進階搜尋

 
查詢範圍:「   」
顯示範圍:第筆 論文書目資料
顯示格式:全部欄位
共 7 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0026-0311201001175900
論文名稱(中文) 具無損失緩振電路之泛用輸入電壓單級功因修正返馳式發光二極體驅動器
論文名稱(英文) Universal-Input Single-Stage PFC Flyback LED Driver with Lossless Snubber Circuit
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 99
學期 1
出版年 99
研究生(中文) 謝正勳
學號 N2697444
學位類別 碩士
語文別 英文
口試日期 2010-10-08
論文頁數 79頁
口試委員 指導教授-林瑞禮
口試委員-梁從主
口試委員-呂錦山
口試委員-李麗玲
口試委員-劉國基
關鍵字(中) 泛用輸入電壓
單極
功因修正返馳式轉換器
發光二極體驅動器
無損失緩振網路
隔離式輸出電壓感測網路
無損失緩振電路
正溫度係數熱敏電阻
關鍵字(英) universal-input
single-stage
PFC flyback converter
LED driver
lossless-snubber network
isolated output-voltage-sensing network
lossless snubber circuit
PTC thermistor
學科別分類
中文摘要  本論文提出一具無損失緩振電路之泛用輸入電壓單級功因修正返馳式發光二極體驅動器。為提供高功率因數與低總諧波失真率,單級功因修正返馳式轉換器被運用。此外,為降低功率開關之電壓應力、提昇功率轉換之效率、調節輸出電壓,無損失緩振網路與隔離式輸出電壓感測網路的觀念被採用。無損失緩振網路與隔離式輸出電壓感測網路的兩個繞組被整合成一共同繞組以降低元件數。
最後,實做一24W具無損失緩振電路之泛用輸入電壓單級功因修正返馳式發光二極體驅動器以驗證其功能,如功率開關之電壓應力、功率轉換之效率、功率因數、總諧波失真率、輸入電流諧波。
英文摘要 This thesis presents a proposed universal-input single-stage PFC flyback LED driver with the lossless snubber circuit. In order to provide high power factor and low total harmonic distortion, the single-stage PFC flyback converter is employed. Moreover, in order to reduce the voltage stress on the power switch, increase the power-conversion efficiency, regulate the output voltage, the concepts of the lossless-snubber network and the isolated output-voltage-sensing network are adopted. The two windings of the lossless-snubber network and the output-voltage-sensing network are integrated as one common winding to reduce the component count
Finally, a prototype circuit of the 24W universal-input single-stage PFC flyback LED driver with the lossless snubber circuit is built to verify the performances, such as voltage stress on the power switch, power conversion efficiency, power factor, total harmonic distortion, and input current harmonics.
論文目次 TABLE OF CONTENTS
CHAPTER 1. INTRODUCTION……………..........…..............………….…………………….. 1
1.1. BACKGROUND………………...……………...………………………………………….. 1
1.1.1. Two-Stage AC-DC PFC Flyback Converter……..………...……………….…… 2
1.1.2. Single-Stage AC-DC PFC Flyback Converter…...…………...…………….…… 3
1.2. MOTIVATION…………………...…………...……………..…………………………….. 4
1.3. THESIS OUTLINE……………...…….……………………..…………………………….. 5
CHAPTER 2. PROPOSED UNIVERSAL-INPUT SINGLE-STAGE PFC FLYBACK CONVERTER WITH LOSSLESS SNUBBER CIRCUIT…………….....…………………………. 6
2.1. INTRODUCTION……………………..…………………………………………………… 6
2.2. REVIEW OF SINGLE-STAGE PFC FLYBACK CONVERTER………..………………..………. 7
2.3. PROPOSED UNIVERSAL-INPUT SINGLE-STAGE PFC FLYBACK CONVERTER WITH
LOSSLESS SNUBBER CIRCUIT..………...…………………..…..………...………………. 9
2.4. SUMMARY…………...………………………………………..…………………….….. 14
CHAPTER 3. DESIGN OF PROPOSED UNIVERSAL-INPUT SINGLE-STAGE PFC FLYBACK
CONVERTER WITH LOSSLESS SNUBBER CIRCUIT...............……….………… 15
3.1. INTRODUCTION…………………………………………………..……….……………. 15
3.2. PRINCIPLES OF OPERATION……………...………………………...……………………. 15
3.3. DESIGN GUIDELINES FOR PROPOSED CIRCUIT TOPOLOGY………..……………..……… 23
3.3.1. Universal-Input Single-Stage PFC Flyback Converter…..……………………. 25
3.3.2. Lossless Snubber Circuit…………….………….....……..……………………. 33
3.3.3. Low-Dropout Constant-Current White LED Bias Supply...………………...…. 36
3.3.4. Positive Temperature Coefficient Thermistor for Temperature Protection.....… 37
3.4. SUMMARY…………………………………………………………..………………….. 38

CHAPTER 4. EXPERIMENTAL RESULTS…………………………...……..………………… 39
4.1. INTRODUCTION………………………………………………………..……………….. 39
4.2. IMPLEMENTATION OF PROTOTYPE CIRCUIT…………………………..………………… 39
4.3. EXPERIMENTAL RESULTS…………………...………………………………………..… 42
4.3.1. Measured Waveforms…………………………………….....…………………. 42
4.3.2. Measured Voltage Stress on the Switch…………………….......………..……. 47
4.3.3. Measured Power Conversion Efficiency……………………..…………......…. 50
4.3.4. Measured Power Factor………………………………………..………………. 52
4.3.5. Measured Total Harmonic Distortion…………………….................…………. 53
4.3.6. Measured Input Current Harmonics…………………………..…..………...…. 54
4.3.7. PTC Thermistor for Temperature Protection…………...……..…..………...…. 58
4.4. SUMMARY……………………………………………………………..……………….. 61
CHAPTER 5. CONCLUSIONS AND FUTURE WORKS…………..……...…..…………...……. 62
REFERENCES………………………………………………………..…..………...……… 64
APPENDIX A. CALCULATION OF MAGNETIZING INDUCTOR AND LEAKAGE INDUCTOR…. 66
APPENDIX B. DESIGN PROGRAM FOR TRANSFORMER…………………..………...……… 68
APPENDIX C. DESIGN PROGRAM FOR SWITCHING FREQUENCY AND OUTPUT
CAPACITOR………….……………………………………………………… 75
APPENDIX D. COMPARISON OF LED BRIGHTNESS……...…………...….………...……… 77
APPENDIX E. PHOTOGRAPH OF PROTOTYPE CIRCUIT………………….………...……… 78
VITA..................................................................................................................................... 79
參考文獻 [1] Limits for Harmonic Current Emissions (Equipment Input Current ≦16 A Per Phase), IEC 61000-3-2, Nov. 2005.
[2] Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, 「Power Factor Correction: A Survey,」 in Proc. IEEE Power Electron. Spec. Conf., 2001, vol. 1, pp. 8-13.
[3] R. Erickson and M. Madigan, 「Design of a simple high-power-factor rectifier based on the flyback converter,」 in Proc. IEEE Appl. Power Electron. Conf., Mar. 1990, pp. 792-801.
[4] T. Wolpert, 「AC/DC converter with sinusoidal input current and a single converter stage,」 in Proc. IEEE Telecommunications Energy Conf. INTELEC』92, Aug. 1992, pp. 271-278.
[5] R. Redl, L. Balogh, and N. O. Sokal, 「A new family of single-stage isolated power factor correctors with fast regulation of the output voltage,」 in Proc. IEEE Power Electron. Spec. Conf., 1994, vol. 2, pp. 1137-1144.
[6] H. Wei and I. Bartarseh, 「A single-switch ac/dc converter with power factor correction,」 IEEE Trans. Power Electron., vol. 15, pp. 421-430, May 2000.
[7] N. Backman and T.Wolpert, 「Simplified single stage PFC including peak current mode control in a flyback converter,」 in Proc. IEEE INTLEC, 2000, pp. 317-324.
[8] D. G. Lamar, A. Fernandez, M. Arias, M. Rodriguez, J. Sebastian, and M. M. Hernando, 「Limitations of the flyback power factor corrector as a one-stage power supply,」 in Proc. IEEE Power Electron. Spec. Conf., June 2007, pp. 1343-1348.
