Physicochemical and Engineering Aspects., 134, 305-312 (1998)

46. Brian R. Strohmeier, David M. Hercules, “Surface Spectroscopic Characterization of Mn/Al2O3 Catalysts”, J. Phys. Chem., 88, 4922-4929 (1984)

47. Masaya Chigane, Masami Ishikawa, “Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism”, J. Electrochem. Soc., 147 (6), 2246-2251 (2000)

48. Masaya Chigane, Masami Ishikawa, Masanobu Izaki, “Preparation of Manganese Oxide Thin Films by Electrolysis/Chemical Deposition and Electrochromism”, J. Electrochem. Soc., 148 (7), D96-D101 (2001)

49. Junhua Jiang, Anthony Kucernak, “Electrochemical supercapacitor material based on manganese oxide:preparation and characterization”, Electrochimica. Acta., 47, 2381-2386 (2002)

50. Chi-Chang Hu, Chen-Ching Wang, “Nanostructures and Capacitive Characteristics of Hydrous Manganese Oxide Prepared by Electrochemical Deposition”, J. Electrochem. Soc., 150 (8), A1079-A1084 (2003)

 


如您有疑問,請聯絡圖書館
聯絡電話:(06)2757575#65773
聯絡E-mail:etds@email.ncku.edu.tw