進階搜尋

 
查詢範圍:「   」
顯示範圍:第筆 論文書目資料
顯示格式:全部欄位
共 7 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910183682
論文名稱(中文) 光異構性偶氮型液晶之合成及其光電特性探討
論文名稱(英文) Synthesis and Electro-Optical Properties of Azobenzene Liquid crystal.
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 90
學期 2
出版年 91
研究生(中文) 王素誼
學號 n3689427
學位類別 碩士
語文別 中文
口試日期 2002-06-20
論文頁數 92頁
口試委員 指導教授-劉瑞祥
口試委員-王春山
口試委員-陳雲
口試委員-蔡福人
關鍵字(中) 偶氮型液晶
光學開關
關鍵字(英) azobenzene liquid crystal
optical switching
學科別分類
中文摘要 本研究中將液晶及單體混合均勻後,利用熱聚合誘導相分離法製成PDLC薄膜。當系統中添加偶氮苯分子時,可利用照射不同波長的光使其在光散射(OFF)及光穿透(ON)兩種狀態間轉換。本研究中合成數種偶氮苯化合物,如4-alkyloxy-4’-methoxyazobenzene,其碳鏈長度分別為3 ~ 6,以及兩種帶有光學活性基團之化合物amyl 4-(4-hexyloxyphenylazo)benzoate及bornyl 4-(4-hexyloxyphenylazo) benzoate,所合成之化合物均以FTIR, NMR, DSC等加以定性分析。本研究中探討不同的偶氮苯分子對薄膜系統光化學相轉移行為的影響,以及最佳偶氮苯化合物與液晶含量之組成。由實驗結果發現,側鏈碳數為5之化合物(AzoC5)系統具有較快之感應時間及較佳之光開關效果,經實驗所得出的最佳重量組成為:EGDMA/E7/AzoC5 = 14/80/6。研究中並探討不同碳鏈長度的單官能性單體與雙官能性單體EGDMA 混合聚合後,對光開關系統所產生的光學特性影響。由結果可知高分子側鏈之導入會影響光開關的感應時間,而照可見光回復時,其可較快速回復至初始的光穿透度值。光誘導相變化性之可重複性、信賴性、及對溫度之依存性等,本研究中均有詳細之敍述。以光罩曝光所形成之光記錄可行性,文中亦有所探討。

英文摘要 PDLC films were fabricated by thermal polymerization with E7 liquid crystal and various monomers. A series of azobenzene derivatives of 4-alkyloxy-4’-methoxyazobenzene with carbon numbers of 3 to 6, and chiral compounds of amyl-4-(4-hexyloxyphenylazo)benzoate and bornyl-4-(4-hexyloxyphenylazo)benzoate were synthesized. The compounds synthesized in this investigation were identified by using FTIR, NMR and DSC. PDLC films with azo compound express photosensitive Nematic-Isotropic (N-I) phase transition due to the photo-convertible E/Z structures of azo compounds. Effects of azo compounds on the photochemical properties of PDLC films and the optimal composition of the films were studied. The optimal PDLC film with better response speed and photochemical properties was fabricated by AzoC5 system. In this case, the weight ratio of EGDMA/E7/AzoC5 is 14/80/6. The dependence of functional groups of monomers on the photochemical properties of films, photo-induced phase transition, reproducibility and reliability of the PDLC films were all investigated. It was found that the existence of polymer side chain may influence the response time of the films, and increase the recover speed significantly. The possibility of real image recording through a photo-mask of the PDLC films was also evaluated.

論文目次 中文摘要---------------------------------------------------------------------------Ⅰ
英文摘要---------------------------------------------------------------------------Ⅱ
目錄---------------------------------------------------------------------------------Ⅲ
表目錄------------------------------------------------------------------------------Ⅵ
圖目錄------------------------------------------------------------------------------Ⅶ
符號表---------------------------------------------------------------------------ⅩⅠ
第一章 緒論-----------------------------------------------------------------------1
1-1 前言----------------------------------------------------------------------------1
1-2 研究動機----------------------------------------------------------------------2
第二章 原理及文獻回顧--------------------------------------------------------3
2-1 液晶簡介----------------------------------------------------------------------3
2-1-1 液晶的分類----------------------------------------------------------------4
2-1-2 液晶的光學異方性------------------------------------------------------13
2-1-3 外加電場對絕緣向列型液晶的影響---------------------------------15
2-2 液晶聚合物概述-----------------------------------------------------------16
2-3 液晶-聚合物混合薄膜之介紹-------------------------------------------17
2-3-1 液晶-聚合物薄膜的製備--------------------------------------------18
2-3-2 液晶-聚合物混合薄膜之工作原理----------------------------------19
2-4 光致變系統簡介-----------------------------------------------------------20
2-4-1 光變色材料之光變色機制-----------------------------------------------21
2-4-2 光變色材料之分類--------------------------------------------------------22
2-5 偶氮苯衍生物之異構化---------------------------------------------------23

第三章 實驗部分----------------------------------------------------------------29
3-1 藥品--------------------------------------------------------------------------29
3-2 儀器--------------------------------------------------------------------------30
3-3 實驗步驟-------------------------------------------------------------------- 31
3-3-1 4,4’-bis( 6-(acryloyloxy)hexyloxy)biphenyl之合成----------------31
3-3-2 小分子偶氮苯液晶之合成---------------------------------------------32
3-3-3 含光學活性末端基團之偶氮苯分子之合成------------------------33
3-3-4 合成單官能基單體------------------------------------------------------34
3-4 試樣的製作------------------------------------------------------------------36
3-4-1 材料配方------------------------------------------------------------------36
3-4-2 玻片的清洗及空cell的製作------------------------------------------37
3-4-3 單體與液晶混合液之熱聚合相分離測試---------------------------38
3-5 偶氮苯分子光致變性測試方法----------------------------39
3-6 光穿透度的測量------------------------------------------------------------39
3-7 聚合物之SEM量測---------------------------------------------------------40
3-8 溶液配製成分表-------------------------------------------------------------40
第四章 結果與討論-------------------------------------------------------------41
4-1 單體的合成與鑑定--------------------------------------------------------- 41
4-1-1 小分子偶氮苯之合成-----------------------------------------------------41
4-1-2 4,4’-bis( 6-(acryloyloxy)hexyloxy)biphenyl之合成----------------43
4-1-3 單官能性單體之合成---------------------------------------------------43
4-2 偶氮苯單體的熱性質及液晶性探討-------------------------------------46
4-3 含偶氮苯單體光致變性探討----------------------------------------------46
4-4 熱誘導相分離之聚合時間的探討----------------------------------------47
4-5 照光對澄清點溫度影響之探討-------------------------------------------47
4-6 不同偶氮苯分子含量對澄清點溫度影響之探討----------------------48
4-7 偶氮苯分子在光開關系統之應用----------------------------------------49
4-7-1 不同單體對光開關系統之影響-----------------------------------------50
4-7-2 不同偶氮苯分子對光開關系統之影響--------------------------------51
4-7-2-1 不同碳鏈長度偶氮苯分子對光開關系統之影響-----------------51
4-7-2-2 不同末端基團單體對光開關系統之影響--------------------------52
4-7-2-3 不同側鏈長度單體對光開關系統之影響--------------------------53
4-8 光學開關----------------------------------------------------------------------54
第五章 結論----------------------------------------------------------------------89
參考文獻----------------------------------------------------------------------------90
參考文獻 1. 松本正一、角田市良合著,劉瑞祥譯,“液晶之基礎與應用”國立編譯館出版。
2. F.Reinitzer, Monatsh. Chem, Vol. 9, 421 (1888).
3. O.Z.Lehmann, Phys. Chem, 4, 4621(1889).
4. 蔡宗岳,“含光學活性單體PSCT液晶顯示元件之光電特性研究”國立成功大學化工研究所碩士論文,(1999)。
5. 蔡月娥, “雙官能機單體間隙長度對PSCT液晶顯示器光電特性效應之研究” 國立成功大學化工研究所碩士論文,(2000)。
6. D.demus, J.Goodby, G.W.Gray, H.W.Spiess, V.Vill, ”Handbook of Liquid crystals”, Vol 2a, 2b, Wiley-VCH, 1998.
7. 黃啟炎, ”液晶-聚合物混合薄膜之光學二倍頻現象之研究” 國立成功大學物理研究所博士論文,(1997)。
8. 林志勤,“鐵電性液晶對聚合物穩定膽固醇液晶薄膜光電特性影響之研究”,國立成功大學物理研究所碩士論文,(1998)。
9. 湯宏東,“含環氧基鐵電性液晶體的合成及性質研究”國立成功大學化工研究所碩士論文,(1998)。
10. L.Bouteiller, P. Le Barny, Liq. Cryst., Vol. 21, 157 (1996).
11. M. Irie, Chem. Rev., vol. 100, 1683 (2000).
12. H. Bouas-Laurent, H. Dürr, Pure Appl. Chem., Vol. 73, 639 (2001).
13. 邱顯堂,“化工技術”第八卷第六期,150
14. I. Shimizu, H. Kokado, E. Inoue, Bull. Chem. Soc. Jpn. Vol. 42, 1730 (1969).
15. H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, Chem. Mater. Vol. 10, 1402 (1998).
16. H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem. B, Vol. 104, 7023 (2000).
17. T. Ikeda, O. Tsutsumi, Science, Vol. 268, 1873 (1995).
18. K. Amundson, M. Srinivasarao, Liquid crystals for advanced techenologies, 269 (1996).
19. H. K. Lee, K. Doi, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, Polymer, Vol. 41, 1757 (2000).
20. M. Portugall, H. Ringsdorf, R. Zentel, Makromol. Chem.,Vol. 183, 2311 (1982).
21. K. Kürschner, P. Strohriegl, Liq. Cryst., Vol. 27, 1595 (2000).
22. Stewart and Corrie T. Immrie, Polymer, Vol. 37, 3419 (1996).
23. I. Dierking, L.L. kosbar, A. Afzali-Ardakani, A.C. Lowe, J. Appl. Phys., Vol. 81, 3007 (1997).
24. D. Coates, J. Mater. Chem., Vol. 5, 2063 (1995).
25. E. Akiyama, M. Ohtomo, Y. Nagase, Macromol. Chem. Phys., Vol. 196, 3391 (1995).
26. C.B McARDLE, “Side chain liquid crystal polymers”, (1989)
27. F. Simoni, “Nonlinear optical properties of liquid crystals”,Vol. 2 (1997)
28. H. Stegemeyer, Guest Ed. “Liquid crystal”, (1994)
29. M. O’neill, S. M. Kelly, J. Phys. D: Appl. Phys. 33 R67 (2000)
30. K. Ichimura, Chem. Rev. 1847 (2000).
31. O. Tsutsumi, T. Kitsunai, Macromolecules, 355 (1998).
32. Z. Liang, H. Ming, Q. Zhang, J. Appl. Phys. Vol. 90, 5866 (2001).
33. S. Xie, A. Natansohn, P. Rochon, Chem. Mater. Vol. 5, 403 (1993).

------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910424695
論文名稱(中文) 含光學活性菠酯基液晶性單體之合成及其在光學元件上之應用研究
論文名稱(英文) Synthesis and Characterization of Liquid Crystalline Monomers Having Chiral Bornyl Groups and their Applications on Optical Devices
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 91
學期 2
出版年 92
研究生(中文) 王宏宇
學號 n3888111
學位類別 博士
語文別 中文
口試日期 2003-07-22
論文頁數 162頁
口試委員 口試委員-凌漢辰
口試委員-徐文平
口試委員-陳澄河
指導教授-劉瑞祥
召集委員-黃定加
口試委員-陳雲
關鍵字(中) 液晶高分子
光學活性
選擇性光反射
膽固醇型
關鍵字(英) chiral
liquid crystal polymer
selective reflection
cholesteric
學科別分類
中文摘要 在本論文中,合成一系列含光學活性菠酯基(Borneol) 液晶性單體,其核心分子各不相同,分別為偶氮苯(azobenzene)、雙苯(biphenyl)、安息香酸酯(phenyl benzoate)和雙苯酯(biphenyl benzoate),所合成的液晶性單體具有相同碳鏈間距(spacer)與壓克力系(acrylate)主鏈基團;再利用自由基聚合法合成側鏈型液晶高分子(SCLCP),聚合出均聚合物與共聚合物,所合成的高分子為液晶高分子或非結晶型高分子。
所合成的化合物與高分子均使用紅外線光譜(FTIR)、質子核磁共振光譜(1HNMR)與元素分析儀(EA)來鑑定其結構,微差掃描熱卡計(DSC)及熱重量分析儀(TGA)對高分子的熱性質分析,偏光顯微鏡(POM)觀察高分子液晶相紋理,紫外光-可見光光譜儀(UV-vis)量測偶氮分子的光物理性質,X-ray繞射鑑定其高分子的微結構排列與GPC量測高分子分子量。
在起始劑5mol%條件下,所合成的高分子之重量平均分子量為6000~10000,分子量分佈在1.3~1.7,均聚合物及共聚合物5wt%熱重損失皆可達400℃以上。含有偶氮苯衍生基之側鏈液晶高分子,在溶液狀態時照射紫外光365nm,偶氮苯基團會發生光化學異構化反應,使的溶液之吸收度λmax下降;在量測動態的UV光譜變化時也發現,在溶劑中,濃度0.1mg/3ml,在10秒內即可到達飽和吸收度。
本研究中,利用偶氮苯分子照光異構化特性應用,將液晶E48、架橋性單體與四種偶氮苯分子均勻混合,製成PDLC液晶薄膜,探討作為光開關應用之可行性。結果顯示,摻混液晶及單體製成PDLC液晶薄膜,確實可藉照射適當波長的UV光,驅動偶氮苯分子發生異構化並藉由偶氮分子構型的改變,影響整體液晶的相變化溫度,其中偶氮分子以末端基團為推電子基的甲氧基團(-OCH3)效果最好。
進一步利用這些化合物,摻混於膽固醇型液晶中。系統在照光10分鐘之後,發現摻混2wt%的偶氮分子,選擇性光反射波長(λmax)會向短波長移動60~110nm,其中以末端含有高立體障礙及光學活性基團的菠酯基效果最好,同時發現,選擇性光反射波長的移動與偶氮分子異構化、偶氮分子旋光性改變和液晶環境的特性有關。
英文摘要 To investigate the steric effects of chiral bornyl groups on the intermolecular interaction and photoisomerization of azobenzene derivatives, a series of monomers derived from azobenzene and biphenyl having end-capped bornyl groups were synthesized. Chiral polyacrylates having bornyl end-capped side chains with four kinds of mesogenic moieties of azobenzene, biphenyl, benzoyloxy biphenyl and phenyl benzoate were prepared.
Compounds and polymers synthesized in this investigation are confirmed by using FTIR, NMR and EA. Thermal properties of polymers were estimated by DSC and TGA. The textures of monomers and polymers were analyzed by crossed polarized microscope. The structures of liquid crystalline polymers were further confirmed by X-ray diffraction analyzer. Photochemical properties of azobenzene compounds were measured by UV-vis photometer. The molecular weights of polymers were evaluated by GPC.
In the presence of 5mol% initiator, the molecular weights of obtained polymers are between 6000 and 10000. Thermal degradation of 5% weight loss of polymers and copolymers was found to be higher than 400℃. The side chain liquid crystal polymer containing azobenzene fragments can undergo photo-isomerization from trans to cis under UV light (365nm) irradiation. The λmax in UV-Vis spectra was found to decrease with UV irradiation time and level off in 10 seconds.
PDLC films were fabricated by a thermal polymerization of the mixture of azobenzene molecules, E48 liquid crystal, and various diacrylate monomers. PDLC films with azobenzene compounds reveal photosensitive Nematic-Isotropic (N-I) phase transition due to photo-convertible trans-cis structure of azobenzene compounds act as an impurity in the liquid crystal domain.
Furthermore, azobenzene derivatives were used as dopants with cholesteric liquid crystal to fabricate a liquid crystal cell. The composite LC cells reveal selective reflecting optical properties. The pitch of the cholesteric cell was verified by UV irradiation due to the photoinduced trans-cis conversion of azobenzene dopants. The optical behavior of the composite cells on UV irradiation and the effects of curing time on thermal stability of composite films were all investigated. Isomerization of azobenzene derivatives due to UV irradiation was confirmed by POM texture study and repeatable image recording.
論文目次 中文摘要 ---------------------------------------- I
英文摘要 ---------------------------------------- Ⅲ
目錄 -------------------------------------------- Ⅴ
表目錄 ------------------------------------------ Ⅸ
圖目錄 ------------------------------------------ⅩI
Scheme --------------------------------------- ⅩⅤⅡ
符號表 ---------------------------------------ⅩⅤⅢ