[9] T. F. Pan, H. J. Chiu , S. J. Cheng, S. Y. Chyng, 「An improved single-stage flyback PFC converter for high-luminance lighting LED lamps,」 in Proc. IEEE Electronic Measurement and instruments Conf., 2007, vol. 4, pp. 212-215.
[10] T. L. Chern, L. H. Liu, P. L. Pan, and Y. J. Lee, 「Single-stage flyback converter for constant current output LED driver with power factor correction,」 in Proc. IEEE Ind. Electron. and Appl. Conf., May 2009, pp. 2891-2896.
[11] J. E. Yeon, D. S. Kim, K. M. Cho, and H. J. Kim, 「A single stage flyback power supply unit for LED lighting applications,」 in Proc. Electrical and Electron. Engineering Conf., Nov. 2009, vol. 1, pp. 288-292.
[12] J. R. Qian and D. F. Weng, 「Leakage energy recovering system and method for flyback converter,」 U.S. Patent 6473318B1, 2002.
[13] Tsu-Hua Ai, Integrated AC/DC Converters with Power Factor Correction and Nondissipative Snubber, Ph.D. Dissertation, National Cheng Kung University, 2002.
[14] C. M. F. Odulio, L. G. Sison, and M. T. Escoto, 「Regenerative clamp as reset winding in flyback converters for EDM applications,」 in Proc. IEEE Int. Conf. Ind. Technol., Dec. 2004, vol. 1, pp. 510-513.
[15] T. H. Ai, 「A novel integrated nondissipative snubber for flyback converter, 」 in Proc. IEEE-ICSS』05 Conf., 2005, pp. 66-71.
[16] C. S. Liao and K. M. Smedley, 「Design of high efficiency flyback converter with energy regenerative snubber,」 in Proc. IEEE Appl. Power Electron. Conf., Feb. 2008, pp. 796-800.
[17] C. E. Harm, G. Knoedl, and W. A. Nitz, 「Output voltage estimating circuit for a power converter having galvanic isolation between input and output circuits,」 U.S. Patent 5138543, Aug. 11, 1992.
[18] A. Ball and K. Valdez, 「Circuit and method for a switching power supply with primary side transformer sensing,」 US Patent 6,333,624, Dec. 25, 2001.
[19] C. W. Chang, Y. Y. Tzou, 「Primary-side sensing error analysis for flyback converters,」 in Proc. IEEE Power Electron. and Motion Control Conf., 2009, pp. 524-528.
[20] Claudio Adragna, 「Design equations of high-power-factor flyback converters based on the l6561,」 Appl. Note 1059, Sep. 2003.
[21] B. B. Wang, X. B. Ruan, K. Yao, and M. Xu, 「A single-switch ac/dc converter with power factor correction,」 IEEE Trans. Power Electron., vol. 25, pp. 592-601, March 2010.
[22] V. Vlatkovic, D.Borojevic, and F. C. Lee, 「Input filter design for power factor correction circuits,」 IEEE Trans. Power Electron., vol. 11, no. 1, pp. 199-205, Jan. 1996.
[23] R. L. Lin, H. Y. Liu, and H. M. Shih, 「AC-side CCM CS-CP-PFC electronic ballast,」 IEEE Trans. Power Electron., vol. 22, no. 3, pp. 789-796, May 2007.
[24] TM Technology, 「T6316A: Low-Dropout, Constant-Current White LED Bias Supply,」 Datasheet, Jun. 2006.
[25] A. Hren, J. Korelic, and M. Milanovic, 「RC-RCD clamp circuit for ringing losses reduction in a flyback converter,」 IEEE Trans. Analog and Digital Signal Processing, vol. 53, no. 5, pp. 369-373, May. 2006.
[26] H. K. Patel, 「Voltage transient spikes suppression in flyback converter using dissipative voltage snubbers,」 in Proc. IEEE Ind. Electron. and Appl. Conf., June 2008, pp. 897-901.

------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0026-0609201010092500
論文名稱(中文) 自激式高頻脈波LED驅動電路之研製
論文名稱(英文) Study and Implementation of High Frequency Pulse LED Driver with Self-Oscillating Circuit
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 陳昱勝
學號 n26984355
學位類別 碩士
語文別 中文
口試日期 2010-07-22
論文頁數 62頁
口試委員 指導教授-梁從主
口試委員-陳建富
口試委員-魏炯權
口試委員-李麗玲
口試委員-陳奉殷
關鍵字(中) 自激
高頻脈波
LED驅動電路
關鍵字(英) Self-oscillating
High frequency pulse
LED driver
學科別分類
中文摘要 本文主要研製一自激式高頻脈波LED驅動電路,此電路採用自激半橋串聯諧振換流器,以整流後之高頻脈波驅動LED,並量測LED在高頻脈波驅動下之發光特性。此外,於LED模組前使用四顆二極體作橋式整流,藉此提高LED的利用率,並以自激半橋串聯諧振換流器控制燈管電流的方式,藉由可飽和變壓器達成LED的電流控制。本文亦探討LED之等效電路對半橋串聯諧振換流器電路特性的影響,並分析及探討其動作原理及電壓增益。最後,實際研製一18瓦自激式高頻脈波LED驅動電路以驗證其可行性,電路操作於輸入電壓100 ~ 120 Vrms時,效率均維持在86.7%以上,最佳效率可達89.2%。
英文摘要 In this thesis, the study and implementation of high frequency pulse LED driver with self-oscillating circuit is presented. The self-oscillating half-bridge series resonant inverter is adopted to drive LED and the light emitting characteristics of LED driven with high frequency pulse voltage is also discussed. The LED module is connected with full-bridge diode rectifier to increase the utilization ratio of LED. In addition, the self-oscillating circuit with saturable transformer is used to control the current of LED. In this thesis, the effectiveness of the LED equivalent circuit on the resonant circuit and the operating principle of the self-oscillating half-bridge inverter are discussed in detail. Finally, a high frequency pulse driver is implemented to drive a 18 W LED module. Experimental results show that the circuit efficiency is over 86.5% and the maximum circuit efficiency is 89.2% when the input voltage is from 100 ~ 120 Vrms.
論文目次 目 錄
中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
圖 目 錄 VI
表 目 錄 IX
第一章 緒論 1
1.1 研究背景與目的 1
1.2 本文架構簡介 3
第二章 照明光源及自激式電路介紹 4
2.1 螢光燈 5
2.2 複金屬燈 7
2.3 發光二極體 9
2.3.1 發光二極體特性分析介紹 9
2.3.2 交流發光二極體 11
2.4 自激式電路簡介 13
2.4.1 振鈴扼流圈轉換器 13
2.4.2 羅亞電路 15
2.4.3 自激式半橋換流器 16
第三章 自激半橋串聯諧振LED驅動電路分析與探討 17
3.1 LED等效電路探討 18
3.2 可飽和鐵心介紹 20
3.3 自激半橋串聯諧振換流器電路動作原理 21
3.4 諧振網路特性分析 38
第四章 LED驅動電路設計與實驗結果 41
4.1 自激式LED驅動電路設計規格 41
4.2 啟動電路參數設計 43
4.3 半橋串聯諧振換流器參數設計 44
4.4 開關驅動電路設計 46
4.5 實作波形與數據分析 49
第五章 結論與未來展望 57
5.1 結論 57
5.2 未來展望 58
參考文獻 59

圖 目 錄
圖1.1 自激式半橋電路方塊圖 2
圖2.1 螢光燈構造圖 6
圖2.2 複金屬燈構造圖 8
圖2.3 LED發光原理示意圖 9
圖2.4 LED之電流-電壓曲線圖 10
圖2.5 AC-LED連接方式示意圖,(a) 反向並聯,(b) 橋式整流 12
圖2.6 AC-LED上之電壓與電流波形圖 12
圖2.7 振鈴扼流圈轉換器之電路架構圖 14
圖2.8 羅亞電路之架構圖 15
圖2.9 自激式半橋電路架構圖 16
圖3.1 自激式LED驅動電路架構圖 17
圖3.2 LED近似之電流-電壓曲線圖 18
圖3.3 LED等效電路,(a) LED導通,(b) LED截止 19
圖3.4 LED簡易等效電路,(a) LED導通,(b) LED截止 19
圖3.5 可飽和鐵心與一般鐵心磁滯曲線示意圖 20
圖3.6 自激半橋串聯諧振換流器電路圖 21
圖3.7 LED電流控制示意圖 22
圖3.8 自激半橋串聯諧振換流器主要波形圖 24
圖3.9 自激半橋串聯諧振換流器模式I之等效電路圖 25
圖3.10 自激半橋串聯諧振換流器模式II之等效電路圖 28
圖3.11 開關Q2的接面電容Cbe充電示意圖 31
圖3.12 自激半橋串聯諧振換流器模式III之等效電路圖 32
圖3.13 開關Q2的接面電容Cbe放電示意圖 33
圖3.14 自激半橋串聯諧振換流器模式IV之等效電路圖 34
圖3.15 自激半橋串聯諧振換流器模式V之等效電路圖 36
圖3.16 串聯諧振串聯負載電路,(a) LED導通,(b) LED截止 40
圖3.17 電壓增益曲線圖 40
圖4.1 自激式LED驅動電路圖 41
圖4.2 半橋諧振換流器增益曲線圖 45
圖4.3 vNp, ib1與vce1波形圖 50
圖4.4 vNp, ib2與vce2波形圖 50
圖4.5 vce1與iS1波形圖 51
圖4.6 vce2與iS2波形圖 51
圖4.7 vo與io波形圖 52
圖4.8 vLED與iLED波形圖 52
圖4.9 不同交流輸入電壓之LED驅動電流圖 53
圖4.10 不同交流輸入電壓之LED光輸出圖 53
圖4.11 不同交流輸入電壓之LED驅動功率圖 54
圖4.12 不同交流輸入電壓之效率圖 54
圖4.13 硬體電路與LED模組圖 55

表 目 錄
表2.1 白熾燈禁用時程表 4
表4.1 LED規格表 42
表4.2 驅動電路規格表 42
表4.3 電路元件參數規格表 48
表4.4  LED於高頻脈波驅動與直流驅動之光學特性表 56

參考文獻 參考文獻
[1] 王啟川等,「能源科技研究開發白皮書」,經濟部能源局,民國九十六年。
[2] M. T. Lin, “Multiphase voltage sources driven AC_LED,” U.S. Patent 2007/0133230 A1, Jun.14, 2007.