第一章 緒論
1-1 前言 -------------------------------------- 1
1-2 偶氮分子光異構化 -------------------------- 2
1-3側鏈型液晶高分子 --------------------------- 5
1-4光學活性基團 ------------------------------- 9
1-5選擇性光反射 ------------------------------ 11
1-6研究動機 ---------------------------------- 12
1-7 參考文獻 --------------------------------- 13
第二章 原理及文獻回顧
2-1 液晶的發現 ------------------------------- 15
2-2 液晶的分類 ------------------------------- 17
2-2-1依液晶成因的分類 ---------------------- 17
2-2-2依液晶分子排列分類 --------------------- 19
2-3 液晶之電學及光學性質 --------------------- 27
2-3-1液晶之電效應 -------------------------- 28
2-3-2液晶之光學效應 ------------------------ 29
2-4液晶高分子概述 ---------------------------- 31
2-5文獻回顧 ---------------------------------- 33
2-5-1偶氮異構化的發現及機構 ---------------- 33
2-5-2偶氮異構化的應用 ---------------------- 35
2-6參考文獻 ---------------------------------- 41
第三章 實驗部分
3-1 實驗儀器與裝置 --------------------------- 43
3-2鑑定儀器 ---------------------------------- 43
3-3物性測量儀器 ------------------------------ 44
3-4 藥品 ------------------------------------- 46
3-5合成步驟與結果 ---------------------------- 47
3-5-1 小分子偶氮苯之合成 ------------------ 47
3-5-2含光學活性末端基團之偶氮苯分子之合成 - 49
3-5-3 含光學活性菠酯基單體之合成 ---------- 52
3-5-4 液晶性單體之合成 -------------------- 67
3-6均聚合物高分子和共聚合物高分子的合成------- 68
3-7 材料物性及PDLC薄膜之製作 ----------------- 68
3-7-1 玻片的清洗及空cell的製作 ------------- 69
3-7-2單體與液晶混合液之熱聚合相分離測試 ---- 69
3-8 偶氮苯分子光致變性測試方法 --------------- 69
3-9 光穿透度的測量 --------------------------- 72
3-10 聚合物之SEM量測 ------------------------- 74
第四章 偶氮苯衍生物之合成及特性研究
4-1 前言 ------------------------------------- 76
4-2小分子偶氮苯化合物的合成與鑑定 ------------ 76
4-3含光學活性菠酯基單體之合成與鑑定 ---------- 78
4-4 結論 ------------------------------------- 81
4-5 參考文獻 --------------------------------- 82
第五章 含光學活性菠酯基均聚合物之合成及研究
5-1 前言 ------------------------------------- 93
5-2 高分子之合成與鑑定 ----------------------- 93
5-3高分子熱性質分析 -------------------------- 95
5-4 偶氮光異構化 ----------------------------- 97
5-5 選擇性光反射 ----------------------------- 98
5-6 結論 ------------------------------------- 98
5-7 參考文獻 --------------------------------- 99
第六章 液晶性共聚合物之特性探討
6-1 前言 ------------------------------------ 109
6-2含菠酯基光學活性高分子 ------------------- 109
6-3含光學活性菠酯基偶氮單體成份對共聚合物物性之影響
------------------------------------------- 113
6-4含甲氧基偶氮單體對於共聚合體物性之影響 --- 117
6-5 結論 ------------------------------------ 120
6-6參考文獻 --------------------------------- 121
第七章 小分子偶氮苯化合物應用於PDLC及選擇性光反射之調變
7-1 前言 ------------------------------------ 136
7-2 PDLC光開關應用 -------------------------- 136
7-2-1 PDLC光開關應用原理 ------------------ 136
7-2-2 材料簡介 --------------------------- 137
7-2-3 PDLC配方及製作 --------------------- 138
7-2-4 PDLC薄膜光開關量測方法及定義 ------- 139
7-2-5 PDLC薄膜光開關效果討論 ------------- 140
7-3 選擇性光反射波長的調變 ----------------- 143
7-3-1 簡介-------------------------------- 143
7-3-2 材料、配方及試片製作 -------------- 143
7-3-3 結果與討論 ------------------------ 144
7-4 結論 ------------------------------------ 148
7-5 參考文獻 -------------------------------- 148
第八章 總結 ------------------------------------ 159
著作目錄-----------------------------------------161
自述
參考文獻 1-7 參考文獻

1.Rau, H., “Photochemistry and Photophysics”, Rabek, J. K., Ed, CRCPress, BocaRaton, 1990, 2, 119.

2. Neporent, B.S., Stolbova,O.V., Opt. Spectrosc, 1961, 10, 146.

3. Neporent, B. S., Stolbova, O. V., Opt.Spectrosc, 1963, 14, 331.

4. Makushenko, A. M., Neporent, B. S., Stolbova, O. V., Opt. Spectrosc, 1971, 31, 295.

5. Makushenko, A. M., Neporent, B. S., Stolbova,O.V., Opt.Spectrosc, 1971, 31, 397.

6. Todorov, T., Nikolova, L., Tomova, N., Appl.Opt, 1984, 23, 4309.

7. Eich, M., Wendorff, J., Makromol.Chem, 1987, 8, 467.

8. Eich, M., Wendorff, J., Reck, B., Ringsdorf, H., Makromol. Chem., 1987, 8, 59.

9. Ichimura, K., Suzuki, Y., Seki, T., Hosoki, A., Aoki, K., Langmuir, 1988, 4, 1214.

10. 松本正一、角田市良合著,劉瑞祥譯,“液晶之基礎與應用”國立編譯館出版。

11. Finkelmann, H., Naegel, D., Rinsdorf, H., Makromol. Chem, 1979, 180, 803.

12. Shibaev, V. P., Polym. Commun., 1983, 24, 364.

13. Irie, M., Chem. Rev., 2000, 100, 1683.

14. Bouteiller, L. P., Barny, L., Liq. Cryst., 1996, 21, 157.

15. Stegemeyer, H., Guest Ed., “ Liquid Crystals”, 1994, p. 116.

16. Bobrovsky, A. Y., Boiko, N. I., Shibaev, V. P., Liq. Cryst., 2001, 28, 919.

17. Bobrovsky, A. Y., Boiko, N. I., Shibaev, V. P., Liq. Cryst., 1999, 26, 1749.

18. Berkovic, G., Krongauz, V., Weiss, V., Chem. Rev., 2000, 100, 1741.

19. Hattori, H., Uryu, T., Liq. Cryst., 1999, 26, 1085.

20. Wu, Y., Demachi, Y., Tsutsumi, O., Kanazawa, A., Shiono, T., Ikeda, T., Macromolecules., 1998, 31, 349.



2-6 參考文獻
1. 松本正一、角田市良合著,劉瑞祥譯,“液晶之基礎與應用”國立編譯館出版。

2. 蔡宗岳,“含光學活性單體PSCT 液晶顯示元件之光電特性研究”國立成功大學化工研究所碩士論文,(1999)。

3. Reinitzer, F., Monatsh., Chem, 1888, 9, 421.

4. Lehmann, O. Z., Phys. Chem, 1889, 4, 462.

5. Friedel, G., Ann. Physique, 1922, 273.

6. 賴耿陽,”液晶製法與應用”,復漢出版社,民國86 年2 月再版。

7. Stegemeyer, H., Guest Ed., “ Liquid Crystals”, 1994.

8. 蔡月娥, “雙官能機單體間隙長度對PSCT 液晶顯示器光電特性效應之研究” 國立成功大學化工研究所碩士論文,(2000)。

9. 呂子琦,” 2(S)-[2(S)-甲基己氧基]丙酸之合成及含其之液晶化合物”國立高雄師範大學化學研究所碩士論文,(1999)。

10. 王素誼,”光異構性偶氮型液晶之合成及其光電特性探討”國立成功大學化工研究所碩士論文,(2002)。

11. McMillian, W. L., Phys. Rev. A., 1973, 8, 1921.

12. Meyer, R.B., “Paper presented at the 5th International Liquld Crystals Conference”, Stockholm, June, 1974.

13. Wulf, A., Phys. Rev., 1975, A-11, 365.

14. Alberty, R. A., “Physical chemistry”, Chap. 14, John Wiley & Son, N. Y., 1987.

15. Neporent, B. S., Stolbova, O. V., Opt.Spectrosc, 1963, 14, 331.

16. Makushenko, A. M., Neporent, B. S., Stolbova,O.V., Opt.Spectrosc, 1971, 31, 397.

17. Todorov, T., Nikolova, L., Tomova, N., Appl.Opt, 1984, 23, 4309.

18. Eich, M., Wendorff, J., Reck, B., Ringsdorf, H., Makromol. Chem., 1987, 8, 59.

19. Ichimura, K., Suzuki, Y., Seki, T., Hosoki, A., Aoki, K., Langmuir, 1988, 4, 1214.

20. Ichimura, K., Chem. Rev., 2000, 1847.

21. Natansohn, A., Rochon, P., Chem. Rev., 2002, 102, 4139.

22. Eich, M.,Wendorff, J., Makromol.Chem., 1987, 8, 467.

23. Tredgold, R.H., Allen, R. A., Hodges,P., Khoshdel, E., J. Phys. D:Appl.Phys., 1987, 20, 1385.

24. Wiesner, U.,Antonietti, M., Boeffel, C., Spiess, H. W., Makromol. Chem.,1990, 191, 2133.

25. Hvilsted, S., Andruzzi, F., Ramanujam, P. S., Opt. Letters, 1992, 17, 1234.

26. Natansohn, A., Rochon, P., Pezolet, M., Audet, P., Brown, D., To, S., Macromolecules, 1994, 27, 2580.

27. Natansohn, A., Rochon, P., Gosselin, J., Xie, S., Macromolecules, 1992, 25, 2268.

28. Rochon, P., Bissonnette, D., Natansohn, A., Xie, S., Appl. Opt., 1993, 32, 7277.




4-5 參考文獻
1. Morrison Boyd, “Organic Chemistry 6th”, Prentice-Hall International Edition, U.S.A., 1992.

2. 王素誼,”光異構性偶氮型液晶之合成及其光電特性探討”國立成功大學化工研究所碩士論文,(2002)。

3. 松本正一、角田市良合著,劉瑞祥譯,“液晶之基礎與應用”國立編譯館出版。

4. D. demus, J. Goodby, G. W. Gray, H. W. Spiess, V. Vill, ”Handbook of Liquid crystals”, Vol 2a, 2b, Wiley-VCH, 1998.

5. A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, Liq. Cryst., 1999, 26, 1749.

6. C.B McARDLE, “Side chain liquid crystal polymers”, Wiley-VCH, (1989)

7. H. Stegemeyer, Guest Ed. “Liquid crystal”, Steinkopff Darmstadat, Springer New York, (1994)

8. H. Hattori, T. Uryu, Liq. Cryst., 1999, 26, 1085.

9. H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem. B, Vol. 104, 7023 (2000).

10. S. Xie, A. Natansohn, P. Rochon, Chem. Mater. Vol. 5, 403 (1993).





5-7 參考文獻

1. Bobrovsky, A. Y., Boiko, N. I., Shibaev, V. P., Liq. Cryst., 2001, 28, 919.

2. Hattori, H., Uryu, T., Liq. Cryst., 1999, 26, 1085.

3. Natansohn, A., Rochon, P., Chem. Rev., 2002, 102, 4139.

4. 王素誼,”光異構性偶氮型液晶之合成及其光電特性探討”國立成功大學化工研究所碩士論文

5. Imrie, C. T., Karasz, F. E., Attard, G. S., Macromolecules, 1994, 27, 1578-1585.

6. Shibaev, V. P., Kozlovsky, M., Beresnev, L., Blinov, L., PlateÁ, N., Polym. Bull, 1984, 12, 299-311.

7. Scherowsky, G., Schliwa, A., Springer, J., Ku¨ hnpast, K., Trapp, W., Liq. Cryst, 1989, 5, 1281-1288.

8. Bobrovsky, A. Y., Boiko, N. I., Shibaev, V. P., Polym. Sci. A., 1998, 40, 232-245.

9. Bobrovsky, A. Yu., Boiko, N. I., Shibaev, V. P., L iq. Cryst, 1999, 26, 1749-1766.

10. 湯宏東,“含環氧基鐵電性液晶體的合成及性質研究”國立成功大學化工研究所碩士論文,(1998)。

11. Wu, Y., Ikeda, T., Zhag, Q., Adv. Mater., 1999, 11, 300-308.

12. Shibaev, V. P., Kostromin, S. G., Ivanov, S. A., J. Polym. Sci. A., 1997, 39, 118-132.

13. Berg, R. H., Hvilsted, S., Ramanujam, P. S., Nature, 1996, 383, 505-513.

14. Abe, J., Hasegawa, M., Matsushima, H., Shirai, Y., Nemoto, N., Nagase, Y., Takamiya, N., Macromolecules, 1995, 28, 2938.

15. Walba, D. M., Xiao, L., Keller, P., Shao, R., Link, D., Clark, N., Pure appl. Chem., 1999, 71, 2117-2128.





6-6 參考文獻

1. Shibaev, V. P., Kozlovsky, M., Beresnev, L., Blinov, L., PlateÁ, N., Polym. Bull, 1984, 12, 299-311.

2. Shibaev, V. P., Kostromin, S. G., Ivanov, S. A., Polym. Sci. A., 1997, 39, 118-132.

3. Bobrovsky, A. Y., Boiko, N. I., Shibaev, V. P., Liq. Cryst., 2001, 28, 919.

4. Wu, Y., Mamiya, J. I., Kanazawa, A., Shiono, T., Ikeda, T., Zhang, Q., Macromolecules, 1999, 32, 8829-8835.

5. Kurihara, S., Yoneyama, D., Nonaka, T., Chem. Mater., 2001, 13, 2807-2812.

6. Kurihara, S., Sakamoto, A., Yoneyama, D., Nonaka, T., Macromolecules, 1999, 32, 6493-6498.

7. Wu, Y., Ikeda, T., Zhag, Q., Adv. Mater., 1999, 11, 300-308.

8. Hattori, H., Uryu, T., Liq. Cryst., 1999, 26, 1085.

9. Wu, Y., Demachi, Y., Tsutsumi, O., Kanazawa, A., Shiono, T., Ikeda, T., Macromolecules, 1998, 31, 349.

10. Ikeda, T., Tsutsumi O., Science, 1995, 268, 1873.

11. Natansohn, A., Rochon, P., Chem. Rev., 2002, 102, 4139.

12. 王素誼,”光異構性偶氮型液晶之合成及其光電特性探討” 國立成功大學化工研究所碩士論文。

13. Stegemeyer, H., Guest Ed., “ Liquid Crystals”, 1994, 116.

14. Ichimura, K., Suzuki, Y., Seki, T., Hosoki, A., Aoki, K., Langmuir, 1988, 4, 1214.

15. Ichimura, K., Chem. Rev., 2000, 1847.

16. 蔡福人, “含菠酯光學活性高分子之合成及其物性探討與其在光學分割上之應用研究”,國立成功大學博士論文,2000。



7-5 參考文獻

1. Ikeda, T., Sasaki, T., Ichimura, K., Nature, 1993, 361, 428.

2. Montgomery, G. P., Smith, G. W., Vaz, A. A., Shibaev, V. P., Liquid crystalline and mesomorphic polymers, Berlin: Springer, 1994, chap.5., 149.

3. Doane, J. W., In: Bahadur B, editor. Liquid crystal: applications and uses, Singapore: World Scientific, 1990, chap. 14, 361.

4. Kurihara, S., Nomiyama, S., Nonaka, T., Chem. Mater., 2001, 13, 1992-1997.

5. Lee, H. K., Doi, K., Kanazawa, A., Shiono, T., Ikeda, T., Fujisawa, T., Aizawa, M., Lee, B., Polymer, 2000, 41, 1757-1763.

6. Lee, H. K., Kanazawa, A., Shiono, T., Ikeda, T., Chem. Mater., 1998, 10, 1402-1407.

7. Lee, H. K., Kanazawa, A., Shiono, T., Ikeda, T., Fujisawa, T., Aizawa, M., Lee, B., J. Appl. Phys., 1999, 86, 5927-5934.

8. Bouteiller, L., Barny, P. L., Liq. Cryst., 1996, 21, 157-174.

9. Rajaram, C. V., Hudson, S. D., Chien, L. C., Chem. Mater., 1996, 8, 2451-2460.

10. Lee, H. K., Doi, K., Harada, H., Tsutsumi, O., Kanazawa, A., Shiono, T., Ikeda, T., J. Phys. Chem. B., 2000, 104, 7023-7028.

11. 楊博智,”含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討”國立成功大學化工研究所碩士論文,(2003)。

12. Tsutsumi, O., Kitsunai, T., Macromolecules, 1998, 355.

13. Liang, Z., Ming, H., Zhang, Q., J. Appl. Phys., 2001, 90, 5866.

14. Wu, Y., Zhang, Q., Ikeda, T., Adv. Mater., 1999, 11, 300.

15. Ichimura, K., Chem. Rev., 2000, 1847.

16. Kürschner, K., Strohriegl, P., Liq. Cryst., 2000, 27, 1595.

17. Bouas-Laurent, H., Dürr, H., Pure Appl. Chem., 2001, 73, 639.

18. Bobrovsky, A. Y., Boiko, N. I., Shibaev, V. P., Liq. Cryst., 1999, 26,1749.

19. 松本正一、角田市良合著,劉瑞祥譯,“液晶之基礎與應用”國立編譯館出版。

20. 王素誼,”光異構性偶氮型液晶之合成及其光電特性探討”國立成功大學化工研究所碩士論文,(2002)。

------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911245829
論文名稱(中文) 光異構性偶氮苯衍生物之合成及其在液晶顯示元件及光記錄薄膜之應用研究
論文名稱(英文) Study on the Synthesis of Photoisomerizable Azobenzene Derivatives and Their Applications on LCD and Optically Recording Membranes
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 93
學期 1
出版年 94
研究生(中文) 吳阜蒼
學號 n3888103
學位類別 博士
語文別 中文
口試日期 2004-12-11
論文頁數 283頁
口試委員 口試委員-陳文章
口試委員-廖德章
口試委員-苗君易
召集委員-黃定加
口試委員-傅永貴
口試委員-林江珍
指導教授-劉瑞祥
關鍵字(中) 偶氮
液晶
關鍵字(英) liquid crystal
azobenzene
學科別分類
中文摘要   本研究中將液晶以及單體混合均勻後,利用熱聚合相分離法製成液晶聚合物混合薄膜(PDLC)。所合成之化合物均以FTIR, EA, NMR光譜確認其結構,並利用DSC, TGA以及POM進行物性分析。我們比較不同碳鏈長度(n=3, 6, 11)之偶氮苯單體以及其相對應之模式化合物,探討其對PDLC元件之光電特性的影響。研究發現,偶氮苯單體及其相對應之模式化合物於PDLC試件中,具有不同的光電特性表現。添加偶氮苯模式化合物具有提升試件之遮光效果,穩定液晶分子排列以及降低其操作電壓;而偶氮苯單體所形成之PDLC元件則無法達到光線散射之效果。添加偶氮苯模式化合物具有較佳的對比值(CR=689)以及低的飽和電壓(4.7V/μm)。所合成之偶氮苯分子均可進行可逆之光-, 以及熱-異構化反應。trans-偶氮苯分子經UV光照射後形成cis-偶氮苯異構物,可以降低PDLC試件之澄清點溫度,利用此項特性,使的添加偶氮苯分子之試件具有影像記錄之特性。另外,我們亦比較酯基液晶單體、雙苯環不同碳鏈長度之交聯劑,以及市售不同雙鍵數之交聯劑,探討其對PDLC試件之光電特性之影響。
  利用上述所合成之單體聚合成之均聚合物以及共聚合物,並經由FTIR、NMR光譜分析鑑定、EA分析,利用TGA,DSC測定其熱性質以及GPC測定分子量。含有偶氮苯之聚合物如同單體具有光-,熱-異構化反應之特性,可作為光紀錄或是光開關之材料。
  我們亦對全像術做研究(其為3D立體影像記錄技術),探討不同雷射光源強度、交聯劑之雙鍵數、起始劑濃度、單體與交聯劑之比例、試件厚度、以及光源夾角之影響。為了解光學活性物質之立體特異性對於全像光柵之影響,我們合成丙烯酸菠酯等光學活性單體及其外消旋混合物,量測其對全像光柵形成時之動態繞射效率變化。發現光學活性物質之立體特異性對於全像光柵確實具有影響。利用本研究所使用之感光性全像高分子薄膜所形成之全像光柵,具有良好之繞射效率(95%),解析度可達到1000 lines/mm,並具有多次記錄之特性。