[3] M. Miskin and J.N. Anderson, “AC light emitting diode and AC LED drive methods and apparatus,” U.S. Patent 2007/0273299 A1, Nov. 29, 2007.
[4] LEDinside, “Ban on incandescent lamp creates immense business potential,” BeLight, vol. 3, pp. 14-16, 2010.
[5] 洪于婷,「具混合式調光之T5螢光燈換流器的研製」,國立成功大學電機工程學系碩士論文,民國九十八年六月。
[6] C. S. Moo, W. M. Chen, and H. C. Yen, “A series-resonant electronic ballast for rapid-start fluorescent lamps with programmable starting,” IEEE Proc. PCC Osaka, vol. 1, pp. 95-99, Apr. 2002.
[7] M. K. Kazimierczuk and W. Szaraniec, “Electronic ballast for fluorescent lamp,” IEEE Trans. on Power Electronics, vol. 8, no. 4, pp. 386-395, Oct. 1993.
[8] 陳衍敬,「雙級複金屬燈電子式安定器之研製」, 國立成功大學電機工程學系碩士論文,民國九十六年七月。
[9] T. J. Liang, C. M. Huang, and J. F. Chen, “Two-stage high power factor electronic ballast for metal-halide lamps,” IEEE Proc. IAS '08, pp. 1-8, Oct. 2008.
[10] T. J. Liang, C. M. Huang, and J. F. Chen, “Low-frequency square-wave electronic ballast for multiple metal halide lamps,” IET Electronics Letters, vol. 44, no. 3, pp. 234-235, Jan. 2008.
[11] 史光國,「半導體發光二極體及固體照明」,全華科技圖書股份有限公司,民國九十五年。
[12] 劉如熹、劉宇恆,「發光二極體用氧氮螢光粉介紹」,全華科技圖書股份有限公司,民國九十五年。
[13] 曾偉菁,「發光二極體發光特性與其驅動電路之研究」,國立成功大學電機工程學系碩士論文,民國九十五年七月。
[14] 郭子菱,「台灣啟動AC LED照明發展」,光連雙月刊,2009年8月no.83。
[15] 林明德,「高功率AC LED 交流電壓驅動特性研究」,國立中央大學光電科學研究所碩士論文,民國九十六年七月。
[16] 廖啟男,「三原色發光二極體操作特性研究」,國立中山大學電機工程學系碩士論文,民國九十六年七月。
[17] 郭朝龍,「具數位調光之高頻交流發光二極體驅動電路」,國立成功大學電機工程學系碩士論文,民國九十八年六月。
[18] 陳旻鴻,「交流發光二極體特性之研究」,國立成功大學電機工程學系碩士論文,民國九十八年六月。
[19] R. Elferich and P. Lurkens, “Resonant power LED control circuit with brightness and color control,” U.S. Patent 2007/0080652 A1, Apr. 12, 2007.
[20] V. B. Heinz, S. Georg, and W. Matthias, “Power driver topologies and control schemes for LEDs,” IEEE Proc. APEC 2007, pp. 1319-1325, May 2007.
[21] G. Spiazzi, S. Buso, and G. Meneghesso, “Analysis of a high-power-factor electronic ballast for high brightness light emitting diodes,” IEEE Proc. PESC '05, pp. 1494-1499, Jan. 2006.
[22] 張英彬、柯聖浩,「電子安定器之實作技術」,新文京開發出版股份有限公司,民國八十九年。
[23] 梁適安,「交換式電源供給器之理論與實務設計」,全華科技圖書股份有限公司,民國八十三年。
[24] E. Mineiro Sa, C. S. Postiglione, R. S. Santiago, F. Antunes, and A. J. Perin, “Self-oscillating flyback driver for power LEDs,” IEEE Proc. ECCE, pp. 2827-2832, Sep. 2009.
[25] 張智勝,「冷陰極螢光燈控制電路之研製」,國立成功大學電機工程學系碩士論文,民國九十三年六月。
[26] M. Gulko and S. Ben-Yaakov, “Current-sourcing push-pull parallel-resonance inverter (CS-PPRI): theory and application as a discharge lamp driver,” IEEE Trans. on Industrial Electronics, vol. 41, pp. 285-291, Jun. 1994.
[27] C. S. Moo, C. R. Lee, and Y. C. Chuang, “A protection circuit for electronic ballasts with self-excited series-load resonant inverter,” IEEE Proc. IECON, vol. 2, pp. 1116-1121, Aug. 1996.
[28] A. R. Seidel, F. E. Bisogno, and R. N. do Prado, “A design methodology for a self-oscillating electronic ballast,” IEEE Trans. on Industry Applications, vol. 43, pp. 1524-1533, Nov. 2007.
[29] A. R. Seidel, F. E. Bisogno, H. Pinheiro, and R. N. do Prado, “Self-oscillating dimmable electronic ballast,” IEEE Trans. on Industrial Electronics, vol. 50, pp. 1267-1274, Dec. 2003.
[30] E. Mineiro Sa, F. L. M. Antunes, and A. J. Perin, “Low cost self-oscillating ZVS-CV driver for power LEDs,” IEEE Proc. PESC, pp. 4196-4201, Jun. 2008.
[31] 吳財福、黃華銘,「自激式並聯諧振電子安定器專論」,全華科技圖書股份有限公司,民國八十四年。
[32] A. S. Sedra and K. C. Smith, Microelectronic Circuits , Oxford Univ. Press, 2003.
[33] E. F. Schubert , Light-Emitting Diodes, Cambridge Univ. Press, 2006.
[34] Y. R. Yang and C. L. Chen, “Steady-state analysis and simulation of a BJT self-oscillating ZVS-CV ballast driven by a saturable transformer,” IEEE Trans. on Industrial Electronics, vol. 46, pp. 249-260, Apr. 1999.
[35] “THEM-CLW 1 W power LED technical datasheet,” 2010.
[36] 吳財福、余德鴻,「電子安定器綜論」,全華科技圖書股份有限公司,民國八十六年。
[37] 李清雲,「電子安定器研製與實務考量」,國立中正大學電機工程研究所碩士論文,民國八十八年六月。
[38] T. H. Yu, H. M. Huang, and T. F. Wu, “Self excited half-bridge series resonant parallel loaded fluorescent lamp electronic ballasts,” IEEE Proc. APEC '95, vol. 2, pp. 657-664, Mar. 1995.
[39] Y. R. Yang and C. L. Chen, “Analysis of self-excited electronic ballasts using BJTs/MOSFETs as switching devices,” IET, vol. 145, pp. 95-104, Apr. 1998.
[40] Philips Semiconductors, “Self oscillating circuit for CFL 10W and CFL 18W lamps,” 1999.
[41] ON Semiconductor, “Electronic Lamp Ballast Design,” 2000.
[42] Energy Star, Energy Star Program Requirement for Solid State Lighting Luminaires, December 2008.

------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0026-1002201223272600
論文名稱(中文) 應用於液晶顯示器背光模組之高調光解析度發光二極體驅動器
論文名稱(英文) A High-Dimming-Ratio LED Driver for LCD Backlights
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 100
學期 1
出版年 101
研究生(中文) 謝遠達
學號 N2892141
學位類別 博士
語文別 英文
口試日期 2012-01-17
論文頁數 98頁
口試委員 指導教授-劉濱達
口試委員-李順裕
口試委員-張順志
口試委員-許明華
口試委員-陳建富
召集委員-黃有榕
口試委員-黃俊岳
關鍵字(中) 高調光比
多通道發光二極體驅動器
高灰階解析度
脈波寬度調變
液晶顯示器背光
關鍵字(英) high-dimming-ratio
multi-channel LED driver
high-resolution grayscale
pulse width modulation
LCD backlight
學科別分類
中文摘要 在本論文中,針對發光二極體(LED)驅動晶片(IC)中,包含保護電路、效率、電流精確度、過電流抑制等問題逐步改進其性能,進而延長電池與LED壽命,文中並提供理論上的分析與實務上的驗證。本論文所探討之LED驅動IC可用於可攜性消費性電子背光模組、汽車應用、顯示器與電視背光等應用。
在保護電路方面,本論文除了說明保護電路於LED驅動使用時的重要性,並提出三個保護機制,以避免LED、電感或驅動IC本身燒毀的狀況發生,此三種保護電路透過晶片實作與量測驗證了其保護功能。在功率轉換效率改進方面,分別利用整合蕭特基二極體與降低參考電壓的方式,減少外在元件的功率損耗,進而提升整體LED驅動器的功率轉換效率。對於LED的電流精確度,本論文提出具校正功能之高精確度LED電流驅動電路,利用校正誤差放大器的輸入偏移電壓,除可提高LED電流精確度外,並可增加功率轉換效率並減少誤差放大器之晶片面積;針對車用照明的LED驅動器,則整合類比與數位調光功能,此方法除了可以有效降低晶片封裝腳數,亦可減少車內燈光控制線路之繞線複雜度,以上兩點均可有效降低汽車電子成本。對於LED過電流抑制的控制電路,則針對LED驅動IC於PWM調光使用時LED過電流情況的改善情形,經與商用IC的量測比較,驗證本方法可有效延長LED使用壽命。最後,本論文實現一個高調光解析度的八通道整合型LED驅動晶片,僅使用單一輸入電壓,可同時驅動一個12x8的白光LED陣列,此雛型晶片除了利用量測儀器作功能量測外,亦透過驅動一個17吋的LED背光來驗證其產品之可行性。
英文摘要 This dissertation investigates the development of the light-emitting diode (LED) driver integrated circuit (IC). The efficiency, protection circuits, current accuracy, and over-current suppression of the driver are optimized. The LED lifetimes are also extended. The theoretical analysis is verified using a silicon prototype. The proposed LED driver IC can be used in backlights for portable electronic displays and TVs and automotive applications.
Three protection circuits which effectively protect the LEDs, inductor, and driver from damage are first presented. For high power conversion efficiency, an integrated Schottky diode is adopted to reduce the power consumption of off-chip devices. An offset calibration technique is used to enhance the LED current accuracy. This approach also decreases the chip area occupied by the error amplifier. For automotive applications, a hybrid dimming approach is proposed for processing both analog and digital dimming signals using only one pin. This technique reduces the wire routing complexity of automotive electronics. For pulse-width modulation dimming, an LED current suppression approach is proposed for extending the LED lifetime. Finally, an 8-channel, high-dimming-ratio LED driver with a 12x8 white LED array is applied to a 17-inch display to demonstrate the effectiveness and feasibility of the proposed techniques.
論文目次 摘要 i
ABSTRACT iii
Contents vii
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization 2
Chapter 2 Basic LED Driving Methods 4
2.1 LED I-V Characteristic 4
2.2 LED Driving Approaches 4
2.2.1. Current Restriction 4
2.2.2. Constant Voltage Source with Constant Current Sink 5
2.2.3. Variable Voltage Source with Constant Current Sink 6
2.3 Driving Multiple LEDs 7
2.3.1 Driving LEDs in Parallel 7
2.3.2 Driving LEDs in Series 8
Chapter 3 LED Driver Design for Portable Electronics 10
3.1 Boost LED Drivers for Portable Electronics 10
3.2 Integraing Schottky Diode for Improving Power Conversion Efficiency 13
3.2.1. Stability Simulation 13
3.2.2. Voltage-to-Current Converter 15
3.2.3. Successively Turned-on Gate Driver (STOGD) 16
3.2.4. Measurement Results and Discussions 18
3.3 High-Current-Accuracy LED Driver with Protection Circuit 21
3.3.1. Over Current Protection (OCP) 21
3.3.2. Over-Voltage Protection (OVP) and Under-Voltage Lock Out (UVLO) 23
3.3.3. Current Accuracy and Power Conversion Efficiency Improvement 26
3.3.4. Principle of OCC Operation 29
3.3.5. Measurement Results and Discussions 34
Chapter 4 LED Driver Design for Automotive Applications 39
4.1 SEPIC LED Driver for Automotive Applications 39
4.1.1 Hybrid Dimming Circuit Design 40
4.1.2 Experimental Results and Discussions 43
4.2 LED Current Spike Suppression Technique 49
4.2.1 Soft-start of the LED driver 56
4.2.2 LED overshoot current suppression 57
4.2.3 Measurement Results and Discussions 59
Chapter 5 Designing A High-Dimming-Ratio for LCD Backlights 66
5.1 Multiple Channel LED Driver 66
5.2 Design Concepts and Considerations 68
5.3 Circuit Implementation 70
5.3.1 Full-brightness LED current setting 71
5.3.2 Channel current mismatch reduction 73
5.3.3 Minimum channel voltage selection 74
5.3.4 Reference voltage switching circuit 76
5.4 Experimental Results and Discussions 81
Chapter 6 Conclusion 86
6.1 Conclusion 86
6.2 Future Work 87
References 88
Biography 96
參考文獻 [1]. M. Arik, R. Sharma, J. Jackson, S. Prabhakaran, C. Seeley, Y. Utturkar, S. Weaver, G. Kuenzler and B. Han, “Development of a high-lumen solid state down light application,” IEEE Trans. Compon. Packag. Technol. vol. 33, no. 4, pp. 668–679, Dec. 2010.
[2]. M. Wendt and J.-W. Andriesse, “LEDs in real lighting applications: from niche markets to general lighting,” in Proc. IEEE IAC, Oct. 2006, vol. 5, pp. 2601–2603.
[3]. M. Neary and M. Quijano “Solid state lighting for industrial locations,” in Proc. PCIC, Sep. 2009, pp. 1–7.
[4]. J. Peck, G. Ashburner and M. Schratz, “Solid state led lighting technology for hazardous environments; lowering total cost of ownership while improving safety, quality of light and reliability,” in Proc. PCIC, Jun. 2011, pp. 1–8.
[5]. M. Day, “LED-driver considerations,” Applications Journal Analog and Mixed-Signal Products, 2004. [Online], Available: http://focus.ti.com/lit/an/slyt084/slyt084.pdf
[6]. Application Note, “LED Luminaire Design Guide,” Cree, Inc. [Online], Available: http://www.cree.com/products/pdf/LED_Luminaire_Design_Guide.pdf.
[7]. Y.-H. Liu and J.-H. Teng, “Fast-Charge in Lithium-Ion Batteries for Portable Applications,” in Proc. Tel. Energy Conf., Sep. 2004, pp. 19–24.
[8]. I. Suzuki, T. Shizuki and K. Nishiyama, “High Power and Logn Life Lithium-ion Battery for Backup Power Sources,” in Proc. Tel. Energy Conf. Oct. 2003, pp. 317–322.