英文摘要   Polymer dispersed liquid crystal (PDLC) composite films were fabricated by thermal polymerization with E7 liquid crystal, monomers, and novel azobenzene derivatives. All of the compounds synthesized in this study were identified by FTIR, EA and NMR, and the physical properties were analyzed by DSC, TGA and POM. We compared with the electro-optical properties of PDLC films that doped azobenzene monomer and its relative model compound in various alkyl chain lengths (n= 3, 6, 11). We found that the azobenzene monomer shows different behaviors in the electro-optical property from its relative model compound. The addition of azobenzene model compound can improve the ability for light scattering of PDLC sample and it can also stabilize the liquid crystal and decrease the threshold voltage. The addition of azobenzene monomer decreases the ability for light scattering of PDLC sample. The azobenzene model compound showed better electro-optical and thermal-optical properties, having a higher contrast ratio (CR= 689) and a lower saturation voltage (4.7 V/μm). All the azobenzene molecules can be photoisomerized through UV light irradiation, following the mechanism of isomerization. The reversible photo and heat isomerization property was studied. The cis-azobenzene that was transformed from the trans-azobenzene irradiated by UV light can decrease the clearing point of PDLC samples. We used this unique characteristic to record image patterns and it worked successively. We also synthesize various monomers such as ester liquid crystal monomers, bis-acrylloyloxybiphenyl derivatives with various alkyl chain length. We study the effect of these monomers or commercial multifunctional monomers on the electric-optical properties of PDLC films.
  We synthesized the homopolymer and copolymers with ester or azobenzene monomers mentioned above. The functional groups were identified by FTIR, NMR and EA. The thermal properties and molecular weight were also analyzed by TGA, DSC and GPC. The polymers that contained azobenzene molecules could proceed reversible light-, and thermal-isomerization process as monomers. It can be used as image record or photo-switchable material.
  We also do the research of holography, it is a technology of 3D image record. The effects of the light intensity of incident laser beams, multifunctional monomers, initiator concentrations, feed monomer concentrations, incident writing angles, grating period and film thickness on the diffraction efficiencies were investigated. To investigate the chirality of monomers on the holographic gratings, chiral monomes and the relative racemates(BA and BMA derived form borneol) were synthesized and the dynamic diffraction efficiency was studied. It was found that the steric effects of chiral compounds affect the diffraction efficiency of holograpgic grating of the composite films. The photosensitive holographic polymer films fabricated in this study reveal high diffraction efficiency (95%) and the resolution can up to 1000 lines/mm. The plural data recording can be recorded on the same film successively.
論文目次 目 錄
中文摘要---------------------------------------------------------------------- Ⅰ
英文摘要---------------------------------------------------------------------- Ⅲ
目錄---------------------------------------------------------------------------- Ⅴ
表目錄------------------------------------------------------------------------- Ⅸ
圖目錄 ----------------------------------------------------------------------- XI
符號表------------------------------------------------------------------------- XXI
第一章 緒論----------------------------------------------------------------- 1
1-1何謂液晶----------------------------------------------------------------- 3
1-1-1 液晶簡介-------------------------------------------------------- 4
1-1-2 液晶的分類------------------------------------------------------- 5
1-1-3 液晶的光學異方性---------------------------------------------- 14
1-1-4 外加電場對絕緣向列(Nematic)型液晶的影響------------- 15
1-1-5 液晶的連續體彈性形變理論-------------------------------- 17
1-1-6分子排列的秩序參數-------------------------------------------- 18
1-2 液晶聚合物概述------------------------------------------------------- 19
1-3 研究動機與研究內容------------------------------------------------- 20
第二章 不同單體對液晶-聚合物混合薄膜之光電特性應用研究- 21
2-1 原理與文獻回顧------------------------------------------------------- 21
2-1-1 液晶-聚合物混合薄膜之介紹----------------------------------- 21
2-1-2 光致變系統簡介--------------------------------------------------- 27
2-1-3偶氮熱及光化學反應之異構化原理---------------------------- 29
2-1-4 偶氮苯分子之應用------------------------------------------------ 34
2-1-5 研究目標------------------------------------------------------------ 39
2-2 實驗---------------------------------------------------------------------- 41
2-2-1藥品------------------------------------------------------------------- 41
2-2-2儀器------------------------------------------------------------------- 42
2-2-3 合成------------------------------------------------------------------ 44
2-2-4 PDLC試件的製作------------------------------------------------- 59
2-2-5偶氮苯分子之異構化特性量測---------------------------------- 62
2-2-6 PDLC 元件之光電特性量測------------------------------------ 62
2-3結果與討論-------------------------------------------------------------- 65
2-3-1光譜分析與物性鑑定---------------------------------------------- 65
2-3-2甲氧基偶氮苯衍生物掺混於PDLC元件之光電特性探討 85
2-3-3硝基偶氮苯衍生物掺混於PDLC元件之光電特性探討--- 111
2-3-4酯基單體與多官能性單體於PDLC元件之光電特性探討-------------------------------------------------------------------------------- 127
2-4結論----------------------------------------------------------------------- 139
第三章 聚合物高分子之合成與光開關之應用研究----------------- 141
3-1 原理與文獻回顧------------------------------------------------------- 141
3-1-1偶氮苯高分子之應用---------------------------------------------- 145
3-1-2研究目標------------------------------------------------------------- 149
3-2 實驗---------------------------------------------------------------------- 149
3-2-1藥品------------------------------------------------------------------- 149
3-2-2儀器------------------------------------------------------------------- 150
3-2-3 合成------------------------------------------------------------------ 151
3-2-4偶氮苯高分子光開關之量測------------------------------------- 154
3-3結果與討論-------------------------------------------------------------- 154
3-3-1高分子的合成與光譜鑑定---------------------------------------- 155
3-3-2偶氮照光異構特性------------------------------------------------- 170
3-3-3 光開關--------------------------------------------------------------- 179
3-4 結論---------------------------------------------------------------------- 182
第四章 光學活性單體於全像光柵之影響研究----------------------- 183
4-1 全像術原理與文獻回顧---------------------------------------------- 183
4-1-1簡 介----------------------------------------------------------------- 183
4-1-2全像與普通照相的不同------------------------------------------ 184
4-1-3全像圖的分類------------------------------------------------------ 185
4-1-4繞射效率理論值--------------------------------------------------- 190
4-1-5全像資訊儲存以及應用方面的展望--------------------------- 194
4-1-6全像光柵的成長--------------------------------------------------- 196
4-1-7研究目標------------------------------------------------------------ 200
4-2 實驗---------------------------------------------------------------------- 201
4-2-1藥品------------------------------------------------------------------- 201
4-2-2儀器------------------------------------------------------------------- 201
4-2-3合成光學活性單體及其外消旋混合物------------------------- 202
4-2-4實驗裝置及其操作條件------------------------------------------- 203
4-3結果與討論-------------------------------------------------------------- 207
4-3-1反應機構------------------------------------------------------------- 207
4-3-2單體與交聯劑之最適比例與受照光強度之影響------------- 209
4-3-3交聯劑之雙鍵數對光柵形成之影響---------------------------- 214
4-3-4光學活性分子對光柵形成之影響------------------------------- 217
4-3-5材質厚度之影響---------------------------------------------------- 226
4-3-6起始劑與共起始劑濃度之影響---------------------------------- 233
4-3-7不同間距寬度對光柵形成之影響------------------------------- 235
4-3-8多次記錄------------------------------------------------------------- 240
4-3-9 SEM 分析----------------------------------------------------------- 242
4-4結論----------------------------------------------------------------------- 247
第五章 總結----------------------------------------------------------------- 248
參考文獻---------------------------------------------------------------------- 249
自述---------------------------------------------------------------------------- 255
著作---------------------------------------------------------------------------- 257
參考文獻 參考文獻
1.松本正一,角田市良著,劉瑞祥譯,液晶之基礎與應用,國立編譯館出版 (1996).
2.S. T. Wu, D. K. Yang, Reflective Liquid Crystal Dispal (John Wiley and Sons, New York, 2001).
3.P. J. Colling, M. Hird, Introduction to Liquid Crystals Chemistry and Physics (Taylor and Francis, 1997).
4.I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystal (World Scienific, USA, 1993).
5.D. Demus, J. Gooby, G. W. Gray, H. W. Spiess, V. Vill, Handbook of Liquid Crystals ( 2a, 2b, Wiley-VCH, 1998).
6.F. Reinitzer, Monatsh. Chem., 9, 421 (1888).
7.O. Z. Lehmann, Phys. Chem, 4, 4621 (1889).
8.C. Hilsum, UK Patent, 1442360 (1976).
9.L. Boutteiller, P. L. Barny, Liq. Cryst. 21, 157 (1996).
10.Y. H. Fan, H. Ren, S. T. Wu, Appl. Phys. Lett., 82, 2945 (2003).
11.L. Petti, P. Mormile, W. J. Blau, Opt. Las. Eng., 39, 369 (2003).
12.P. S. Drzaic, J. Appl. Phys., 60, 2142 (1986).
13.Y. H. Lin, H. Ren, S. T. Wu, Appl. Phys. Lett., 84, 4083 (2004).
14.M. Boussoualem, F. Roussel, M. Ismaili, Phys. Rev. E, 69, 31702 (2004).
15.J. L. Fergason, SID Inter. Symp. Digst, 16, 68 (1985).
16.B. G. Wu, J. L. West, J. W. Doane, J. Appl. Phys., 62, 3925 (1987).
17.C. E. Hoppe, M. J. Galante, P. A. Oyanguren, Macromol. Chem. Physic., 204, 928 (2003).
18.T. Kajiyama, A. Miyasato, H. Kikuchi, Y. Morimura, Chem. Lett., 18, 813, (1989).
19.A. Andreau, L. Sannier, F. Gyselinck, Mol. Cryst. Liq. Cryst., 364, 919 (2001).
20.E. Grosicka, M. Mucha, Mol. Cryst. Liq. Cryst., 353, 417 (2000).
21.P. Mormile, P. Musto, G. Ragosta, P. Villano, Appl. Phys. B, 70, 249 (2000).
22.N. H. Park, S. Cho, J. Y. Kim, K. D. Suh, J. Appl. Polym. Sci., 77, 3178 (2000).
23.S. J. Chang, C. M. Lin, A. Y. G. Fuh, Jpn. J. Appl. Phys., 35, 2180 (1996).
24.R. A. Vara, D. W. Tomlin, M. D. Schulte, T. J. Bunning, Polymer, 42, 1055 (2001).
25.S. Zumer, J. W. Doane, Phys. Rev. A, 34, 3373 (1986).
26.N. K., Park, S. A. Cho, J. Y. Kim, K. D. Suh, J. Appl. Polym. Sci., 77, 3178 (2000).
27.G. P. Motgomery, A. V. Nuno, Appl. Opt., 26, 738 (1987).
28.S. I. Park, N. H. Park, K. D. Suh, Liq. Cryst., 29, 6 (2002).
29.B. G. Wu, J. H. Erdmann, J. W. Doane, Liq. Cryst., 5, 1453 (1989).
30.J. J. Wu, C. M. Wang, S. H. Chen, Jpn. J. Appl. Phys., 35, 2681 (1996).
31.J. J. Wu, C. M. Wang, W. Y. Li, S. H. Chen, Jpn. J. Appl. Phys., Part 1, 12A, 6434 (1998).
32.S. H. Lee, T. K. Lim, S. T. Shin, K. S. Park, Jpn. J. Appl. Phys., 41, 208 (2002).
33.M. Irie, Chem. Rev., 100, 1683 (2000).
34.H. B. Laurent, H. Durr, Pure Appl. Chem., 73, 639 (2001).
35.A. V. El’Tsov, Y. E. Sviridov, J. Whittal, Organic Photochromes (Bureau, New York, Ch. 3, 1990).
36.永松元太郎著,劉瑞祥編譯,感光性高分子,復文書局(1987).
37.A. Altomare, C. Carlini, F. Cirdelli, R. Solaro, Polymer, 24, 95 (1983).
38.A. S. Angeloni, D. Caretti, C. Carlini, Liq. Cryst., 4, 513 (1989).
39.A. Natansohn, P. Rochon, Chem. Rev., 102, 4139 (2002).
40.T. Ikeda, S. Horiuchi, D. B. Karanjit, S. Kurihara, S. Tazuke, Macromol., 23, 36 (1990).
41.K. Matczyszyn, S. Bartkiewicz, B. Sahraoui, Opt. Mater., 20, 57 (2002).
42.S. Kurihara, D. Yoneyama, T. Ogata, T. Nonaka, J. Appl. Polym. Sci., 89, 943 (2003).
43.A. Bobrovsky, N. Boiko, K. Shaumburg, Mol. Crys. Liq. Cryst., 352, 368 (2000).
44.S. R. Keum, C. H. Cho, Y. K. Choi, Dyes Pigments, 60, 147 (2004).
45.T. Ikeda, T. Sasaki, H. B. Kim, J. Phys. Chem., 95, 509 (1991).
46.T. Sasaki, T. Ikeda, K. Ichimura, Macromol., 25, 3807 (1991).
47.S. Kurihara, S. Sakamoto, T. Nonaka, Macromol., 31, 4648 (1998).
48.J. H. Kim, K. M. Hong, H. S. Na, Y. K. Han, Jpn. J. Appl. Phys., 40, 1585 (2001).
49.Y. K. Han, B. S. Ko, Opt. Mater., 21, 621 (2002).
50.S. Wu, S. Yao, W. She, D. Luo, H. Wang, J. Mater. Sci., 38, 401 (2003).
51.O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, T. Ikeda, Macromol., 31, 355 (1998).
52.Y. Wu, Q. Zhang, A. Kanazawa, T. Shiono, T. Ikeda, Y. Nagase, Macromol., 32, 3951 (1999).
53.O. Tsutsumi, Y. Demachi, A. Kanazawa, T. Shiono, T. Ikeda, Y. Nagase, J. Phys. Chem. B, 102, 2869 (1998).
54.H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, Chem. Mater., 10, 1402 (1998).
55.H. K. Lee, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, J. Appl. Phys., 86, 5927 (1999).
56.A. Y. G. Fuh, C. R. Lee, K. T. Cheng, Jpn. Appl. Phys., 42, 4406 (2003).
57.J. H. Liu, H. Y. Wang, J. Appl. Polym. Sci., 92, 789 (2004).
58.J. H. Liu, P. C. Yang, J. Appl. Polym. Sci., 91, 3693 (2004).
59.H. J. Haitjema, G. L. Morgen, Y. Y. Tan, G. Challa, Macromol., 27, 6201 (1994).
60.S. Silong, M. R. Lutfor, M. Z. A. Rahman, W. M. Z. W. Yunus, M. J. Haron, M. B. Ahmad, W M. D. W. Yusoff, J. Appl. Polym. Sci., 86, 2653 (2002).
61.尤舜宗,高分子側鏈長度對PSCT液晶顯示器光電特性效應之研究,國立成功大學化工研究所碩士論文 (2001).
62.M. Li, C. Guo, Liq. Cryst., 29, 1031 (2002).
63.P. R. Patel, J. S. Dave, Liq. Cryst., 30, 691 (2002).
64.王素誼,光異構性偶氮形液晶之合成及其光電特性探討,國立成功大學化工研究所碩士論文 (2002.)
65.楊博智,含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討,國立成功大學化工研究所碩士論文 (2003).
66.M. Portugall, H. Ringsdorf, R. Zentel, Makrocol. Chem, 183, 2311 (1982).
67.R. A. M. Hikmet, J. Lub, A. J. W. Tol, Macromol., 28, 3313 (1995).
68.J. Lub, D. J. Broer, R. A. M. Hikmet, K. G. J. Nierop, Liq. Cryst., 18, 319 (1995).
69.K. Kurschner, P. Strohriegl, Liq. Cryst., 27, 1595 (2000).
70.蔡月娥,雙官能基單體間隙長度對PSCT液晶顯示器光電特性效應之研究(2000).
71.A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem. B, 101, 2806 (1997).
72.O. Tsutsumi, T. Shiono, T. Ikeda, G. Galli, J. Phys., Chem. B, 101, 1332 (1997).
73.E. I. Demiphov, M. V. Kozlovsky, Liq. Cryst., 18, 911 (1995).
74.A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, Liq. Cryst., 27, 1387 (2000).
75.A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, Liq. Cryst., 27, p. 1381 (2001).
76.N. Kosaka, Y. Oda, T. Hiyama, Macromol., 37, 3159 (2004).
77.Y. Wu, A. Kanazawa, T. Shiono, T. Ikeda, Q. Zhang, Polymer, 40, 4787 (1999).
78.T. Yamamoto, M. H. Hasegawa, T. Siono, T. Ikeda, J. Phys. Chem. B, 103, 9873 (1999).
79.T. Ikeda, Y. Wu, Pure Appl. Chem., 71, 2131 (1999).
80.T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono, T. Ikeda, J. Mater. Chem., 10, 337 (2000).
81.M. Han, S. Morino, K. Ichimura, Macromol., 33, 6360 (2000).
82.K. G. Yager, G. J. Barrett, Curr. Opin. Solid Mat. Sci., 5, 487 (2001).
83.A. Tork, P. Nagtegaele, T. V. Galstian, Syn. Met., 127, 81 (2002).
84.O. V. Yaroshchuk, A. D. Kiselev, Y. Zakreskyy, T. bidna, J. Kelly, L. C. Chien, J. Lindau, Phys. Rev. E, 68, 11803 (2003).
85.D. Li, J. Yang, R. Demadi, Opt. Commun., 235, 275 (2004).
86.A. Emoto, H. Ono, N. Kawatsuki, Jpn. J. Appl. Phys., 43, L293 (2004).
87.U. Wiesner, M. Antoietti, C. Boffel, H. W. Spiess, Macromol. Chem., 191, 189 (1990).
88.H. Menzel, B. Weichrt, A. Schmidt, S. Paul, W. Knoll, J. Stumpe, T. Fischer, Langmuir, 10, 1926 (1994).
89.J. G. Meler, R. Ruhmann, J. Stumpe, Macromol., 33, 843 (2000).
90.M. Han, S. Morino, K. Ichimura, Macromol., 33, 6360 (2000).
91.K. Matezyszan, S. Bartkiewicz, B. sahraoui, Opt. Mater., 20, 57 (2002).
92.A. Mazzula, A. Dastoli, G. Russo, L. Lucchetti, G. Cipparrone, Liq. Cryst., 30, 87 (2003).
93.Y. Kawanishi, T. Tamaki, K. Ichimura, Polym. Mater. Sci. Eng., 66, 263 (1992).
94.G. H. Kim, S. Enomoto, A. Kanazawa, T. Shiono, T. Ikeda, L. S. Park, Appl. Phys. Lett., 75, 3458 (1999).
95.Y. Kawashima, M. Nakagawa, K. Ichimura, J. Mater. Chem., 14, 328 (2004).
96.P. Hariharan, Optical Holography–Principles, Techniques and Applications, Cambridge University Press, Cambridge (1984).
97.H. J. Eichler, P. Gunter and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag Press, Berlin, 1986).
98.P. Das, Lasers and Optical Engineering (Springer-Verlag Press, New York, 1991).
99.P. Gunter and J. P. Huignaed, Photorefractive Materials and Their Applications (Springer-Vrlag, Berlin, 1989).
100.E. Hetch, A. Zajac, Optics (2 nd ed., Addison-Wesley, 1987).
101.H. Kogelnik, Bell Tesc. J., 48, 2909 (1969).
102.R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, Chem. Phys., 245, 463 (1999).
103.T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, Annu. Rev. Mater. Sci., 30, 83 (2000).
104.R. P. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, T. J. Bunning, Appl. Spectro., 54, 12A (2000).
105.T. J.Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, 36, 2699 (1995).
106.A. Y. G. Fuh, T. C. Ko, M. S. Tsai, C. Y. Huang, J. Appl. Phys., 83, 2 (1998).
107.A. Y. G. Fuh, M. S. Tsai, C. R. Lee, Y. H. Fan, Phys. Rev. E, 62, 3 (2000).
108.蔡福人,含菠酯基光學活性高分子之合成及其物性探討與其在光學分割之應用研究,國立成功大學化工研究所博士論文 (2000).
109.J. H. Liu, H. T. Liu, F. R. Tsai, Polymer International, 42, 385 (1997).
110.J. H. Liu, J. C. Shih, C. H. Shih, W. T. Chen, J. Appl. Polym. Sci., 81, 3538 (2001).
111.葛聰智,聚合物-液晶混合材料在全像光柵應用之研究,國立成功大學物理研究所碩士論文 (1996).
112.黃莉茱,聚合物混合液晶材料中加入主客效應染料對產生全像光柵之影響,國立成功大學物理研究所碩士論文 (1998).
113.李佳榮,液晶-聚合物混合薄膜全像光柵中光耦合動態效應之研究,國立成功大學物理研究所碩士論文 (1999).
114.S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, D. Levy, Appl. Opt., 37, 7604 (1998).
115.R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J.Bunning, Chem. Mater., 5, 1533 (1993).
116. K. Curtis, D. Psalties, Appl. Opt., 31, 7425 (1992).
117.A. Pu, K. Curtis, D. Psaltis, Opt. Eng., 35, 2824 (1996).
118.J. P. Fouassier, F. M. Savary, Opt. Eng., 35, 304 (1996).
119.R. K. Kostuk, 38, 1357 (1999).
120.A. Y. G. Fuh, C. R. Lee, K. T. Cheng, Jpn. J. Appl. Phys. 1, 42, 4406 (2003).
121.A. Emoto, H. Ono, N. Kawatsuki, Jpn. J. Appl. Phys. 2, 11, 43 (2004).
122.A. Y. G. Fuh, M. S. Tsai, T. C. Liu, L. C. Chien, Jpn. J. Appl. Phys. Phys., 36, 6839 (1997).
123.J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. V. Cantu, V. L. Colin, Appl. Opt., 39, 2353 (2000).
124.N. Yoshimoto, S. Morino, M. Nakagawa, K. Ichimura, Opt. Lett., 27, 182 (2002).
125.A. Y. G. Fuh, C. R. Lee, C. C. Liao, K. J. Shyu, P. M. Liu, K. Y. lo, Opt. Comm., 187, 193 (2001).
126.K. Curtis, D. Psaltis, Appl. Opt., 33, 5396 (1994).
127.T. Karasawa, Y. Taketomi, Jpn. J. Appl. Phys., 36, 6388 (1997).
128.S. Blaya, R. Mallavia, L. Carretero, A. Fimia, R. F. Madrigal, Appl. Phys. Lett., 73, 7604 (1998).
129.T. J. Bunning, L. V. Natarajan, V. P. Tondigli, R. L. Sutherland, J. Polym. Sci. Polym. Phys., 35, 2825 (1997).
130.R. T. Pogue, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, R. L. Sutherland, T. J. Bunning, Polym., 41, 733 (2000).
131.W. J. Tomlinson, E. A. Chandross, H. P. Weber, G. D. Aumiller, Appl. Opt., 15, 534 (1976).
132.J. M. Moran, I. P. Kaminow, App. Opt., 12, 1964 (1973).
133.D. Duca, A. V. Sukhov, C. Umeton, Liq. Cryst., 26, 931 (1999).
134.D. J. Feng, H. Yoon, D. H., Mol. Cryst. Liq. Cryst., 406, 295 (2003).
135.K. G. Yager, C. J. Barrett, J. Chem. Phys., 120, 1089 (2004).
136.J. H. Sung, S. Hirano, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, Chem. Mater., 14, 385 (2002).
137.V. J. Tomlinson, E. A. Chandross, H. P. Weber, G. D. Aumiller, Appl. Opt., 15, 534 (1976).
138.G. Cipparrone, A. Mazzulla, M. V. Kozlovsky, Mol. Mater, 12, 359 (2000).
139.L. M. Blinov, R. Barberi, G. Cipparrone, Mol. Cryst. Liq. Cryst., 355, 359 (2001).
140.T. Ikeda, Mater. Chem., 13, 2037 (2003).
141.W. J. Gambogi,K. W. Steijn, S. R. T. Duzuck, J. Kelly, SPIE 2152, 282 (1994).
142.S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, D. F. Tipton, SPIE 2333, 60 (1995).
143.S. Clixto, Appl. Opt., 26, 3904 (1987).
144.Y. B. Boiko, V. S. Solovjer, S. Clixto, D. J. Lougnot, J. Appl. Opt., 33, 787 (1994).
145.A. Y. G. Fuh, M. S. Tsai, L. J. Huang, T. C. Liu, Appl. Phys. Lett., 74, 2572 (1999).
146.N. Yoshimoto, S. Morino, M. Nakagawa, K. Ichimura, Opt. Lett., 27, 182 (2002).