[9]. Y.-S. Hwang, S.-C. Wang, F.-C. Yang and J.-J. Cheng, “New Compact COMS Li-Ion Battery Charger Using Charge-Pump Technique for Portable Applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 4, pp. 705–712, Apr. 2007.
[10]. T. Y. Man, P. K. Mok and J. Chan, “A 0.9-V Input Discontinuous-Conduction-Mode Boost Converter With CMOS-Control Rectifier,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2036–2046, Sep. 2008.
[11]. Y. Leung, P. K. T. Mok, and K. N. Leung, “A 1-V integrated current mode boost converter in standard 3.3/5-V CMOS technologies,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2265–2274, Nov. 2005.
[12]. L. Xinquan, J. Ligang, H. Juncai and L. Xianrui, “The Design of A Low Voltage and High Speed Driver Circuit for Boost DC-DC Converter,” in Proc. IEEE ASICON, Oct. 2003, pp. 635–638.
[13]. T. Dake and E. Özalevli, “A Precision High-Voltage Current Sensing Circuit,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 5, pp. 1197–1202, June 2008.
[14]. W.-H. Ki, “Signal Flow Graph in Loop Gain Analysis of DC-DC PWM CCM Switching Converters,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. vol. 45, no. 6, pp. 644–655, June 1998.
[15]. B. Bryant and M. K. Kazimierczuk, “Open-Loop Power-Stage Transfer Functions Relevant to Current-Mode Control of Boost PWM Converter Operating in CCM,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 10, pp. 2158–2164, Oct. 2005.
[16]. C.-H. Lin, T. Pimenta and M. Ismail, “A Low-Voltage Low-Power CMOS V-I Converter with Rail-to-Rail Differential Input for Filtering Applications,” in Proc. IEEE ICECS, Sep. 1998, pp. 165–168.
[17]. L. Acosta, M. Jimenez, R. G. Carvajal, A. J. L.-Martin, and J. R.-Angulo, “Highly Liner Tunable COMS Gm-C Low-Pass Filter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 10, pp. 2145–2158, Oct. 2009.
[18]. T.-Y. Lo and C.-H. Hung, “A 40-MHz Double Differential-Pair CMOS OTA With -60-dB IM3,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 1, pp. 258–265, Jan. 2008.
[19]. Datasheet: LM3503, “Dual-display constant current LED driver with analog brightness control,” National Semiconductor Corporation, [Online], Available: http://www.national.com/ds/LM/LM3503.pdf
[20]. Application Note: “Boost converter LED driver using the Supertex HV9911,” Supertex Inc., [Online], Available: http://www.supertex.com/pdf/app_notes/AN-H55.pdf
[21]. Datasheet: ZXSC400, “LED driver boost converter,” Zetex Semiconductor [Online], Available: http://www.diodes.com/datasheets/ZXSC400.pdf
[22]. Datasheet: RT9285C, “Tiny package, high performance, diode embedded white LED driver,” Richtek Technology Corporation, [Online], Available: http://www.richtek.com/download_ds.jsp?s=280
[23]. M. J. M. Pelgrom, A. C. J. Duinmaijer and, A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433–1440, Oct. 1989.
[24]. K. Shibata and P. Cong-Kha, “A compact adaptive slope compensation circuit for current-mode DC-DC converter,” in Proc. IEEE ISCAS, Jun. 2010, pp. 1651–1654.
[25]. K.-H.Chen, C.-J. Chang and T.-H. Liu, “Bidirectional current-mode capacitor multiplier for on-chip compensation,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 180–188, Jan. 2008.
[26]. C.-H. Wu and C.-L. Chen, "High-Efficiency Current-Regulated Charge Pump for a White LED Driver", IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 10, pp. 763–767, Oct. 2009.
[27]. Datasheet: LM3502, “Step-up converter for white LED applications,” National Semiconductor Corporation, [Online], Available: http://www.national.com/ds/LM/LM3502.pdf
[28]. Datasheet: TPS61150A, “Dual output boost WLED driver using single inductor,” Texas Instruments Incorporated, [Online], Available: http://focus.ti.com/docs/prod/folders/print/tps61150a.html
[29]. Datasheet: MAX1553, “High-efficiency, 40V step-up converters for 2 to 10 white LEDs,” Maxim Integrated Products, [Online], Available: http://datasheets.maxim-ic.com/en/ds/MAX1553-MAX1554.pdf
[30]. Datasheet: LT3593, “1 MHz white LED driver with output disconnect and one pin current programming,” Linear Technology Corporation, [Online], Available: http://cds.linear.com/docs/Datasheet/3593f.pdf
[31]. H. -J. Chiu, Y. -K, Lo, J. -T. Chen, S. -J. Cheng, C. -Y. Lin and S. -C. Mou, "A high-efficiency dimmable LED driver for low-power lighting applications," IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 735–743, Oct. 2010.
[32]. D. Gacio, J. M. Alonso, J. Garcia, L. Campa, M. Crespo and M. Rico-Secades, “High Frequency PWM Dimming Technique for High Power Factor Converters in LED Lighting,” in Proc. IEEE APEC, Feb. 2010, pp. 743–749.
[33]. D.-H. Yoo and G.-Y. Jeong, “LCD panel sector-dimming controlled high efficiency LED backlight drive system,” in Proc. IEEE ICEMS, Nov. 2009, pp. 1–6.
[34]. J. Lu and X. Wu, “A novel multiple modes PWM controller for LEDs,” in Proc. IEEE ISCAS, May, 2009, pp. 1767–1770.
[35]. Datasheet: LTC3783, “PWM LED Driver and Boost, Flyback and SEPIC Converter,” Linear Technology, [Online], Avaliable:.
[36]. Y.-T. Hsieh, B.-D. Liu, J.-F. Wu, C.-L. Fang, H.-H. Tsai and Y.-Z. Juang, “A high current accuracy boost white LED driver based on offset calibration technique,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 4, pp. 244–248, Apr. 2011.
[37]. S. Buso, G. Spiazzi, M. Meneghini and G. Meneghesso, “Performance degradation of high-brightness light emitting diodes under DC and pulsed bias,” IEEE Trans. Device Mater. Rel., vol. 8, no. 2, pp. 312–322, Jun. 2008.
[38]. G. Nenna, M. Barra, A. Cassinese, R. Miscioscia, T. Fasolino, P. Tassini, C. Minarini and D. della Sala, “Insights into thermal degradation of organic light emitting diodes induced by glass transition through impedance spectroscopy,” J. Appl. Phys. vol. 105, no. 12, pp. 123511–123511-6, Jun. 2009.
[39]. J. W. Jang, S. Y. Choi and J. K. Son, “Degradation model of LED based on accelerated life test,” in Proc. IEEE IPFA, Jul. 2011, pp. 1-4.
[40]. Application Note: “LED Luminaire Design Guide,” Cree, Inc. [Online], Available: http://www.cree.com/products/pdf/LED_Luminaire_Design_Guide.pdf.
[41]. B.-M. Song, B. Han, A. Bar-Cohen, R. Sharma and M. Arik, “Hierarchical life prediction model for actively cooled LED-based luminaire,” IEEE Trans. Compon. Packag. Technol., vol. 33, no. 4, pp. 728–737, Dec. 2010.
[42]. G. Meneghesso, A. Chini, A. Maschietto, E. Zanoni, P. Malberti and M. Ciappa, “Electrostatic Discharge and Electrical Overstress on GaN/InGaN Light Emitting Diodes,” in Symp. IEEE EOS/ESD 2001, pp. 247–252.
[43]. Application Note, “XLamp electrical overstress,” Cree, Inc. [Online], Available: http://www.cree.com/products/pdf/XLamp_Elec_Overstress.pdf.
[44]. Application Note, “Pulsed over-current driving of XLamp LEDs: Information and Cautions,” Cree, Inc. [Online], Available: http://www.cree.com/products/pdf/XLamp-Pulsed-Current.pdf.
[45]. Datasheet: LM3401, “Hysteretic PFET controller for high power LED drive,” National Semiconductor Corp.. [Online], Available: http://www.national.com/ds/LM/LM3401.pdf.
[46]. Datasheet: HV9919, “Hysteretic, buck, high brightness LED driver with high-side current sensing,” Supertex, Inc. [Online], Available: http://www.supertex.com/pdf/datasheets/HV9919.pdf.
[47]. H. Cho and O.-K. Kwon, “A backlight dimming algorithm for low power and high image quality LCD applications,” IEEE Trans. Consum. Electron., vol. 55, no. 2, pp. 839–844,May 2009.