------------------------------------------------------------------------ 第 4 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911292669
論文名稱(中文) 含樟腦衍生基光敏性側鏈型液晶高分子之合成及光學特性探討
論文名稱(英文) Synthesis and Optical Properties of Photo-isomerizable Side Chain Liquid Crystalline Polymers Containing Bornane Derivatives
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 93
學期 2
出版年 94
研究生(中文) 陳建志
學號 N3690119
學位類別 碩士
語文別 中文
口試日期 2005-06-08
論文頁數 131頁
口試委員 指導教授-劉瑞祥
口試委員-傅永貴
口試委員-陳克紹
口試委員-陳信龍
口試委員-郭人鳳
關鍵字(中) 合成
側鏈型液晶高分子
光敏性
樟腦
液晶
關鍵字(英) photo-isomerizable
camphor
synthesis
liquid crystal
side chain liquid crystalline polymers
學科別分類
中文摘要   偶氮類的化合物在應用於光儲存材料上已廣泛地被合成與研究。但合成N=N的化合物其E-Z異構物具有熱回復的缺點,本文期望能將C=C異構化的不可回復特性應用在光儲存材料上。

  本實驗由安息香酸(4-hydroxybenzoic acid)為起始物合成一具有Semetic A液晶相之單官能性液晶單體。另外,以四羥基苯甲醛(4-hydroxybenzaldehyde)合成一系列含具光學活性樟腦衍生基光敏性化合物。將具有液晶元的單體和含具光學活性樟腦衍生基光敏性之單體聚合成為側鏈型液晶高分子,探討其熱性質及其光學特性。並探討在稀薄溶液中,具光學活性高分子在紫外光照射之下光學性質的改變。所合成之化合物使用FT-IR、NMR、DSC、EA和XRD等儀器來加以鑑定。

  實驗過程中,將市售液晶ZLI-2293與光學活性摻混物S811混合均勻之膽固醇液晶薄膜為主體的液晶系統,調配出在可見光區域有選擇性光反射的光學薄膜試片;再分別添加入不同的化合物於上述組成中,探討溫度效應與照射紫外光,對整體選擇性光反射波長(λo)移轉之影響。C=C在紫外光的照射下可行光異構化反應,但並無法影響液晶系統之選擇性光反射波長。由此結果顯示出,加入之光學活性摻混物對液晶之分子間引力甚小。本論文中亦有將膽固醇液晶薄膜試片加上光罩透過紫外光的照射得到影像紀錄,以說明在光儲存材料上的應用。



英文摘要  A monomeric liquid crystal with semetic A phase was synthesized from 4-hydroxybenzoic acid. A series of photoisomerizable chiral compounds containing bornyl groups were also synthesized from 4-hydroxybenzaldehyde. Liquid crystalline side chain chiral polymers were synthesized from monomers with mesogenic segment and chiral monomers containing bornyl groups. Thermal properties and optical properties of polymers were all evaluated. Dependence of optical properties of chiral polymers in dilute solvent on UV irradiation was studied. Synthesized compounds were confirmed using FT-IR, NMR, DSC, EA and XRD.

 Cholesteric liquid crystal film was fabricated using commercially available ZLI-2293/S811 as the host cholesteric liquid crystal. Dependence of the UV spectrum of the cholesteric LC cells with various chiral dopants synthesized in this investigation on UV exposure was investigated. Photo- isomerization on C=C was confirmed using UV irradiation and it was found that there is no obviously reflected band variation of LC cells by adding chiral dopants with C=C segment synthesized in this investigation. The results suggest that the synthesized chiral dopants with C=C segment may have only weak molecular interaction on LC molecules. A real image recording of the cholesteric liquid crystal cell using UV exposure through a mask was achieved.



論文目次 中文摘要--------------------------------------------------------------------------- I
英文摘要-------------------------------------------------------------------------- II
目錄------------------------------------------------------------------------------- III
表目錄--------------------------------------------------------------------------- VII
圖目錄-------------------------------------------------------------------------- VIII
符號表-------------------------------------------------------------------------- XVI

第一章 緒論---------------------------------------------------------------------- 1
1-1 前言--------------------------------------------------------------------------- 1
1-2 研究動機--------------------------------------------------------------------- 2

第二章 原理及文獻回顧------------------------------------------------------- 4
2-1 液晶簡介--------------------------------------------------------------------- 4
2-2 光學活性簡介--------------------------------------------------------------- 5
2-3 液晶的分類------------------------------------------------------------------ 7
2-4 液晶的光學異方性------------------------------------------------------- 11
2-5 外加電場對絕緣向列型液晶的影響-----------------------------------14
2-6 液晶聚合物概述-----------------------------------------------------------15
2-7 光學活性基團--------------------------------------------------------------21
2-8 光致變系統簡介-----------------------------------------------------------22
2-8-1 光變色材料之光變色機制--------------------------------------- 23
2-8-2 光變色材料之分類------------------------------------------------ 24
2-8-3 光致變型液晶高分子照光排列效應--------------------------- 25
2-9 偶氮苯衍生物之異構化------------------------------------------------- 26
2-10 含偶氮苯衍生物液晶高分子之應用--------------------------------- 27
2-11 膽固醇液晶之選擇性光反射系統簡介------------------------------ 34
2-11-1 小分子膽固醇型液晶可逆性顏色儲存系統之簡介-------- 35
2-11-2 膽固醇型液晶高分子於顏色儲存材料系統之簡介-------- 36

第三章 實驗部分-------------------------------------------------------------- 38
3-1 藥品------------------------------------------------------------------------- 38
3-2 儀器------------------------------------------------------------------------- 39
3-3 實驗步驟------------------------------------------------------------------- 40
3-3-1藥品純化------------------------------------------------------------- 40
3-3-2光敏性小分子之合成---------------------------------------------- 40
3-3-2-1合成(+)-4-(11-hydroxyundecyloxy)-benzylidenbornan-
2-one (1d*)----------------------------------------------------- 40
3-3-2-2合成(S)-(-)-bornyl cinnamate (2a*)------------------------- 41
3-3-2-3合成(+)-4-(methyloxycarbonyloxy)-benzylidenbornan-
2-one (3b*)----------------------------------------------------- 42
3-3-2-4合成(+)-4-methyloxy-benzylidenbornan-2-one (4a*)---- 43
3-3-2-5合成(E)-4-(2-(4-methoxyphenyl)diazenyl)phenol
cinnamate (5b)------------------------------------------------- 44
3-3-3單官能性單體之合成------------------------------------------------ 45
3-3-3-1單官能性單體之合成 (6c)----------------------------------- 45
3-3-3-2單官能性單體之合成 (7c)----------------------------------- 47
3-3-4液晶單體之合成 (8c)------------------------------------------------ 48
3-3-5具光學活性光敏性單體之合成 (9c*)---------------------------- 50
3-3-6側鏈型高分子之合成 (P1~P7) ------------------------------------ 51
3-3-6-1均聚高分子 (P1)---------------------------------------------- 51
3-3-6-2共聚高分子 (P2*)--------------------------------------------- 52
3-3-6-3均聚高分子 (P3)---------------------------------------------- 52
3-3-6-4共聚高分子 (P4)---------------------------------------------- 53
3-3-6-5均聚高分子 (P5*)--------------------------------------------- 53
3-3-6-6共聚高分子 (P6*)--------------------------------------------- 54
3-3-6-7均聚高分子 (P7)---------------------------------------------- 55
3-4 試品的製作---------------------------------------------------------------- 55
3-4-1材料配方--------------------------------------------------------------- 55
3-4-2 玻片的清洗及空cell的製作--------------------------------------- 56
3-4-3光敏性化合物與液晶混合液之溶解度測試--------------------- 58
3-5 光敏性分子光致變性測試方法---------------------------------------- 58
3-6 光穿透度的量測---------------------------------------------------------- 58
3-7 溶液配製的測試---------------------------------------------------------- 59

第四章 結果與討論----------------------------------------------------------- 61
4-1 光敏性小分子之鑑定---------------------------------------------------- 61
4-2單官能性單體之鑑定----------------------------------------------------- 63
4-2-1單官能性單體之鑑定 (6c) ----------------------------------------- 63
4-2-2單官能性單體之鑑定 (7c) ----------------------------------------- 64
4-3 液晶單體之鑑定 (8c)---------------------------------------------------- 64
4-4 具光學活性光敏性單體 (9c*)之鑑定--------------------------------- 65
4-5側鏈型高分子之鑑定 (P1~P7)------------------------------------------ 65
4-5-1均聚高分子 (P1)----------------------------------------------------- 65
4-5-2共聚高分子 (P2*)---------------------------------------------------- 65
4-5-3均聚高分子 (P3)----------------------------------------------------- 66
4-5-4共聚高分子 (P4) ----------------------------------------------------- 66
4-5-5均聚高分子 (P5*)---------------------------------------------------- 66
4-5-6共聚高分子 (P6*)---------------------------------------------------- 66
4-5-7均聚高分子 (P7) ----------------------------------------------------- 66
4-6 高分子重量平均分子量及分子量分佈探討------------------------- 68
4-7含光學活性基團之旋光度探討----------------------------------------- 69
4-8 高分子熱重損失探討---------------------------------------------------- 70
4-9 安息香酸衍生物單體之熱性質和液晶性之探討------------------- 71
4-10 高分子之熱性質、液晶性和結構特性之探討---------------------- 72
4-11 含光敏性基團之光致變性探討--------------------------------------- 73
4-11-1 偶氮苯單體之光致變性探討------------------------------------ 73
4-11-2 含碳-碳雙鍵光敏性基團小分子之光致變性探討----------- 74
4-11-3 含碳-碳雙鍵光敏性基團高分子之光致變性探討----------- 75
4-11-4 含碳-碳雙鍵光敏性基團化合物之光致變性穩定性探討-- 75
4-12 選擇性光反射之系統應用--------------------------------------------- 75
4-12-1 添加光敏性分子於選擇性光反射系統之影響--------------- 76
4-12-2光敏性化合物照射紫外光對於選擇性光反射系統之影響- 77

第五章 結論------------------------------------------------------------------- 128
參考文獻----------------------------------------------------------------------- 129
參考文獻 1. 松本正一、角田市良合著,劉瑞祥譯,“液晶之基礎與應用”國立編譯館出版,1996。
2. F. Reinitzer, Monatshefte fur Chemie 9, 421-41, (1888).
3. O.Z.Lehmann, Phys. Chem, Vol. 4, 4621, (1889).
4. Philip Ball著,蔡信行 譯,現代化學 I。天下文化出版,2003。
5. 蔡宗岳,“含光學活性單體PSCT液晶顯示元件之光電特性研究”國立成功大學化工研究所碩士論文,(1999)。
6. 蔡月娥, “雙官能機單體間隙長度對PSCT液晶顯示器光電特性效應之研究” 國立成功大學化工研究所碩士論文,(2000)。
7. D.demus, J.Goodby, G.W.Gray, H.W.Spiess, V.Vill, “Handbook of Liquid crystals”, Vol 2a, 2b, Wiley-VCH, 1998.
8. 楊博智,“含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討” 國立成功大學化工研究所碩士論文,(2003)。
9. Paul G Hewitt,陳可崗 譯,觀念物理IV。天下文化出版,2001。
10. 王宏宇,“含光學活性菠酯基液晶性單體之合成及其在光學元件上之應用研究” 國立成功大學化工研究所博士論文,(2004)。
11. Stegemeyer, H., Guest Ed., “Liquid Crystals”, 1994, p.116.
12. 許惠晴,“光聚合性膽固醇型液晶元件之製備及光學特性研究”國立成功大學化工研究所碩士論文,(2004)。
13. A. YU. BOBROVSKY, N. I. BOIKO, V. P. SHIBAEV, Liquid Crystals, 26, 1749, (1999).
14. H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, Chem. Mater. Vol. 10, 1402, (1998).
15. H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem. B, Vol. 104, 7023, (2000).
16. T. Ikeda, O. Tsutsumi, Science, Vol. 268, 1873, (1995).
17. P. Rechon, J. Gosselin, A. Natansohn, S. Xie, Appl Phys Lett ,Vol. 60, 4, (1992).
18. Y. Wu, A. Kanazawa, T. Shiono, T. Ikeda, Q. Zhang, Polymer, Vol. 40, 4787, (1999).
19. N. Tamaoki, A. V. Parfenov, A. Masaki, H. Matsuda, Adv. Mater. Vol. 9, 1102, (1997).
20. M. Brehmer, J. Lub, P. van de Witte, Adv. Mater. Vol. 10, 1438 (1998).
21. H. K. Lee, K. Doi, Hisako, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem. B Vol. 104, 7023, (2000).
22. V. Shibaev, A. Bobrovsky, N. Boiko, Journal of Photochemistry and Photobiology A: Chemistry. Vol. 155, 3, (2003).
23. J. LUB, W. TEN HOEVE, W. P. M. NIJSSEN and R. T. WEGH, Liquid Crystals, Vol. 29, No. 1, 71-77, (2002)
24. Alexey Bobrovsky, Natalia Boiko and Valery Shibaev, J. Mater. Chem., 10, 1075-1081, (2000)
25. E. B. Barmatov, A. P. Filippov, V. P. Shibaev, Liquid Crystals, Vol. 28, No. 4, 511-523, (2001).
26. Charles Wilcox, Mary Wilcox, “Experimental Organic Chemistry, A Small Scale Approach”, Prentice Hall, 1994.
27. V. V. Vashchenko, L. A. Kutulya, M. N. Pivnenko, and N. I. Shkolnikova, Russian Chemical Bulletin, International Edition, Vol. 52, No. 11, pp. 2406—2418, November, (2003).
28. Alexey Bobrovsky, Valery Shibaev, Colloid Polym Sci, 282: 416–422, (2004).
29. Valery Shibaev, Alexey Bobrovsky, Natalia Boiko, Prog. Polym. Sci. 28, 729–836, (2003).
30. O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, T. Ikeda, Macromolecules. Vol. 31, 355, (1998).
31. “Side Chain Liquid Crystal Polymers”, edited by C. B. McARDLE Loctite(Ireland) Ltd. Dublin, 1989.
32. K. Kürschner, P. Strohriegl, Liq. Cryst, Vol. 27, 1595, (2000).
33. S. David, Corrie T. Immrie, Polymer, Vol. 37, 3419, (1996).
34. I. Dierking, L. L. kosbar, A. Afzali-Ardakani, A.C. Lowe, J. Appl. Phys., Vol. 81, 3007, (1997).
35. D. Coates, J. Mater. Chem., Vol. 5, 2063, (1995).
36. “Structure of Liquid Crystal Phases”, P S Pershan, World Scientific, 1988.
37. 王素誼, “光異構性偶氮型液晶之合成及其光電特性探討” 國立成功大學化工研究所碩士論文,(2002)。

------------------------------------------------------------------------ 第 5 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200912025887
論文名稱(中文) 光學活性單體對高分子穩定化膽固醇液晶膜之誘導研究
論文名稱(英文) Applications of Novel Chiral Monomers on Polymer Stabilized Cholesteric Textures Films
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 王建智
學號 N3693433
學位類別 碩士
語文別 中文
口試日期 2006-06-15
論文頁數 98頁
口試委員 口試委員-鍾宜璋
指導教授-劉瑞祥
口試委員-陳雲
口試委員-陳澄河
口試委員-王春山
關鍵字(中) 光學活性單體
膽固醇液晶
雙官能性單體
關鍵字(英) chiral monomer
cholesteric liquid crystal
difunctional monomer
學科別分類
中文摘要 本研究利用高分子穩定膽固醇液晶薄膜並探討其光電特性。本實驗合成之雙官能性單體如下4,4’-bis ( 6-(acryloyloxy) hexyloxy) biphenyl、1,4-di- [4-(6-acryloyloxyhexyloxy) benzoyloxy] benzene、1,4-di- [4-(6-acryloyloxyhexyloxy) benzoyloxy] -2-methyl benzene、1,4-di- [4-(6-acryloyloxyhexyloxy) benzoyloxy] biphenyl,及新穎性光學活性單體如下4-myrtenylphenyl-4’- (6-acryloyloxyhexyloxy) benzoate、4-menthylphenyl-4’- (6-acryloyloxyhexyloxy) benzoate、(R)-(-)-4- (6-acryloyloxyhexyloxy) benzoyloxy methyl mandelate、(S)-(+)-4- (6-acryloyloxyhexyloxy) benzoyloxy methyl mandelate。所合成之化合物均使用FTIR、1H-NMR、DSC等儀器來鑑定其結構及物性。在本論文中,首先探討雙官能性單體之架橋能力,然後選擇較合適之雙官能性單體4,4’-bis ( 6-(acryloyloxy) hexyloxy) biphenyl作為架橋劑。另外,將液晶ZLI-2293與光學活性摻混物R811及S811分別加入後,製作成右旋性及左旋性之膽固醇液晶,再分別添加入不同配方及比例之光學活性單體,發現鏡像異構物在右旋性及左旋性之膽固醇液晶中的關係,是對稱且關係密切。而其濃度效應和照光聚合後對膽固醇液晶主體之選擇性光反射波段變寬及移轉之影響在本文中也都有詳細探討。最後製作成PSCT顯示元件探討其電壓與穿透度之間的關係,也都具有相當良好之特性。
英文摘要 To stabilize the cholesteric liquid crystal in polymer matrixes, a series of difunctional monomers of 4,4’-bis(6-(acryloyloxy) hexyloxy) biphenyl, 1,4-di- [4-(6-acryloyloxyhexyloxy) benzoyloxy] benzene, 1,4-di- [4-(6-acryloyloxyhexyloxy) benzoyloxy] -2-methyl benzene, and 1,4-di- [4-(6-acryloyloxyhexyloxy) benzoyloxy] biphenyl with various mesogenic core, chiral monomers of 4-myrtenylphenyl-4’- (6-acryloyloxyhexyloxy) benzoate, 4-menthylphenyl-4’- (6-acryloyloxyhexyloxy) benzoate, (R)-(-)- 4-(6-acryloyloxyhexyloxy) benzoyloxy methyl mandelate, and (S)-(+)-4- (6-acryloyloxyhexyloxy) benzoyloxy methyl mandelate was synthesized. Compounds synthesized in this investigation were identified using FTIR, 1H-NMR, and DSC. To investigate the electro-optical properties of polymer stabilized cholesteric texture (PSCT) liquid crystal cell, the difunctional monomers were mixed with Nematic liquid crystal ZLI-2293, chiral dopants R811 or S811, and a photoinitiator namely benzoin methyl ether (BME). The mixture was poured into an ITO cell and then irradiated by UV light for a certain period. Effect of achiral and chiral monomers on the reflected bandwidth, the shift of the central wavelength, the morphologies of polymer matrixes and the dependence of transmittance on voltage of cholesteric liquid crystal cells were also studied.
論文目次 中文摘要--------------------------------------------------------------------------- I
英文摘要--------------------------------------------------------------------------- II
目錄--------------------------------------------------------------------------------- III
表目錄------------------------------------------------------------------------------ VI
圖目錄------------------------------------------------------------------------------ VII
符號表------------------------------------------------------------------------------ XI

第一章 緒論---------------------------------------------------------------------- 1
1-1 液晶簡介--------------------------------------------------------------------- 1
1-2 液晶分類--------------------------------------------------------------------- 3
1-3 研究動機--------------------------------------------------------------------- 11

第二章 原理---------------------------------------------------------------------- 12
2-1 小分子液晶化合物的分子結構------------------------------------------ 12
2-2 液晶的物理性質------------------------------------------------------------ 13
2-2-1 液晶的光學異方性---------------------------------------------------- 13
2-2-2 外加電場對絕緣向列型液晶的影響------------------------------- 16
2-2-3 液晶的連續體彈性形變理論---------------------------------------- 17
2-3 膽固醇型液晶之光學性質------------------------------------------------ 18
2-4膽固醇-向列型相變化效應------------------------------------------------ 20
2-5 液晶-聚合物混合薄膜之介紹-------------------------------------------- 21
2-5-1 PDLC 簡介-------------------------------------------------------------- 21
2-5-2 PSCT 的簡介及工作原理-------------------------------------------- 22
2-6光聚合反應------------------------------------------------------------------- 27

第三章 實驗部分---------------------------------------------------------------- 31
3-1 藥品--------------------------------------------------------------------------- 31
3-2 儀器---------------------------------------------------------------------------- 33
3-3 實驗步驟--------------------------------------------------------------------- 34
3-3-1 雙官能性單體之合成------------------------------------------------- 34
3-3-2 含光學活性單體之合成---------------------------------------------- 39
3-4 試品的製作------------------------------------------------------------------ 45
3-4-1 材料配方---------------------------------------------------------------- 45
3-4-2 玻片的清洗及空cell的製作---------------------------------------- 46
3-4-3 單體與與液晶混合液之光聚合相分離測試---------------------- 47
3-5 電壓-穿透度量測----------------------------------------------------------- 48
3-6 聚合物之SEM量測-------------------------------------------------------- 49
3-7 溶液配製的測試------------------------------------------------------------ 49

第四章 結果與討論------------------------------------------------------------- 51
4-1 單體的合成與鑑定--------------------------------------------------------- 51
4-1-1 雙官能性單體之合成------------------------------------------------- 51
4-1-2 光學活性單體之合成------------------------------------------------- 55
4-2 官能性單體之熱性質及液晶性探討------------------------------------ 59
4-3 不同之雙官能性單體對膽固醇液晶主體之影響--------------------- 66
4-4 膽固醇液晶主體與光學活性單體之相對含量對選擇性光反射之
影響--------------------------------------------------------------------------- 74
4-5 在鏡像之膽固醇液晶主體中添加入鏡像光學活性單體之探討----75
4-6 光學活性單體之添加對膽固醇液晶主體聚合之影響--------------- 83
4-7 PSCT之液晶顯示元件探討----------------------------------------------- 92

第五章 結論---------------------------------------------------------------------- 95

參考文獻--------------------------------------------------------------------------- 96









Legands to Tables

Table 3-1 Physical properties of nematic LC (ZLI-2293). ------------------ 45
Table 3-2 Physical properties of chiral dopant. ------------------------------- 45
Table 3-3 Fabrication of sample cells. ----------------------------------------- 49
Table 4-1 Thermodynamic properties of difunctional monomers and
chiral monomers..----------------------------------------------------- 65
Table 4-2 Fabrication of sample cells. ----------------------------------------- 66
Table 4-3 Cell composition and main reflection wavelength shift. -------- 74
Table 4-4 Variation on reflected bands of PSCT cells before and after UV irradiation. -------------------------------------------------------- 77
Table 4-5 Variation on reflected bands of PSCT cells before and after UV irradiation. -------------------------------------------------------- 77













Legands to Figures

Fig. 1-1 Dependence of intermolecular-force on temperature with general compounds and liquid crystal compounds. ------------------------- 4
Fig. 1-2 Nematic liquid crystals. ----------------------------------------------- 5
Fig. 1-3 (a) Smectic liquid crystals and (b) Smectic A liquid crystals. ---- 6
Fig. 1-4 Sc liquid crystals. ------------------------------------------------------- 8
Fig. 1-5 Cholesterol structure. -------------------------------------------------- 8
Fig. 1-6 Cholesteric liquid crystals. -------------------------------------------- 9
Fig. 1-7 (a) Chemical structure of disc-like liquid crystals,
(b) Columnar disc-like liquid crystals, and
(c) Nematic disc-like liquid crystals. -------------------------------- 10
Fig. 2-1 Anisotropic properties of nematic liquid crystals. ----------------- 14
Fig. 2-2 Birefringence of liquid crystals. -------------------------------------- 14
Fig. 2-3 (a) Birefringence of nematic and smectic LCs,
(b) Birefringence of cholesteric LCs. -------------------------------- 15
Fig. 2-4 Molecular alignments of LCs with different dielectric
constant. ----------------------------------------------------------------- 16
Fig. 2-5 Deformation of Nematic liquid crystal. ----------------------------- 17
Fig. 2-6 Alignments of cholesteric liquid crystals. --------------------------- 19
Fig. 2-7 Phase transition of cholesteric liquid crystals.---------------------- 20
Fig. 2-8 Privacy window using a polymer dispersed liquid crystal film. - 21
Fig. 2-9 (a) Formation of PSCT normal mode,
(b) Operation of PSCT normal mode. ------------------------------- 25
Fig. 2-10 (a) Formation of PSCT reverse mode,
(b) Operation of PSCT reverse mode. ---------------------------- 26
Fig. 2-11 Schematic operation of PSCT cell
(a) Reverse mode, (b) Normal mode. -------------------------------- 27
Fig. 2-12 Structure of difunctional monomers. ------------------------------- 28
Fig. 2-13 Structure of chiral monomers. --------------------------------------- 28
Fig. 2-14 Structure of initiator (BME) ----------------------------------------- 29
Fig. 2-15 UV-spectrum of initiator (BME). ----------------------------------- 30
Fig. 3-1 Structure of the host chiral dopant. ---------------------------------- 46
Fig. 3-2 Fabrication of cholesteric liquid crystal cells. ---------------------- 47
Fig. 3-3 Experimental setup for measurement of electric-optical
properties. Amp: amplifier, A: attenuator, FG: function
generator, H: sample holder, PD: photodiode. --------------------- 48
Fig. 4-1 IR spectrum and 1H-NMR spectrum of M1. ----------------------- 51
Fig. 4-2 IR spectrum and 1H-NMR spectrum of M2. ----------------------- 52
Fig. 4-3 IR spectrum and 1H-NMR spectrum of M4. ----------------------- 53
Fig. 4-4 IR spectrum and 1H-NMR spectrum of M5. ----------------------- 54
Fig. 4-5 IR spectrum and 1H-NMR spectrum of M6*.----------------------- 55
Fig. 4-6 IR spectrum and 1H-NMR spectrum of M7*.----------------------- 56
Fig. 4-7 IR spectrum and 1H-NMR spectrum of M8*.----------------------- 57
Fig. 4-8 IR spectrum and 1H-NMR spectrum of M9*.----------------------- 58
Fig. 4-9 DSC thermograms of M1. --------------------------------------------- 60
Fig. 4-10 DSC thermograms of M2. ------------------------------------------- 60
Fig. 4-11 DSC thermograms of M4. ------------------------------------------- 61
Fig. 4-12 DSC thermograms of M5. ------------------------------------------- 61
Fig. 4-13 POM texture of liquid crystalline (a) M2, (b) M4 and (c) M5. - 62
Fig. 4-14 DSC thermograms of M6*.------------------------------------------ 63
Fig. 4-15 DSC thermograms of M7*.------------------------------------------ 64
Fig. 4-16 DSC thermograms of M8*.------------------------------------------ 64
Fig. 4-17 DSC thermograms of M9*.------------------------------------------ 65
Fig. 4-18 Effect of UV irradiation on reflected bands with (a) M1, (b) M2, (c) M3, (d) M4 and (e) M5.------------------------------------------ 68
Fig. 4-19 Top view of polymer matrixes on (a) top strip (b) bottom strip. --------------------------------------------------------------------------- 69
Fig. 4-20 POM textures of cholesteric LC cell (a) before UV irradiation,
and after UV irradiation for (b) 10, (c) 20 and (d) 30 minutes.----------------------------------------------------------------- 71
Fig. 4-21 POM textures of cholesteric LC cells after UV irradiation with
(a) M1, (b) M2, (c) M3, (d) M4 and (e) M5.---------------------- 72
Fig. 4-22 Top view of polymer matrix with (a) M1, (b) M2, (c) M3, (d) M4 and (e) M5.------------------------------------------------------------- 73
Fig. 4-23 Concentration effect on reflected bands with (a) M6* and
(b) M7*.---------------------------------------------------------------- 75
Fig. 4-24 Concentration effect on reflected bands with enantiomeric
(a) M8* and (b) M9*.------------------------------------------------- 78
Fig. 4-25 Concentration effect on reflected bands with enantiomeric
(a) M9* and (b) M8*.------------------------------------------------- 79
Fig. 4-26 Chiral effect on reflected bands of sample cells with enantiomeric R1 and S1. ------------------------------------------------------------- 80
Fig. 4-27 Chiral effect on reflected bands of sample cells with enantiomeric
(a) R2/S2, (b) R3/S3, (c) R4/S4, (d) R5/S5. ---------------------- 81
Fig. 4-28 Chiral effect on reflected bands of sample cells with enantiomeric
(a) R6/S6, (b) R7/S7, (c) R8/S8, (d) R9/S9. ---------------------- 82
Fig. 4-29 Top view of polymer matrixes on (a) top strip (b) bottom strip. --------------------------------------------------------------------------- 85
Fig. 4-30 Effect of enantioneric compounds on reflected bands with (a) R1,
(b) R2, (c) R3, (d) R4 and (e) R5. ---------------------------------- 86
Fig. 4-31 UV Irradiation effect on reflected bands with (a) R6, (b) R7,
(c) R8 and (d) R9. ---------------------------------------------------- 87
Fig. 4-32 Effect of enantioneric compounds on reflected bands with
(a) S1, (b) S2, (c) S3, (d) S4 and (e) S5. --------------------------- 88
Fig. 4-33 UV Irradiation effect on reflected bands with (a) S6, (b) S7,
(c) S8 and (d) S9. ----------------------------------------------------- 89
Fig. 4-34 UV irradiation effect on reflected bands with (a) R811
and (b) S811. ---------------------------------------------------------- 90
Fig. 4-35 Top view of polymer matrixes with (a) S1, (b) S2, (c) S3, (d) S4
and (e) S5. ------------------------------------------------------------- 91
Fig. 4-36 Appearance of PSCT samples with texture of (a) planar, (b) focal conic and (c) homeotropic states.----------------------------------- 93
Fig. 4-37 Optical behaviors of a cholesteric liquid crystal cell as a function
of voltage. ------------------------------------------------------------- 94
Fig. 4-38 Dependence of absorption variation at 488nm on applied voltage. --------------------------------------------------------------------------- 94
參考文獻 1. F. Reinitzer, Monatsh. Chem., Vol. 9, 421 (1888).
2. O. Z. Lehmann, Phys. Chem., 4, 4621 (1889).
3. 松本正一、角田市良合著,劉瑞祥譯,“液晶之基礎與應用”,國立編譯館出版。
4. 蔡宗岳,“含光學活性單體PSCT液晶顯示元件之光電特性研究”,國立成功大學化工研究所碩士論文 (1999)。
5. 蔡月娥, “雙官能機單體間隙長度對PSCT液晶顯示器光電特性效應之研究”,國立成功大學化工研究所碩士論文 (2000)。
6. 尤舜宗,“高分子側鏈長度對PSCT液晶顯示器光電特性效應之研究”,國立成功大學化工研究所碩士論文 (2001)。
7. 王宏宇,“含光學活性菠脂基液晶高分子之合成及其在光學元件上之應用研究”,國立成功大學化工研究所碩士論文 (2002)。
8. 王素誼,“光異構性偶氮型液晶之合成及其光電特性探討” ,國立成功大學化工研究所碩士論文 (2002)。
9. 楊博智,“含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討”,國立成功大學化工研究所碩士論文 (2003)。
10. 吳阜蒼,光異構性偶氮苯衍生物之合成及其在液晶顯示元件及光記錄薄膜之應用研究,國立成功大學化工研究所碩士論文 (2004)
11. 許惠晴,“光聚合性膽固醇型液晶元件之製備及光學特性研究”,國立成功大學化工研究所碩士論文 (2004)。
12. 陳建志,“含樟腦衍生基光敏性側鏈型液晶高分子之合成及光學特性探討”,國立成功大學化工研究所碩士論文 (2005)。
13. D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, V. Vill, ”Handbook of Liquid crystals”, Vol. 2a, 2b, Wiley-VCH, (1998).
14. 中田一郎、堀文一,賴耿陽譯,”液晶製法與應用”,復漢出版社。
15. 黃啟炎, “液晶-聚合物混合薄膜之光學二倍頻現象之研究” 國立成功大學物理研究所博士論文 (1997)。
16. 湯宏東,“含環氧基鐵電性液晶體的合成及性質研究”國立成功大學化工研究所碩士論文 (1998)。
17. H. S. Ktzerow, P.P. Crooker, Liq. Cryst., Vol. 13, Iss 1, 31 (1993)
18. R. B. Meyer, Phys. Rec. Lett., Vol. 22, 918 (1996).
19. D. Stewart and Corrie T, Polymer, Vol. 37, 3419 (1996).
20. David Coates, J. Mater. Chem., Vol. 5, 2063 (1995).
21. H. S. Kitzerow, Liq. Cryst., Vol. 16, 1 (1994).
22. C. Hilsum, UK Patent, 1442360 (1976).
23. L. Boutteiller, P.L. Barny, Liq. Cryst. 21, 157 (1996).
24. Y. H. Fan, H. Ren, S. T. Wu, Appl. Phys. Lett., 82, 2945 (2003).
25. L. Petti, P. Mormile, W. J. Blau, Opt. Las. Eng., 39, 369 (2003).
26. P. S. Drzaic, J. Appl. Phys., 60, 2142 (1986).
27. Y. H. Lin, H. Ren, S.T. Wu, Appl. Phys. Lett., 84, 4083 (2004).
28. M. Boussoualem, F. Roussel, M. Ismaili, Phys. Rev. E, 69, 31702 (2004).
29. James V. Crivello, Liq. Cryst., Vol. 3, No. 2, 235 (1988).
30. 劉瑞祥著,“感光性高分子”,復文書局。
31. M. Irie, Chem. Rev., vol. 100, 1683 (2000).
32. H. Bouas-Laurent, H. Dürr, Pure Appl. Chem., Vol. 73, 639 (2001).
33. H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem. B, Vol. 104, 7023 (2000).
34. H. K. Lee, K. Doi, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, Polymer, Vol. 41, 1757 (2000).
35. H. K. Lee, K. Doi, Hisako, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem. B, Vol. 104, 7023 (2000).
36. H. Guillard, P. Sixou, L. Reboul, A. Perichaud, Polymer, Vol. 42, 9753 (2001).
37. V. Shibaev, A. Bobrovsky, N. Boiko, Journal of Photochemistry and Photobiology A: Chemistry. Vol. 155, 3 (2003).
38. J. H. Liu, H.U. Wang, J. App. Polymer Sci., Vol. 91, 789 (2004).
39. K. Kürschner, P. Strohriegl, Liq. Cryst., Vol. 27, 1595 (2000).
40. M. C. Artal, M. B. Ros, J. L. Serrano, Chem. Mater., Vol. 13, 2056 (2001).
41. M. O’neill, S. M. Kelly, J. Phys. D: Appl. Phys., 33 R67 (2000).
42. K. Ichimura, Chem. Rev., 1847 (2000).
43. Z. Liang, H. Ming, Q. Zhang, J. Appl. Phys. Vol. 90, 5866 (2001).
44. T. Yoshioka, T. Ogata, A. M. Zahangir, T. Nonaka, S. Kulihara, Liq. Cryst., Vol. 31, 15 (2004).
45. G. Wang, M. Li, M. Yu, C. Guo, X. Chen, Liquid Crystals, Vol. 27, 867 (2000).