[48]. C.-C. Chen, C.-Y. Wu and T.-F. Wu, “Fast transition current-type burst-mode dimming control for the LED back-light driving system of LCD TV,” in Proc. IEEE PESC, Jun. 2006, pp. 1–7.
[49]. C.-H Lin, “Digital-dimming controller with current spikes elimination technique for LCD backlight electronic ballast,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1881–1888, Dec. 2006.
[50]. J. Garcia, M. A. Dalla-Costa, J. Cardesin, J. M. Alonso and M. Rico-Secades, “Dimming of high-brightness LEDs by means of luminous flux thermal estimation,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1107–1114, Apr. 2009.
[51]. Datasheet: TPS61081, “High voltage DC/DC boost converter with 0.5-A/1.3-A integrated switch,” Texas Instruments Inc. [Online], Available: http://www.ti.com/lit/gpn/tps61081.
[52]. Datasheet: MP3202, “1.3 A fixed frequency white LED driver, ” Monolithic Power System, Inc. [Online], Available: http://space.ednchina.com/ewebeditor/uploadfile/20110705085426780.pdf
[53]. J. Huijie and R. Feng, “A mixed drive method for high gray scale TFT-LCD,” in Proc. IEEE CISP, Oct. 2009, pp. 1–4.
[54]. S.-J. Kang and Y.-H. Kim, “Image integrity-based gray-level error control for low power liquid crystal displays,” IEEE Trans. Consum. Electron., vol. 55, no. 4, pp. 2401–2406, Nov. 2009.
[55]. Z. Tang, R. Feng and M. Xu, “A high gray scale TFT-LCD drive system,” in Proc. IEEE ICALIP, Jul. 2008, pp. 946–949.
[56]. M. Liu, C. Jia and Z. Chen, “A single driver chip for gray scale passive-matrix OLED,” in Proc. IEEE ICCCAS, Jun. 2006, pp. 2193–2196.
[57]. S.-H. Lee, J.-H. Park, J.-H. Yoon, M.-H. Park and S.-D. Yeo, “Improvement of response time and contrast ratio in 42-inch TFT-LCD panel for HDTV,” in Proc. IEEE ICCE, Jan. 2005, pp. 199–200.
[58]. F.-C. Wang, C.-W. Tang and B.-J. Huang, “Multivariable robust control for a red–green–blue LED lighting system," IEEE Trans. Power. Electron., vol.25, no.2, pp.417–428, Feb. 2010.
[59]. Y. X. Qin and S. Y. Ron Hui, “Comparative study on the structural designs of LED devices and systems based on the general photo-electro-thermal theory,” IEEE Trans. Power. Electron., vol.25, no.2, pp.507–513, Feb. 2010.
[60]. A. J. Duerinckx, S. J. Dwyer III and J. M. S. Prewitt, “Guest editors' introduction: Digital picture archiving and communication systems in medicine,” Computer, vol. 16, no. 8, pp. 14–16, Aug. 1983.
[61]. L. Setia, A. Teynor, A. Halawani and H. Burkhardt, “Grayscale medical image annotation using local relational features,” Pattern Recogn. Lett., vol. 29, no. 15, pp. 2039–2045, Nov. 2008.
[62]. J. Liu, J. Feng and D. Lao, “DICOM GSDF based calibration method of general LCD monitor for medical softcopy image display,” in Proc. IEEE ICBBE, Jul. 2007, pp. 6–8.
[63]. A. Kenneth, R. B. Hartwig, J. F. Michael and S. Ehsan, “Introduction to grayscale calibration and related aspects of medical imaging grade liquid crystal displays,” J. Digit. Imaging, vol. 21, no. 2, pp. 193–207, Jun. 2008.
[64]. Y. Hu and M. M. Jovanović, “LED driver with self-adaptive drive voltage,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 3116–3125, Nov. 2008.
[65]. C. C. Chen, C. Y. Wu, Y. M. Chen, and T. F. Wu, “Sequential color LED backlight driving system for LCD panels,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 919–925, May 2007.
[66]. M. Doshi and R. Zane, “Digital architecture for driving large LED arrays with dynamic bus voltage regulation and phase shifted PWM,” in Proc. IEEE APEC, 2007, pp. 287–293.
[67]. W. Yu, J.-S. Lai, H. Ma and C. Zheng, “High-efficiency DC-DC converter with twin bus for dimmable LED lighting,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2095–2100, Nov. 2008.
[68]. R. Lu, S. Gauza and S.-T. Wu, “LED-Lit LCD TVs,” Mol. Cryst. Liq. Cryst., vol. 488, pp. 246–259, Sep. 2008.
[69]. Datasheet: MAX17061, “8-string white LED driver with SMBus for LCD panel applications,” Maxim Integrated Products, Inc.[Online], Available: http://datasheets.maxim-ic.com/en/ds/MAX17061.pdf
[70]. Datasheet: LED7706, “6-rows 30 mA LEDs driver with boost regulator for LCD panels backlight,” STMicroelectronics, Inc. [Online], Available: http://www.st.com/stonline/books/pdf/docs/14390.pdf
[71]. Datasheet: LT3598, “6-string 30 mA LED driver with 1.5% current matching,” Linear Technology Corporation, [Online], Available: http://cds.linear.com/docs/Datasheet/3593f.pdf
[72]. S.-I. Hong, J.-W. Han, D.-H. Kim and O.-K. Kwon, “A double-loop control LED backlight driver IC for medium-sized LCDs,” ISSCC Dig. Tech. Papers, 2010, pp. 116-117.
[73]. J. T. Y. Su, “A material system for high precision embedded polymer resistor,” in Proc. IEEE ISAPM, Mar. 2004, pp.74–77.
[74]. E. Boulais, J. Fantoni, A. Chateauneuf, Y. Savaria and M. Meunier, “Laser-induced resistance fine tuning of integrated polysilicon thin-film resistors,” IEEE Trans. Electron. Devices, vol. 58, no. 2, pp. 572–575, Feb. 2011.
[75]. R. L. Chao, “Trimming analog circuits with solid-stage device,” IEEE Spectr., vol. 34, no. 10, pp. 63–67, Jan. 1997.
[76]. Y. Amemiya, T. Ono and K. Kato, “Electrical trimming of heavily doped polycrystalline silicon resistors,” IEEE Trans. Electron. Devices, vol. 26, no. 11, pp. 1738–1742, Nov. 1979.
[77]. Y. S. Ho, Y. L. Hsu, C. C. Lan, Y. J. Tsai, C. W. Chen, S. R. Horng, Y. K. Fang, T. C. Hu, C. P. Liu, J. J. Huang and W. K. Yeh, “Mis-matching characteristics study of P+-poly-silicon resistor in newly CMOS process technology,” in Proc. IEEE EDSSC, Dec. 2007, pp. 1133–1137.
[78]. Y. B. Acharya, and P. D. Vyavahare “Response time of light emitting diode-logarithmic electrometer,” AIP J. Rev. Sci. Instrum., vol. 69, no. 2, pp. 595–598, Feb. 1998.
[79]. S. Nakamura, J.-I. Umeda and O. NakaDa, “Response times of light-emitting diodes,” IEEE Trans. Electron. Devices, vol. 19, no. 8, pp. 995–997, Aug. 1972.
[80]. X. Wu and X. Wu, “High dimming ratio LED driver with fast transient boost converter,” in Proc. IEEE PESC, Jun. 2008, pp.4192–4195.
[81]. P. Narra and D. S. Zinger, “An effective LED dimming approach,” in Proc. IEEE IAC, Oct. 2004, pp. 1671–1676.
[82]. K. I. Hwu and W. C. Tu, “LED dimming with efficiency considered,” Electron. Lett., vol. 47, no. 7, pp. 547–458, Mar. 2011.