------------------------------------------------------------------------ 第 6 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200912133626
論文名稱(中文) 生醫相容性及光學活性高分子之合成及應用探討
論文名稱(英文) Syntheses and Applications of Biomimetic and Chiral Polymers
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 謝慶東
學號 n3886114
學位類別 博士
語文別 中文
口試日期 2006-07-27
論文頁數 271頁
口試委員 指導教授-劉瑞祥
口試委員-王春山
口試委員-陳 雲
口試委員-陳澄河
口試委員-何宗漢
關鍵字(中) 選擇性光反射
光學活性
光異構化
液晶
血液相容性
磷脂化合物
生醫相容
關鍵字(英) hemocompatibility
phosphorylcholine(PC)
E-Z isomerization
chiral compounds
camphor
Specific rotation
PSCT
PDLC
學科別分類
中文摘要 本論文討論的主題包括兩個部份,第一部份以生醫相容的高分子材料為目標,先合成含磷脂(PC)的化合物,再接上具有光反應性的疊氮基(N3),形成含磷脂的疊氮苯甲酸酯(N3P4),所有合成化合物均經FT-IR、NMR、EA分析其性質,確認含有親水性的磷脂構造,將此化合物以UV 光照射接枝於PE、PP、PU 膜表面,改質後高分子膜之水面下接觸角均呈現明顯下降趨勢,顯示改質後PE、PP、PU 膜表面的確因磷脂構造而呈現親水性,ESCA 分析則顯示C、O化學位移均偏向極性基且有P、N存在,因此可以進一步確認表面含有磷脂構造,改質後PE、PP、PU 膜之血小板黏附試驗,SEM 顯示具有親水性的磷脂構造表面血小板吸附量較改質前明顯減少,而具有負電性的酸基表面血小板吸附量則並未減少,且血小板有變形活化現象,因此單純負電性並不能改善血液相容性,而擁有仿細胞膜的磷脂構造表面則可以,以溶液鑄造PU 膜比較表面形態的影響,SEM顯示靠空氣面較光滑均勻,血小板吸附量較多,而靠容器面則較粗糙,但血小板吸附量則較少,因此具親水性的兩性磷脂構造表面與表面形態的粗糙度均為改善血液相容性的要件。
第二部份以光學活性化合物的特性及其在液晶的應用為目標,先合成一系列不同碳鏈長度(n=3,6,11)之偶氮苯化合物(MnH,MnE,MnC),POM及DSC顯示三組偶氮苯化合物中各有液晶相存在,且出現在降溫過程居多,但碳鏈長度在液晶相範圍並無簡單規律性,所合成之偶氮苯分子以UV光照射並以UV-vis分析,結果顯示具有極快速的光異構化反應(< 2 min),也有明顯的熱回復現象,為典型的E-Z異構化反應,將此特性應用於PDLC 元件,均可以降低PDLC 元件之澄清點溫度,因此添加偶氮苯分子之PDLC元件具有影像記錄之特性。
其次合成一系列含有碳碳双鍵(C=C)光可異構化的(+)-樟腦衍生物(HnB,MnB),探討其照射UV光時的E-Z異構化行為,及此異構化對選擇性反射光波長的影響,同時由分子結構觀點推測其光學活性差異。使用UV燈照射再以UV-vis檢測,結果顯示存在光誘發E-Z 異構化現象,但與前章的偶氮苯化合物不同,並無常溫暗回復現象,以模式化合物HBB 照射UV光,經FT-IR檢測無明顯結構破壞,NMR顯示Z-form 量大約5 %,而以旋光儀分析,比旋光度隨照光時間而漸減,30分鐘達到穩定值,變化量亦約5 %,因此推測具有光E-Z異構化行為。以線性UV 偏光照射含C=C 衍生物,再經偏光UV-vis分析,實驗顯示因E-Z 異構化使垂直偏光方向變化較大,比較一系列樟腦衍生物的比旋光度,緊鄰酮基有C=C 者比旋光度明顯較大,酮基消失或有立體障礙的exo 則較低,兩者差異極大,因此推測緊鄰酮基的C=C基之間的共振作用會增強光學活性。將含樟腦酮的光學活物添加至向列型液晶製作PSCT 元件,可調整反射光波長至可見光範圍,經UV照射後,因E-Z 異構化的擾動作用,反射光波長呈現紅位移。
英文摘要 There are three sections in this thesis. Firstly, an aryl azide (N3P4) containing a phosphorylcholine(PC) endgroup was synthesized and characterized by the FTIR, NMR spectra and elemental analysis. The PE, PP, PU films of which surface was grafted with N3P4 and 4-azidobenzoic acid (N31) by UV irradiation. The surface of modified films were characterized by FTIR-ATR, ESCA and contact angle measurement. ESCA shows that element P and N exist on the surface of N3P4-modified polymer films. The N3P4-modified polymer films have the lowest contact angles. The blood compatibility of the modified polymer films was evaluated with attention to platelet adhesion onto the surface. SEM observation revealed that numerous platelets adhered onto the surface of the original polymer films and polar N31-grafted films. On the other hand, few platelets adhered onto the surface of the polymer films grafted with amphiphilic N3P4. The result indicates the phosphorylcholine endgroup and morphology of the modified surface can improve hemocompatibility.
Secondly , azobenzene derivatives( MnH, MnE, MnC ) with various alkyl chain lengths were synthesized and identified by FTIR, EA and NMR .The physical properties were analyzed by DSC, TGA and POM. Liquid crystal phase exists in above azobenzene derivatives. UV-vis spectra show that all the azobenzene molecules can be photoisomerized through UV light irradiation and dark recovery. This means that azobenzene molecules exist reversible E-Z isomerization. The E-Z isomerization which irradiated by UV light can decrease the clear point of PDLC samples. This unique characteristic can be used to record image patterns.
Finally, the E-Z photoisomerizable chiral compounds were synthesized from camphor. The chiral compounds(HnB, MnB) with various alkyl spacer lengths (n= 0 ,3, 6, 9, 11),were synthesized and identified with FTIR, NMR,and EA. Specific rotation of the chiral compounds were estimated by a Jasco DIP-360 automatic digital polarimeter with readings to ±0.003. The E-Z photo induced isomerization through C=C bonds was investigated to use UV-vis spectrophotometer. Variation of the intensity of UV-vis absorption due to the E-Z isomerization of chiral compounds was studied through various UV irradiation times. The E-Z isomerization was confirmed and it was found that the Z form of the chiral compounds is thermally stable. The results suggest that chiral compounds synthesized in this investigation can be used as a chiral dopant for the preparation of photo-imageable polymer stabilized cholesteric texture (PSCT) liquid crystal films. Compare to a series of camphor derivatives, the compounds contaning " C=C-C=O " resonance structure have higher specific rotation. Addition of chiral compounds to nematuc liquic crystal can induce the cholesteric phase. The reflective band of PSCT cell was induced a red shift by E-Z isomerization on UV irradiation.
論文目次 中文摘要 I
英文摘要 III
目錄 V
流程圖目錄 IX
表目錄 X
圖目錄 XII
符號表 XX

第一章 緒論 1
1-1 生醫材料簡介 1
1-2 生醫材料與血液相容性 5
1-3 光學活性 10
1-4 光學活性之量測 11
1-5 液晶材料簡介 13
1-6 液晶的分類 14
1.7 液晶特性與量測 19
1-8 液晶的應用 22
1-9 研究動機與目的 25
1-10 參考文獻 26

第二章 磷脂衍生物高分子表面改質之血液相容性性探討 29
2-1 生醫相容原理與文獻回顧 29
2-1-1 前言 29
2-1-2 血液組成與磷脂質 31
2-1-3 血小板功能 32
2-1-4 凝血機制 37
2-1-5 生醫材料之處理及改質 39
2-1-6 磷脂質與血液相容性關係 40
2-1-7 高分子表面改質 50
2-2 實驗 53
2-2-1 藥品 53
2-2-2 儀器 54
2-2-3 合成 55
2-2-4 PE、PP、PU膜表面接枝 64
2-2-5 表面化學官能基分析 64
2-2-6 接觸角測試 64
3-2-7 表面化學分析(ESCA) 65
2-2-8 血小板吸附測試 65
2-3 結果與討論 67
2-3-1 光譜分析 67
2-3-2 表面官能基分析 80
2-3-3 接觸角測試 84
2-3-4 ESCA表面元素分析 85
2-3-5 血小板吸附測試 87
2-4 結論 101
2-5 參考文獻 102

第三章 偶氮苯衍生物之光異構化特性與應用 107
3-1 原理與文獻回顧 107
3-1-1 前言 107
3-1-2 液晶的光學異方性 107
3-1-3 液晶的光電作用 110
3-1-4 液晶高分子 112
3-1-5 光致變色與光致變機制 117
3-1-6 光及熱異構化原理 119
3-1-7 偶氮苯衍生物之異構化 122
3-1-8 含偶氮苯衍生物液晶高分子之應用 123
3-2 實驗 130
3-2-1 藥品 130
3-2-2 儀器 131
3-2-3 合成 134
3-2-4 PDLC試件的製作 138
3-2-5 偶氮苯分子之異構化特性量測 141
3-2-6 PDLC 元件之溫度–穿透度量測 141
3-2-7 偶氮苯高分子光開關之量測 142
3-3 結果與討論 143
3-3-1 合成與光譜分析 143
3-3-2 甲氧基偶氮苯衍生物之熱性質分析 154
3-3-3 偶氮苯照光異構化反應 157
3-3-4 光開關 162
3-4 結論 171
3-5 參考文獻 172

第四章 樟腦酮衍生物之光學活性與液晶應用 175
4-1 原理與文獻回顧 175
4-1-1 前言 175
4-1-2 光學活性物旋光特性 176
4-1-3 光學活性基團 178
4-1-4 含碳碳雙鍵化合物之異構化 179
4-1-5 膽固醇液晶之選擇性光反射 181
4-1-6 小分子膽固醇型液晶可逆性顏色儲存 183
4-1-7 膽固醇型液晶高分子於顏色儲存 185
4-1-8 光異構化之應用 186
4-2 實驗 192
4-2-1 藥品 192
4-2-2 儀器 193
4-2-3 合成 194
4-2-4 光學活性化合物之旋光度測試 204
4-2-5 光學活性化合物之光致變性測試 204
4-2-6 Reverse mode PSCT液晶元件的製作 205
4-2-7 選擇性光反射波長的測量 208
4-3 結果討論 209
4-3-1 合成與光譜分析 209
4-3-2 碳碳双鍵的照UV光異構化特性 233
4-3-3 碳碳双鍵照線性UV偏光之光異構化特性 241
4-3-4 含樟腦環化合物的光學活性 246
4-3-5 含樟腦基團分子在選擇性光反射系統之應用 255
4-4 結論 263
4-5 參考文獻 264

第五章 總結 267
參考文獻 Ch1 參考文獻
1.Joon B. Park and Roderic S. Lakes, "Biomaterials" (1992).
2.D. F. Williams, Blood Compatibility, CRC press (1987).
3.D. Lelah, S. L. Cooper, "Polyurethane in medicine", CRC Press. (1986).
4.陳劉旺,” 生醫材料”,化工,38,2,p51(1991)
5.林峰輝、白育綸,”生物醫用材料”,新文京(1998)
6.ISO 10993, “Biological evaluation of medical devices”, (1992)
7.吳逸人,”PTFE膜光接枝表面改質及特性研究”,國立成功大學化學工程研究所碩士論 文,(1996)。
8.鍾宜璋,”高分子薄膜製備及在生醫材料上之應用研究",國立成功大學化學工程研究所博士論文,(1996)。
9.甄慧蓮,”表面含 Phosphorylcholine 聚乙烯薄膜之製備及血液相容性之研究" ,國立成功大學化學工程研究所碩士論文,(1997)。
10.劉瑞祥,”感光性高分子”,復文書局,(1991)。
11.G. Cevc ed., “Phosphlipids Handbook”, Marcel Dekker, N. Y.(1993)
12.Joseph D. Andrade ed., ” Surface and Interfacial Aspects of Biomedical Polymers.” Volume 1, Surface Chemistry and Physics , Plenum press, New York and London, (1985)
13.Charles R. Cantor ed., “ Biomembranes Molecular Structure and Function”, New York, USA, 1-35, 1989
14.K. Ishihara, T. Ueda, and N. Nakabayahi, “ Preparation of Phospholipid Polymers and their Properties as Polymer Hydrogel Membranes”, Polymer Journal, 22, 335-360, (1990)
15.K. Ishihara , H. Hanyrda and N. Nakabayashi, "Synthesis of phospholipid polymers having a urethane bond in the side chain as coating material on Segmented polyurethane and their platelet adhesion-resistant properties", Biomaterials, 6, 873-879(1995).
16.K. Ishihara, H. Oshida, Y. Endo, T. Ueda, A. Watanobe, and N. Nakabayashi, "hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism", J. Biomed. Mater. Res., 26, 1543-1552(1992).
17.Ernest L. Eliel, Samuel H. Wilen, “Stereochemistry of Organic Compounds”, John Wiley & Sons, Inc.,(1994)
18.蔡福人,“含菠酯基光學活性高分子之合成及物性探討與其在光學分割之應用研究” 國立成功大學化工研究所博士論文,(2000)
19.P. G. Mezey, “New Developments in Molecular Chirality”, Kluwer Academic Publishers(1990)
20.L. Velluz, M. Legrand, M. Grosjean, “Optical Circular Dichroism”, Academic Press Inc.(1965)
21.劉瑞祥譯,“液晶之基礎與應用”,國立編譯館出版。 (1996)
22.F. Reinitzer, Monatshefte fur Chemie”, Vol. 9, 421 (1888).
23.O. Z. Lehmann, Phys. Chem, 4, 4621(1889).
24.D. Demus, J. Goodby, G. W. Gray, H.W. Spiess, ”Handbook of Liquid crystals”, Vol 2a, 2b, Wiley-VCH, (1998).
25.蔡宗岳,“含光學活性單體PSCT液晶顯示元件之光電特性研究” 國立成功大學化工研究所碩士論文,(1999)。
26.蔡月娥, “雙官能機單體間隙長度對PSCT液晶顯示器光電特性效應之研究” 國立成功大學化工研究所碩士論文,(2000)。
27.P. J. Collings, M. Hird,”Introduction to Liquid Crystals, Chemistry and Physics.”, Taylor & Francis(1997)
28.紀國鐘,鄭晃忠編著,”液晶顯示器技術手冊”台灣電子材料與元件協會(2002)
29.卓聖鵬編譯,”彩色液晶顯示器”全華出版社(2001)
30.顧鴻壽編著,”光電液晶平面顯示器:技術基礎與應用”,新文京(2003)

Ch2 參考文獻
1.何敏夫,血液學,合記圖書出版社,(1990) 。
2.傅祖慶、林富美譯,蓋統生理學,華杏圖書出版社,(1990)。
3.D. F. Williams, Blood Compatibility, CRC press (1987).
4.E. Chiellini , P. Giusti, C. Migliaresi , and L. Nicolais, “Polymers in medicine", (1986)
5.B. Raton, “Lipids”, CRC press, (1984).
6.G. Cevc ed., “Phosphlipids Handbook”, Marcel Dekker, N. Y.(1993)
7.蔡榮基,”臨床心臟內科學”,合記圖書(1984)
8.譚柱光,”人工腎臟與腹膜透析”,南山堂(1987)
9.D.G. Maki etc. "Prevention of Central Venous Catheter-Related Blood strean Inflection by Use of on Antiseptic-Impreqnated Cathetr "Ann, Intern. Med., 127, p257, (1997).
10.I. Raad etc. "Central Venous Catheters Coated with Minocycline and Rifampin for the Prevention of Catheter-Related Colonization and Bloodstream Infection", Ann. Intern, Med., 127, p267, (1997).
11.K. Ishihara ,H. Hanyrda and N. Nakabayashi, "Synthesis of phospholipid polymers having a urethane bond in the side chain as coating material on Segmented polyurethane and their platelet adhesion-resistant properties", Biomatevials, 6, 873-879(1995).
12.M.D. Leiah, J. A. Pierce, "Polyetherurethane ionomers:suface property /ex vivo blood compatibility relationships", J. Collid. Interface Sci. , 104, p422(1985).
13.K. Ishihara, H. Oshida, Y. endo, T. Ueda, A. Watanobe, and N. nakabayashi, "hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism",J.Biomed. Mater. Res., 26, 1543-1552(1992).
14.B. R. McAuslan and G. Johnson, “Cell Responses to Biomaterials I: Adhesion and Growth of Vascular Endothelial cell on poly(hydroxyethylmethacrylate) Following Surface Modification by Hydrolytic Etching”, J. Biome. Mater. Res., 21, 921-935. (1987)
15.J. P. Santerre, P. Hove, N. H. Vanderkamp, and J. L. Brash, “Effect of Sulfonation of Segmented Polyurethanes on the Transient adsorption of Fibrigen from Plasma: Possible Correlation with Anticoagulant Behavior”, J. Biome. Mater. Res., 26, 39-57. (1992)
16.J.A. Hayward and D. Chapman, "Biomembrane surfaces as models for polymer designrthe potential for haemocompatibility", Biomaterials, 5, 135-142(1984).
17.A. Singh, "An efficient synthesis of phosphatidyl choline", J. of lipid Res. 31, 1522-1525(1990).
18.I. Raad etc. "In vitro antimicrobial efficacy of silver iontophoretic catheter", Biomaterials, 17, p1055. (1996).
19.J-C Lin etc. "Surface characterization and ex vivo blood campatibility study of plasma-modified small diameter tubing: effect of sulphur dioxide and hexamethyl-disiloxane plasmas", Biomaterials, 16, p1017, (1995).
20.J-C Lin etc. "In vifro fibrinogen adsorption from varous dilutions of human blood plasma on glow discharge modified polyethylene", J. Colloid. Interface Sci., 182, p315, (1996).
21.Y. Iwasaki etc. "Reduction of surface-induced platelet activation on phospholipid polymer", J. Biomed. Mater. Res., 36, p508, (1997)
22.K. Ishihara etc. "Synthesis of Polymers having a phospholipid polar group connected to a poly (oxyethylene) chain and their protein adsorption-resistance properties", J. Polyn. Sci, A, 34, P199, (1996).
23.T. Nakaya, "Synthesesand characterization of poIyurethane contalming cholesterol and phosphatidylcholine analogous moieties", Macromol. Rapid commun., 16, 253-258(1995)
24.Y-J Li etc. "The effect of alkyl chain length of amphiphilic phospholipid polyurethanes on haemocompatibilities", Macromol. Chem. Phys., 197, p2827, (1996).
25.J. H. Lee etc, "Plasma protein adsorption and platelet adhesion onto comb-like PEO gradient surfaces" J. Biomed. Mater. Res., 34, p105, (1997).
26.N. Saito etc., "Photo chemical grafting of α-propylsulphate-poly (ethylene oxide) on polyurethane surfaces andenhanced antithrombogenic potential", Biomatenials, 18, p1195, (1997).
27.H. Inoue etc., "Ex vivo and in vivo evaluation of the blood compatibility of surface-modified polyurethane catheters", J. Biomed. Mater. Res. 35, p255, (1997).
28.Pizzoferrato etc., "In vitro biocompatibility of a polyurethane catheter after deposition of fluroinated film", Biomaterials, 16, p361, (1995).
29.李家功,”含 phosphatldylcholine 親水基聚胺基甲酸酯之合成及其血液相容性探討”,國立成功大學化學工程研究所碩士論文,(1997)。
30.李欣潁,”磷脂衍生物高分子表面改質及其特性探討” ,國立成功大學化學工程研究所碩士論文,(1998)。
31.N. P. Rhodes etc. "Influence of wall shear rate on parameters of blood compatibility of intravascular catheters", Biomaterials, 17, p1995, (1996).
32.N. Nurdin etc. "Reduced fricational resistance of polyurethane catheter by means of a surface coating procedure" J. Appl. polym, Sci. 61, p1939, (1996).
33.P. Francois etc. "Physical and biological effects of a surface coating procedure on polyurethane catheters", Biomaterials, 17, p667, (1996).
34.J. Sanchez etc. "Inhibition of the plasma contact activation system of immobilized heparin" Relation to surface density of functional antithrombin binding sites, J. Biomed. Mater. Res. 37, p37, (1997).
35.R. Blezer etc. "Activation of blood coagulation at heparin-coated surfaces", J. Biomed. Mater. Res, 37, p108, (1997)..
36.T. B. McPherson, H. S. Shim, K. Park,”Grafting of PEO to glass, Nitinol, and Pyrolytic Carbon Surfaces by Irradiation”, J. Biomed Mater Res, 38, p289,(1997).
37.H. K. Kim, K. Kim, Y. Byun “Preparation of a chemically anchored phospholipid monolayer on an acrylated polymer substrate.”, Biomaterials 26 , 3435–3444, (2005).
38.Y. Noishiki, “Biochemical Response to Dacron Vascular prosthesis”, J. Biomed. Mater. Res. , 759-767(1976)
39.Y. Imanishi, K. Kono, Y. Ito and S. Kimura, "Platelet adhesion on to polyamide microcapsules coated with lipid bilayer membrane", Biomaterials, 10, 455-461 (1989).
40.M. S. Munro, A. J. Quattrone, S. R. Ellsworth, P. Kulkarmi, and R. C. Eberhart, "Alkyl-substituted polymers with enhanced albumin affinity", Trans. Am. Soc. Artif. Intern.Organs, 27, 499-503(1981).
41.R. Aneja and J. S. Chadha, “ A Total Synthesis of phosphatidyl cholines ”, Biochimica et Biophysica Acta. Bioenergetics, 248, 455-457, (1971)
42.Y. Ikada ' "Surface modification of polymers for medical applications", Biomaterials . 15, 725-736 (1994)
43.B. D. Ratner ' "Surface modification of polymers: chemical, ' biological and surface analytical challenges", Biosesors & Bioelectronics, 10, 797-804 , (1995)
44.J. D. Andrade, “Surface and Interfacial Aspects of Biomedical Polymers , V 1, Surface Chemistry and Physics”, Plenum press, New York. (1985)
45.B. D. Ranter and D. G. Castner, “Electron Spectroscopy for Chemical Analysis in Surface Analysis Techniques and Application”, Wiley, New York, (1992)
46.W. Horspool, “Organic Photochemistry”, Ellis Horwood (1992)
47.J. Kopecky, “Organic Photochemistry”, VCH (1992)

Ch3 參考文獻
1.松本正一、角田市良合著,劉瑞祥譯,“液晶之基礎與應用”國立編譯館出版。 (1996)
2.Stegemeyer, H. ed., “ Liquid Crystals”, (1994),
3.王素誼,光異構性偶氮形液晶之合成及其光電特性探討,國立成功大學化工研究所碩士論文 (2002.)
4.楊博智,“含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討” 國立成功大學化工研究所碩士論文,(2003)。
5.王宏宇,“含光學活性菠酯基液晶性單體之合成及其在光學元件上之應用研究” 國立成功大學化工研究所博士論文,(2004)。
6.吳阜蒼,”光異構性偶氮苯衍生物之合成及其在液晶顯示元件及光紀錄薄膜之應用研究”,國立成功大學化工研究所博士論文,(2005)。
7.許惠晴,“光聚合性膽固醇型液晶元件之製備及光學特性研究”國立成功大學化工研究所碩士論文,(2004)。
8.永松元太郎著,劉瑞祥編譯,”感光性高分子”,復文書局(1987).
9.G. H. Kim, S. Enomoto, A. Kanazawa, T. Shiono, T. Ikeda, L. S. Park, Appl. Phys. Lett., 75, 3458 (1999).
10.Y. Kawashima, M. Nakagawa, K. Ichimura, J. Mater. Chem., 14, 328 (2004).
11.H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, Chem. Mater. Vol. 10, 1402 (1998).
12.A. Bobrovsky, N. Boiko, K. Shaumburg, Mol. Crys. Liq. Cryst., 352, 368 (2000).
13.M. Irie, Chem. Rev., 100, 1683 (2000).
14.H. B. Laurent, H. Durr, Pure Appl. Chem., 73, 639 (2001).
15.A. V. El’Tsov, Y. E. Sviridov, J. Whittal, “Organic Photochromes “, Bureau, New York, (1990).
16.S. R. Keum, C. H. Cho, Y. K. Choi, Dyes Pigments, 60, 147 (2004).
17.T. Ikeda, T. Sasaki, H. B. Kim, J. Phys. Chem., 95, 509 (1991).
18.T. Sasaki, T. Ikeda, K. Ichimura, Macromol., 25, 3807 (1991).
19.S. Kurihara, S. Sakamoto, T. Nonaka, Macromol., 31, 4648 (1998).
20.J. H. Kim, K. M. Hong, H. S. Na, Y. K. Han, Jpn. J. Appl. Phys., 40, 1585 (2001).
21.Y. K. Han, B. S. Ko, Opt. Mater., 21, 621 (2002).
22.H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem. B, Vol. 104, 7023 (2000).
23.T. Ikeda, O. Tsutsumi, Science, Vol. 268, 1873 (1995).
24.P. Rechon, J. Gosselin, A. Natansohn, S. Xie, Appl Phys Lett ,Vol. 60, 4 (1992)
25.H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, Chem. Mater., 10, 1402 (1998).
26.H. K. Lee, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, J. Appl. Phys., 86, 5927 (1999).
27.Y. Wu, A. Kanazawa, T. Shiono, T. Ikeda, Q. Zhang, Polymer, Vol. 40, 4787 (1999)
28.A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, Liq. Cryst., 27, p. 1381 (2001)
29.T. Ikeda, S. Horiuchi, D. B. Karanjit, S. Kurihara, S. Tazuke, Macromol., 23, 36 (1990).
30.K. Matczyszyn, S. Bartkiewicz, B. Sahraoui, Opt. Mater., 20, 57 (2002).
31.S. Kurihara, D. Yoneyama, T. Ogata, T. Nonaka, J. Appl. Polym. Sci., 89, 943 (2003).
32.S. R. Keum, C. H. Cho, Y. K. Choi, Dyes Pigments, 60, 147 (2004).
33.S. Wu, S. Yao, W. She, D. Luo, H. Wang, J. Mater. Sci., 38, 401 (2003).
34.O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, T. Ikeda, Macromol., 31, 355 (1998).
35.Y. Wu, Q. Zhang, A. Kanazawa, T. Shiono, T. Ikeda, Y. Nagase, Macromol., 32, 3951 (1999).
36.O. Tsutsumi, Y. Demachi, A. Kanazawa, T. Shiono, T. Ikeda, Y. Nagase, J. Phys. Chem. B, 102, 2869 (1998).

Ch4 參考文獻
1.松本正一、角田市良合著,劉瑞祥譯,“液晶之基礎與應用”國立編譯館出版。 (1996)
2.蔡宗岳,“含光學活性單體PSCT液晶顯示元件之光電特性研究”國立成功大學化工研究所碩士論文,(1999)。
3.蔡月娥, “雙官能機單體間隙長度對PSCT液晶顯示器光電特性效應之研究” 國立成功大學化工研究所碩士論文,(2000)。
4.蔡福人,“含菠酯基光學活性高分子之合成及物性探討與其在光學分割之應用研究” 國立成功大學化工研究所博士論文,(2000)
5.尤舜宗,”高分子側鏈長度對PSCT液晶顯示器光電特性效應之研究”,國立成功大學化工研究所碩士論文,(2001)。
6.王宏宇,“含光學活性菠酯基液晶性單體之合成及其在光學元件上之應用研究” 國立成功大學化工研究所博士論文,(2004)。
7.許惠晴,“光聚合性膽固醇型液晶元件之製備及光學特性研究”國立成功大學化工研究所碩士論文,(2004)。
8.陳建志,”含樟腦衍生基光敏性側鏈型液晶高分子之合成及光學特性探討”,國立成功大學化工研究所碩士論文,(2005)。
9.Stegemeyer, H. ed., “ Liquid Crystals”, p. 116. (1994)
10.Ernest L. Eliel, Samuel H. Wilen, “Stereochemistry of Organic Compounds”, John Wiley & Sons, Inc.,(1994)
11.H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem. B, Vol. 104, 7023 (2000).
12.D. Demus, J. Gooby, G. W. Gray, H. W. Spiess, V. Vill, “Handbook of Liquid Crystals”, Wiley-VCH,( 1998).
13.S. T. Wu, D. K. Yang, “Reflective Liquid Crystal Dispal “, John Wiley and Sons, New York, (2001).
14.P. J. Colling, M. Hird, “Introduction to Liquid Crystals Chemistry and Physics”, Taylor and Francis, (1997).
15.I. C. Khoo, S. T. Wu, “Optics and Nonlinear Optics of Liquid Crystal”, World Scienific, USA,( 1993).
16.F. Reinitzer, Monatsh. Chem., 9, 421 (1888).
17.O. Z. Lehmann, Phys. Chem, 4, 4621 (1889).
18.S. R. Keum, C. H. Cho, Y. K. Choi, Dyes Pigments, 60, 147 (2004).
19.T. Ikeda, T. Sasaki, H. B. Kim, J. Phys. Chem., 95, 509 (1991).
20.T. Sasaki, T. Ikeda, K. Ichimura, Macromol., 25, 3807 (1991).
21.S. Kurihara, S. Sakamoto, T. Nonaka, Macromol., 31, 4648 (1998).
22.J. H. Kim, K. M. Hong, H. S. Na, Y. K. Han, Jpn. J. Appl. Phys., 40, 1585 (2001).
23.V. Shibaev, A. Bobrovsky, N. Boiko, Journal of Photochemistry and Photobiology A: Chemistry. Vol. 155, 3 (2003).
24.A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, Liquid Crystals, 26, 1749 (1999)
25.A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, Liq. Cryst., 27, p. 1381 (2001)
26.H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, Chem. Mater. Vol. 10, 1402 (1998).
27.T. Ikeda, O. Tsutsumi, Science, Vol. 268, 1873 (1995).
28.P. Rechon, J. Gosselin, A. Natansohn, S. Xie, Appl Phys Lett ,Vol. 60, 4 (1992)
29.Y. Wu, A. Kanazawa, T. Shiono, T. Ikeda, Q. Zhang, Polymer, Vol. 40, 4787 (1999).
30.N. Tamaoki, A. V. Parfenov, A. Masaki, H. Matsuda, Adv. Mater. Vol. 9, 1102 (1997).
31.N. K., Park, S. A. Cho, J. Y. Kim, K. D. Suh, J. Appl. Polym. Sci., 77, 3178 (2000).
32.E. Uchida, T. Shiraku, H. One, N. Kawatsuki, Macromolecules, 37, 5282-5291,(2004)
33.A. Han etc. Macromolecules, 33, 17, p6370(2000)
34.A. Han , K. Ichimura, Macromolecules, 34, 1, p2432(2001)
35.G. P. Motgomery, A. V. Nuno, Appl. Opt., 26, 738 (1987).
36.S. I. Park, N. H. Park, K. D. Suh, Liq. Cryst., 29, 6 (2002)
37.M. Brehmer, J. Lub, P. van de Witte, Adv. Mater. Vol. 10, 1438 (1998).
38.H. K. Lee, K. Doi, Hisako, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem. B Vol. 104, 7023 (2000).