------------------------------------------------------------------------ 第 4 筆 ---------------------------------------------------------------------
系統識別號 U0026-1307201217362400
論文名稱(中文) 可調光發光二極體半橋LLC諧振驅動電路之研製
論文名稱(英文) Design and Implementation of a Dimmable LED Driver with Half-bridge LLC Resonant Converter
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 陳佳鴻
學號 v66992044
學位類別 碩士
語文別 中文
口試日期 2012-05-30
論文頁數 62頁
口試委員 指導教授-梁從主
口試委員-林志隆
口試委員-莫清賢
口試委員-羅有綱
口試委員-陳科宏
關鍵字(中) 半橋LLC諧振
LED驅動電路
脈波寬度調變調光
關鍵字(英) half-bridge resonant
LED driver
pulse width modulation dimming
學科別分類
中文摘要 本論文主要研製「可調光發光二極體半橋LLC諧振驅動電路」,此電路前級採用昇壓型功率因數修正電路,後級採用半橋諧振電路。功率因數修正電路採用連續電流模式並使用平均電流控制法來實現。半橋LLC諧振電路使功率開關具有零電壓切換及輸出二極體具有零電流切換以降低切換損失與頻率變化小。本論文首先探討半橋LLC諧振電路之工作原理、電壓增益分析及脈波寬度調變調光。最後實作150 W具調光發光二極體半橋LLC諧振驅動電路,輸入電壓為AC 90~264 Vrms,功率因數皆達0.98以上,效率最高達90.8%。
英文摘要 In this thesis, the design and implementation of a dimmable LED driver with half-bridge LLC resonant converter is presented. The front-stage of the proposed topology is a boost power factor correction circuit and the rear-stage is a half-bridge LLC resonant circuit. To make the PFC circuit operated in continuous conduction mode, a average current controller is used. The half-bridge LLC resonant converter enables the MOSFETs to operate at zero voltage switching and output diode to achieve zero current switching. The voltage gain and operating principle of the half-bridge LLC resonant are presented. In addition, the pulse width modulation dimming function is discussed. Finally, a half-bridge LLC resonant LED driver is implemented with input voltage 90~264 Vrms, 150 W LED module in the laboratory. Experimental results show that the power factor is over 0.98 and the maximum efficiency is up to 90.8%.
論文目次 中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
圖 目 錄 VI
表 目 錄 IX
第一章 緒論 1
1.1 研究背景與目的 1
1.2 研究內容 2
1.3 論文大綱 3
第二章 LED特性與驅動電路簡介 4
2.1 發光二極體簡介 4
2.2 功率因數修正電路介紹 7
2.2.1 簡介 8
2.2.2 昇壓型功率因數修正電路與控制模式介紹 9
2.3 發光二極體驅動電路 11
2.4半橋諧振轉換器介紹 14
2.5 調光驅動電路介紹 17
第三章 可調光發光二極體半橋LLC諧振驅動電路 20
3.1 主系統架構 20
3.2 半橋LLC諧振分析 20
3.3 半橋LLC諧振轉移函數分析 33
3.4 品質因數(Q)與K值之轉移函數分析 35
3.5 調光電路與發光二極體定電流模組 38
第四章 設計考量與實驗結果 39
4.1 前言 39
4.2 昇壓型功率因數修正電路之設計 40
4.3 半橋LLC諧振電路之設計 42
4.4 實作波形與數據分析 48
4.4.1 昇壓型功率因數修正電路 48
4.4.2 半橋LLC諧振電路與調光 50
第五章 結論與未來展望 58
5.1 結論 58
5.2 未來展望 58
參考文獻 60
參考文獻 [1] J. Brodrick, “Next-generation lighting initiative at the U.S. department of energy catalyzing science into the marketplace,” IEEE Journal of Display Technology, vol. 3, no 2, pp, 91-97, 2007.
[2] Y. K. Cheng and K. W. E. Cheng, “General study for using LED to replace traditional lighting devices, ” IEEE Proc. ICPESA, pp.173-177, 2006.
[3] N. Narendran and Y. Gu, "Life of LED-Based White Light Sources," IEEE Journal of Display Technology, vol. 1, no. 1, September 2005.
[4] S. Peralta and H. Ruda, “Applications for advanced solid-state lamps,” IEEE Industry applications magazine, vol. 4, no 4, pp. 31-42, 1998.
[5] W. G. Dawes and A. Lyne, “Improved Efficiency Constant Output Power Rectifier,” Telecommunications Energy Conference , pp, 24-27, 2000.
[6] Roberto Martinez and Prasad N. Enjeti, “A High-Performance Single-Phase Rectifier with Input Power Factor Correction”, IEEE Trans. on Power Electronics, vol. 11, no. 2, pp. 311-317, 1996.
[7] K. H. Liu, R. Qruagnti, and C. Y. Lee, “Quasi-resonant converter topologies and characteristics,” IEEE Trans. on Power Electronics, vol. PE-2, no. 1, pp. 62-71, 1987.
[8] Energy Star, Energy Star Program Requirement for Solid State Lighting Luminaires,December 2008.
[9] 謝緯杰,「LED於一般照明之應用前景」,光連雙月刊,2008年3月no.74.
[10] J. Y. Tsao, “Light emitting diodes(LEDs) for general illumination,” Optoelectronics industry development association, Oct. 2002.
[11] 史光國,「半導體發光二極體及固態照明」,全華科技圖書股份有限公司,民國九十四年。
[12] C. Kittel, Introduction to solid state physics, John Wiley & Sons, Inc. , 2004.
[13] T. J. Liang, C. M. Huang, and J. F. Chen, "Two-stage high power factor electronic ballast for metal-halide lamps," in Proc. IEEE IAS, pp. 1-8, 2008.
[14] D. A. Neamen, Semiconductor Physics and Devices, McGraw-Hill College, 2002.
[15] E. F. Schubert, Light-Emitting Diodes, Cambridge Univ. Press, 2006.
[16] A. S. Sedra and K. C Smith, Microelecrtonic Circuits, Oxford Univ. Press, 2003.
[17] 陳昱勝,「自激式高頻脈波LED驅動電路之研製」,國立成功大學電機工程學系碩士論文,民國九十九年七月。
[18] 先力光電科技股份有限公司 http://www.acpled.com .
[19] H. Wei and I. Batarseh, “Comparison of basic converter topologies for power factor correction, ” in Proc. IEEE SECON, pp. 348-353, 1998.
[20] D. S. L. Simonetti, J. Sebastian and J. Uceda, “The discontinuous conduction mode sepic and cuk power factor preregulators: analysis and design, ” IEEE Trans. on Industrial Electronics, vol. 44, no. 5, pp. 630-637, 1997.
[21] International electromechanical commission, "IEC 61000-3-2 standards: Limits for harmonic current emissions," 2005.
[22] J. S. Lai, and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous mode,” in Proc. IEEE APEC, pp. 267-273, 1993.
[23] X. Qu, S. C. Wong, and C. K. Tse, “Resonant assisted buck converter for offline driving of high brightness LED replacement lamps,” in Proc. IEEE ECCE, pp. 166-170, 2010.
[24] X. Xu and X. Wu, “High dimming ratio LED driver with fast transient boost converter,” in Proc. IEEE PESC, pp. 4192-4195, 2008.
[25] J. M. Alonso, J. Vina, D. G. Vaquero, G. Martínez, and R. Osorio, “Analysis and design of the integrated double Buck–Boost converter as a high-power-factor driver for power-LED lamps,” IEEE Trans. on Industrial Electronics, vol. 59, no. 4, pp. 1689-1697, 2012.
[26] Z. Wang, X. Wu, M. Chen, and J. Zhang, “Optimal design methodology for the current-sharing transformer in a Quasi-Resonant (QR) flyback LED driver,” in Proc. IEEE APEC, pp. 2372-2378, 2012.
[27] C. Q. Lee and S. Sooksatra, “Performance Characteristics of the full-bridge zero voltage switching PWM resonant converter,“ IEEE Trans. on Industrial Electronics,vol. 38, no. 6, pp. 462-468, 1991.
[28] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC DC conversion,” in Proc. IEEE APEC, vol. 2, pp. 1108-1112, 2002.
[29] R. Oruganti, J. J. Yang, and F. C. Lee, “Implementation of optimal trajectory control of series resonant converter,” IEEE Trans. on Power Electronics, vol. 3, no. 3, pp. 318-327, 1988.
[30] A. K. S. Bhat, “Analysis and design of a modified series resonant converter,” IEEE Trans. on Power Electronics, vol. 8, no. 4, pp. 423-430, 1993.
[31] Y. Chen, X. Wu, Z. Qian, and W. Zhang, “Design and optimization of a wide output voltage range LED driver based on LLC resonant topology, ” in Proc. ECCE Asia, pp. 2831-2837, 2011.
[32] J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” in Proc. IEEE APEC, vol. 2, pp. 728-735, 2001.