------------------------------------------------------------------------ 第 7 筆 ---------------------------------------------------------------------
系統識別號 U0026-2507201221304600
論文名稱(中文) 光調變性膽固醇有機凝膠體之合成與超分子特性探討
論文名稱(英文) Synthesis and Supramolecular Behaviors of Phototunable Organogelators Derived from Cholesterol
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 陳鳳儀
學號 n36994271
學位類別 碩士
語文別 中文
口試日期 2012-07-18
論文頁數 101頁
口試委員 指導教授-劉瑞祥
口試委員-郭人鳳
口試委員-陳雲
口試委員-鍾宜璋
口試委員-陳澄河
關鍵字(中) 自組裝
超分子凝膠
光調變性
光學活性
氫鍵
關鍵字(英) self-assembly
supramolecular gel
phototunable
chiral
hydrogen bond
學科別分類
中文摘要 為了製備光可調變性有機凝膠 (phototunable organogel),並探討分子結構與凝膠形成的關係,本研究設計合成一系列含有偶氮苯基團 (azobenzene) 的光學活性衍生物: cholesteryl 4-(pyridin-4-yldiazenyl)
phenyl carbonate (CPA)、 cholesteryl 4-(phenyldiazenyl)phenyl carbonate (CPhA)、 cholesteryl 4-((4-methoxyphenyl)diazenyl)phenyl carbonate (CMA) 與 cholesteryl 4-((4-methoxyphenyl)diazenyl)benzoate (CMAB)。其中藉由導入偶氮苯基團以獲得光調變性;導入具有光學活性的膽固醇基團以誘導螺旋自組裝排列,並提高形成凝膠的可能性。經凝膠化能力測試發現,四種合成的化合物中只有 CMAB 具有凝膠化能力,且可藉由加熱-冷卻或照射紫外光-可見光之物理性外在刺激,調控超分子凝膠行可逆的溶液-凝膠態轉換。輔以分子模擬之結果可知,偶氮苯對位上的取代基與化合物分子的整體構形為凝膠形成與否的關鍵。由動力學分析可推測,分子自組裝會阻礙 CMAB 光異構化 (isomerization),使光異構化速率下降。利用 SEM 及 TEM 觀察凝膠的表面型態及微結構,可知 CMAB 能自組裝為螺旋狀的纖維結構,並進一步交疊為網狀結構而形成超分子凝膠 (supramolecular gel)。推測螺旋結構是 CMAB 分子以膽固醇基團為中心、偶氮苯基團向外,且分子間錯開一個角度的方式堆疊而成。此外,由 DSC 及 POM 結果可知四種合成的化合物均具有液晶相特性,其中 CPA 能與羧酸類形成氫鍵複合物,導致熱性質及液晶相特性的改變。
英文摘要 To fabricate phototunable organogel and investigate the correlation between gelation ability and chemical structures, chiral compounds cholesteryl 4-(pyridin-4-yldiazenyl)phenyl carbonate (CPA), cholesteryl 4-(phenyl-diazenyl)phenyl carbonate (CPhA), cholesteryl 4-((4-methoxyphenyl)diazenyl)phenyl carbonate (CMA) and cholesteryl 4-((4-methoxyphenyl)diazenyl)benzoate (CMAB) containing azobenzene group were synthesized. To promote both the formation of helical constructions and gelation ability, chiral cholesteryl group was introduced into compounds. From the results of typical gelation tests, only CMAB shows the gelation ability, and the transition of solution-gelation state can be controlled reversibly via physical stimulation of heating-cooling or ultraviolet-visible light. Molecular simulation shows that both the substituents of azobenzene group at para position and conformations of molecules are expected as the key factors for the formation of gels. From the results of kinetic analysis, isomerization of CMAB was found to be restricted by molecular self-assembly leads to the decrease of the rate of isomerization. Observations of morphologies and microstructures of gels by SEM and TEM suggest that self-assembly of CMAB forms highly-ordered helical fibers, which are generated by core-centered stacking of cholesteryl group with azobenzene at periphery. Further cross-linking of fibers generates three-dimensional entangled networks, and strong interactions between networks and organic solvents forms stable supramolecular gels. In addition, liquid crystal properties of the synthesized four compounds were confirmed using DSC and POM. CPA forms hydrogen-bonded complex with carboxylic acid, leads to the variation of both thermal and liquid crystalline properties.
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
表目錄 VII
圖目錄 VIII
Scheme XIII

第一章 緒論 1
1-1 前言 1
1-2 研究動機與方向 4

第二章 原理與文獻回顧 5
2-1 自組裝 5
2-1-1 誘導分子自組裝常見作用力 7
2-1-2 超分子自組裝 9
2-2 凝膠簡介 12
2-2-1 小分子有機凝膠體 14
2-2-2 超分子凝膠之應用 25
2-3 偶氮苯衍生物特性 32
2-3-1 偶氮苯衍生物的光異構化 32
2-3-2 偶氮苯衍生物在自組裝的應用 33

第三章 實驗部分 36
3-1 實驗藥品 36
3-2 實驗儀器 39
3-3 實驗步驟 41
3-3-1 含偶氮苯基團的光學活性化合物之合成 41
3-3-2 化合物於不同溶劑下之凝膠化能力測試 48
3-3-3 CMAB 溶液紫外線-可見光光譜檢測 48
3-3-4 凝膠SEM 、TEM試片製作 49
3-3-5 CPA-羧酸類複合物之製備與分析 49

第四章 結果與討論 51
4-1 含偶氮苯基團的光學活性化合物之鑑定 51
4-2 含偶氮苯基團的光學活性化合物之凝膠化行為探討 56
4-2-1 化合物於不同溶劑下之凝膠化能力探討 56
4-2-2 偶氮苯光異構化對超分子凝膠系統之影響 64
4-2-3 超分子凝膠之微結構探討 70
4-3 含偶氮苯基團的光學活性化合物之熱性質與液晶相探討 78
4-4 CPA-羧酸複合物之熱性質與液晶相探討 84

第五章 結論 94

參考文獻 96
參考文獻 [1]Lehn, J. M. Supramolecular chemistry-scope and perspectives molecules-supermolecules-molecular devices. Nobel Lecture (1987).
[2]Whitesides, G. M. and Grzybowski, B. Self-assembly at all scales. Science 295, 2418-2421 (2002).
[3]Wang, C., Chen, Q., Sun, F., Zhang, D., Zhang, G., Huang, Y., Zhao, R. and Zhu, D. Multistimuli responsive organogels based on a new gelator. J. Am. Chem. Soc. 132, 3092-3096 (2010).
[4]Kishimura, A., Yamashita, T. and Aida, T. Phosphorescent organogels via "metallophilic" interactions for reversible RGB-color switching. J. Am. Chem. Soc. 127, 179-183 (2005).
[5]Ono, Y., Nakashima, K., Sano, M., Hojo, J. and Shinkai, S. Organogels are useful as a template for the preparation of novel helical silica fibers. J. Mater. Chem. 11, 2412-2419 (2001).
[6]Liu, Q. T., Wang, Y. L., Li, W. and Wu, L. X. Structural characterization and chemical response of a Ag-coordinated supramolecular gel. Langmuir 23, 8217-8223 (2007).
[7]Vemula, P. K., Li, J. and John, G. Enzyme catalysis: tool to make and break amygdalin hydrogelators from renewable resources: a delivery model for hydrophobic drugs. J. Am. Chem. Soc. 128, 8932-8938 (2006).
[8]Lin, Y. C. and Weiss, R. G. A novel gelator of organic liquids and the properties of its gels. Macromolecules 20, 414-417 (1987).
[9]Li, L. S., Jiang, H. Z., Messmore, B. W., Bull, S. R. and Stupp, S. I. A torsional strain mechanism to tune pitch in supramolecular helices. Angew. Chem. Int. Edit. 46, 5873-5876 (2007).
[10]Ran, X., Wang, H., Zhang, P., Bai, B., Zhao, C., Yu, Z. and Li, M. Photo-induced fiber-vesicle morphological change in an organogel based on an azophenyl hydrazide derivative. Soft Matter 7, 8561-8566 (2011).
[11]Matsuzawa, Y. and Tamaoki, N. Photoisomerization of azobenzene units controls the reversible dispersion and reorganization of fibrous self-assembled systems. J. Phys. Chem. B 114, 1586-1590 (2010).
[12]Liu, J. H. and Chiu, Y. H. Behaviors of self-assembled diblock copolymer with pendant photosensitive azobenzene segments. J. Polym. Sci. Pol. Chem. 48, 1142-1148 (2010).
[13]Yan, Y., Lin, Y. Y., Qiao, Y. and Huang, J. B. Construction and application of tunable one-dimensional soft supramolecular assemblies. Soft Matter 7, 6385-6398 (2011).
[14]Zhang, X. and Wang, C. Supramolecular amphiphiles. Chem.Soc. Rev. 40, 94-101 (2011).
[15]Schalley, C. in Analytical Methods in Supramolecular Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, 2007).
[16]Chiu, Y. H. and Liu, J. H. Polymerization and characterization of self-assembled beta-cyclodextrin-threaded chiral monomers. J. Polym. Sci. Pol. Chem. 48, 2975-2981 (2010).
[17]Qiao, Y., Lin,Y., Wang, Y., Yang, Z., Liu, J., Zhou, J., Yan, Y. and Huang, J. Metal-driven hierarchical self-assembled one-dimensional nanohelices. Nano lett. 9, 4500-4504 (2009).
[18]Kimura, M., Hatanaka, T., Nomoto, H., Takizawa, J., Fukawa, T., Tatewaki, Y. and Shirai, H. Self-assembled helical nanofibers made of achiral molecular disks having molecular adapter. Chem. Mater. 22, 5732-5738 (2010).
[19]Sangeetha, N. M. and Maitra, U. Supramolecular gels: functions and uses. Chem. Soc. Rev. 34, 821-836 (2005).
[20]Terech, P. and Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133-3159 (1997).
[21]Xue, P., Lu, R., Chen, G., Zhang, Y., Nomoto, H., Takafuji, M. and Ihara, H. Functional organogel based on a salicylideneaniline derivative with enhanced fluorescence emission and photochromism. Chem. Eur. J. 13, 8231-8239 (2007).
[22]Abdallah, D. J. and Weiss, R. G. n-Alkanes gel n-alkanes (and many other organic liquids). Langmuir 16, 352-355 (2000).
[23]Pozzo, J. L., Clavier, G. M. and Desvergne, J. P. Rational design of new acid-sensitive organogelators. J. Mater. Chem. 8, 2575-2577 (1998).
[24]Wang, C., Zhang, D. Q., Xiang, J. F. and Zhu, D. B. New organogels based on an anthracene derivative with one urea group and its photodimer: fluorescence enhancement after gelation. Langmuir 23, 9195-9200 (2007).
[25]Zinic, M., Vogtle, F. and Fages, F. in Low Molecular Mass Gelators: Design, Self-Assembly, Function. Vol. 256 Topics in Current Chemistry 39-76 (Springer-Verlag Berlin, 2005).
[26]Lin, Y., Kachar, B. and Weiss, R. G. Novel family of gelators of organic fluids and the structure of their gels. J. Am. Chem. Soc. 111, 5542-5551 (1989).
[27]Mukkamala, R. and Weiss, R. G. Physical gelation of organic fluids by anthraquinone-steroid-based molecules. Structural features influencing the properties of gels. Langmuir 12, 1474-1482 (1996).
[28]陳玟婷,光學活性有機凝膠體之超分子自組裝與特性探討,國立成功大學化學工程研究所碩士論文 (2011)。
[29]Kawano, S. I., Fujita, N., van Bommel, K. J. C. and Shinkai, S. Pyridine-containing cholesterols as versatile gelators of organic solvents and the subtle influence of Ag(I) on the gel stability. Chem. Lett. 32, 12-13 (2003).
[30]Abraham, S., Vijayaraghavan, R. K. and Das, S. Tuning microstructures in organogels: gelation and spectroscopic properties of mono- and bis-cholesterol-linked diphenylbutadiene derivatives. Langmuir 25, 8507-8513 (2009).
[31]Ballabh, A., Trivedi, D. R. and Dastidar, P. Structural studies of a new low molecular mass organic gelator for organic liquids based on simple salt. Chem. Mater. 15, 2136-2140 (2003).
[32]Moriyama, M., Mizoshita, N., Yokota, T., Kishimoto, K. and Kato, T. Photoresponsive anisotropic soft solids: liquid-crystalline physical gels based on a chiral photochromic gelator. Adv. Mater. 15, 1335-1338 (2003).
[33]Gao, P., Zhan, C. L. and Liu, M. H. Controlled synthesis of double- and multiwall silver nanotubes with template organogel from a bolaamphiphile. Langmuir 22, 775-779 (2006).
[34]Lin, Y. Y., Qiao, Y., Gao, C., Tang, P., Liu, Y., Li, Z., Yan, Y. and Huang, J. Tunable one-dimensional helical nanostructures: from supramolecular self-assemblies to silica nanomaterials. Chem. Mater. 22, 6711-6717 (2010).
[35]王素誼,光異構性偶氮型液晶之合成及其光電特性探討,國立成功大學化學工程研究所碩士論文 (2002)。
[36]Yu, H. F. and Kobayashi, T. Photoresponsive block copolymers containing azobenzenes and other chromophores. Molecules 15, 570-603 (2010).
[37]Wang, Y. P., Han, P., Xu, H., Wang, Z., Zhang, X. and Kabanov, A. V. Photocontrolled self-assembly and disassembly of block Ionomer complex vesicles: a facile approach toward supramolecular polymer nanocontainers. Langmuir 26, 709-715 (2010).
[38]Lee, H. K., Kanazawa, A., Shiono, T. and Ikeda, T. All-optically controllable polymer liquid crystal composite films containing the azobenzene liquid crystal. Chem. Mater. 10, 1402-1407 (1998).
[39]Cui, L. and Zhao, Y. Azopyridine side chain polymers: an efficient way to prepare photoactive liquid crystalline materials through self-assembly. Chem. Mater. 16, 2076-2082 (2004).
[40]Chandran, S. P., Mondiot, F., Mondain-Monval, O. and Loudet, J. C. Photonic control of surface anchoring on solid colloids dispersed in liquid crystals. Langmuir 27, 15185-15198 (2011).
[41]Lin, Y. Y., Wang, A., Qiao, Y., Gao, C., Drechsler, M., Ye, J., Yan, Y. and Huang, J. Rationally designed helical nanofibers via multiple non-covalent interactions: fabrication and modulation. Soft Matter 6, 2031-2036 (2010).
[42]Murata, K., Aoki, M., Nishi, T., Ikeda, A. and Shinkai, S. New choleterol-based gelators with light- and metal-reponsive functions. J. Chem. Soc., Chem. Commun., 1715-1718 (1991).
[43]Sasaki, T., Ikeda, T. and Ichimura, K. Photoisomerization and thermal isomerization behavior of azobenzene derivatives in liquid crystalline polymer matrices. Macromolecules 26, 151-154 (1993).
[44]Duncan, D. C. and Whitten, D. G. 1H-NMR investigation of the composition, structure, and dynamics of cholesterol-stilbene tethered dyad organogels. Langmuir 16, 6445-6452 (2000).
[45]松本正一、角田市良,劉瑞祥譯,液晶之基礎與應用 (國立編譯館,1996)。
[46]楊博智,光學活性化合物之合成、物性探討及其在膽固醇型液晶元件之應用探討,國立成功大學化學工程研究所博士論文 (2007)。
[47]Camerel, F., Bonardi, L., Schmutz, M. and Ziessel, R. Highly luminescent gels and mesogens based on elaborated borondipyrromethenes. J. Am. Chem. Soc. 128, 4548-4549 (2006).
[48]Yang, H., Yi, T., Zhou, Z., Zhou, Y., Wu, J., Xu, M., Li, F. and Huang. C. Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives. Langmuir 23, 8224-8230 (2007).
[49]Vemula, P. K., Aslam, U., Mallia, V. A. and John, G. In situ synthesis of gold nanoparticles using molecular gels and liquid crystals from vitamin-C amphiphiles. Chem. Mater. 19, 138-140 (2007).
[50]Chen, F. J., Guo, J. B., Qu, Z. J. and Wei, J. Novel photo-polymerizable chiral hydrogen-bonded self-assembled complexes: preparation, characterization and the utilization as a thermal switching reflective color film. J. Mater. Chem. 21, 8574-8582 (2011).
[51]Hu, W., Cao, H., Song, L., Zhao, H., Li, S., Yang, Z. and Yang, H. Thermally controllable reflective characteristics from rupture and self-assembly of hydrogen bonds in cholesteric liquid crystals. J. Phys. Chem. B 113, 13882-13885 (2009).
[52]Tian, Y. Q., Xu, X. H., Zhao, Y. Y., Tang, X. Y. and Li, T. J. New cholesteric liquid crystals induced by intermolecular hydrogen bonding. Liq. Cryst. 22, 87-96 (1997).
[53]Pavia, D. L., Lampman, G. M. and Kriz, G. S. Introduction to spectroscopy. (Thomson Brooks/Cole, 2001).
[54]Naoum, M. M., Fahmi, A. A., Refaie, A. A. and Alaasar, M. A. Novel hydrogen-bonded angular supramolecular liquid crystals. Liq. Cryst. 39, 47-61 (2012).
[55]Alaasar, M., Tschierske, C. and Prehm, M. Hydrogen-bonded supramolecular complexes formed between isophthalic acid and pyridine-based derivatives. Liq. Cryst. 38, 925-934 (2011).

 


如您有疑問,請聯絡圖書館
聯絡電話:(06)2757575#65773
聯絡E-mail:etds@email.ncku.edu.tw