[33] Y. Hu, and M.M. Jovanovi´c, "LED driver with self-adaptive drive voltage, " IEEE Trans. Power Electronics, vol. 23, no. 6, pp. 3116-3125, 2008.
[34] D. Gacio, J. M. Alonso, J. Garcia, L. Campa, M. Crespo, and M. Rico-Secades, “High Frequency PWM Dimming Technique for High Power Factor Converters in LED Lighting,” in Proc. IEEE APEC, pp. 743-749, 2010.
[35] National Semiconductor, “L3450 LED drivers with active power factor correction and phase dimming decoder,” 2011.
[36] Infineon technologies, “Boost type CCM PFC design with ICE1PCs02,” 2005.
[37] 陳雅君,「LLC諧振轉換器之設計與研製」,國立成功大學電機工程學系碩士論文,民國九十八年六月。
[38] 梁成輝,「錯向式LLC半橋諧振轉換器之研製」,國立成功大學電機工程學系碩士論文,民國九十七年七月。
[39] R. Liu and C. Q. Lee, “The LLC-type series resonant converter-variable switching frequency control,” in Proc. 32nd Midwest Symposium on Circuits and Systems, pp. 509-512, 1990.

------------------------------------------------------------------------ 第 5 筆 ---------------------------------------------------------------------
系統識別號 U0026-1608201110453400
論文名稱(中文) 單級式高頻脈波發光二極體驅動電路設計與研製
論文名稱(英文) Design and Implementation of Single-Stage LED Driver with High Frequency Pulse
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 蔡義傳
學號 n26984339
學位類別 碩士
語文別 中文
口試日期 2011-06-15
論文頁數 62頁
口試委員 指導教授-梁從主
口試委員-黃慶連
口試委員-莫清賢
口試委員-陳建富
口試委員-鄭竣安
關鍵字(中) 單級
功因修正
高頻脈波
發光二極體驅動電路
關鍵字(英) Single-stage
Power-factor-correction
High frequency pulse
LED driver
學科別分類
中文摘要 本文主要研製一單級式高頻脈波發光二極體驅動電路,此單級電路架構結合昇壓型功因修正電路和半橋串聯諧振電路,昇壓型功因修正電路之電感電流操作在不連續導通模式,使輸入電流能追隨輸入電壓達到高功率因數;半橋串聯諧振電路之輸出以高頻弦波經由橋式整流後驅動發光二極體模組,透過變頻的方式調整發光二極體電流,文中並討論發光二極體在高頻脈波驅動下之發光特性。本文亦探討發光二極體之等效電路對半橋串聯諧振換流器電路特性的影響,並分析其動作原理及電壓增益。最後,實際研製一40 W單級式高頻脈波發光二極體驅動電路,輸入電壓可操作於100~120 Vrms,效率為92.96 %以上,最高滿載效率為93.14 %。
英文摘要 In this thesis, the design and implementation of a single-stage LED driver with high frequency pulse is presented. The proposed circuit integrates a boost power-factor-correction converter and a half-bridge resonant inverter into a single-stage LED driver. The boost inductor is operated at discontinuous conduction mode to achieve high power factor and low current harmonic distortion. The half-bridge resonant inverter is used to drive full-bridge rectified LED module. In addition, the frequency modulation method is adapted to regulate LED current. Furthermore, the effectiveness of the LED equivalent model on the resonant circuit and the light characteristics of the LED with high frequency pulse are discussed. Finally, a single-stage high frequency pulse LED driver is implemented to drive a 40 W LED module. Experimental results show that the proposed circuit can be operated at 100~120 Vrms and the highest efficiency is 93.14 %.
論文目次 中文摘要..................................I
英文摘要..................................II
誌 謝.............................III
目 錄.............................IV
表 目 錄..................................VI
圖 目 錄..................................VII
第一章 緒論..............................1
1.1 研究背景與目的......................1
1.2 本文架構簡介........................3
第二章 照明光源及發光二極體驅動電路介紹.......4
2.1 發光二極體..........................5
2.2 發光二極體等效模型分析................7
2.3 發光二極體驅動電路...................9
2.3.1. 雙級式與單級式架構介紹................9
2.3.2. 常見單級式電路簡介...................10
2.3.3. 半橋串聯諧振電路.....................13
2.3.4. 功率因數修正電路.....................14
第三章 單級式高頻脈波發光二極體驅動電路分析....17
3.1 單級式高頻脈波驅動電路................17
3.2 單級式高頻脈波驅動電路動作原理..........19
3.3 諧振網路特性分析.....................32
第四章 驅動電路設計與實驗結果................36
4.1 驅動電路設計規格.....................36
4.2 功率因數修正電路參數設計...............38
4.3 半橋串聯諧振換流器參數設計.............39
4.4 實驗波形及相關數據分析.................42
4.5 光學特性量測與分析....................53
第五章 結論與未來展望........................58
5.1 結論................................58
參考文獻.....................................60
參考文獻 [1]LEDinside,"Ban on incandescent lamp creates immense business potential," Belight, vol. 3, pp. 14-16, 2010.
[2]J. Brodrick, “Next-generation lighting initiative at the U.S. department of energy catalyzing science into the marketplace,” IEEE Journal of Display Technology, vol. 3, no. 2, 2007.
[3]Y. K. Cheng and K. W. E. Cheng, "General study for using LED to replace traditional lighting devices," IEEE Proc. ICPESA, pp. 173-177, 2006.
[4]G. Harbers, S. J. Bierhuizen, and M. R. Krames, "Performance of high power light emitting diodes in display illumination applications," IEEE Trans. Display Technology, vol. 3, no. 2, pp. 98-109, 2007.
[5]鄭宏良,「單級高功因降升壓式螢光燈電子安定器」,國立中山大學電機工程學系博士論文,民國九十年五月。
[6]J. C. W. Lam, and P. K. Jain, "A high-power-factor single-stage single-switch electronic ballast for compact fluorescent lamps," IEEE Trans. on Power Electronics, vol. 25, no. 8, pp. 2045-2058, 2010.
[7]T. J. Liang, C. M. Huang, and J. F. Chen, "Two-stage high power factor electronic ballast for metal-halide lamps," IEEE Proc. IAS'08, pp. 1-8, 2008.
[8]E. F. Schubert, Light-emitting diodes, Cambridge Univ. Press, 2006.
[9]J. Y. Tsao, "Light emitting diodes(LEDs) for general illumination," Optoelectronics industry development association, October 2002.
[10]C. Kittel, Introduction to solid state physics, John Wiley & Sons, Inc., 2004.
[11]曾偉菁,「發光二極體發光特性與其驅動電路之研究」,國立成功大學電機工程學系碩士論文,民國九十五年七月。
[12]廖啟男,「三原色發光二極體操作特性研究」,國立中山大學電機工程學系碩士論文,民國九十八年六月。
[13]C. L. Kuo, T. J. Liang, K. H. Chen, and J. F. Chen, "Design and implementation of high frequency AC-LED driver with digital dimming," IEEE Proc. ISCAS'10, pp. 3713-3716, 2010.
[14]陳昱勝,「自激式高頻脈波LED驅動電路之研製」,國立成功大學電機工程學系碩士論文,民國九十九年七月。
[15]V. B. Heinz, S. Georg, and W. Matthias, "Power driver topologies and control schemes for LEDs," IEEE Proc. APEC'07, pp. 1319-1325, 2007.
[16]郭朝龍,「具數位調光之高頻交流發光二極體驅動電路設計與研製」國立成功大學電機工程學系碩士論文,民國九十八年六月。
[17]I. H. Codas, C. S. Postiglione, C. B. Nascimento, and A. J. Perin, "A single-stage PFC converter for solid-state lighting applications," IEEE Proc. IECON'09, pp. 3490-3493, 2009.
[18]C. Qiao, and K. M. Smedley, "A topology survey of single-stage power factor corrector with a boost type input-current-shaper," IEEE Trans. Power Electronics, vol. 16, no. 3, pp. 360-368, 2001.
[19]Y. C. Chuang, Y. L. Ke, H. S. Chuang, and C. C. Hu, "Single-stage power factor correction circuit with flyback converter to drive LEDs for lighting applications," IEEE Proc. IAS'10, pp. 1-9, 2010.
[20]D. G. Lamar, J. S. Zuniga, A. R. Alonso, M. R. Gonzales, and M. M. H. Alvarez, "A very simple control strategy for power factor correctors driving high-brightness LEDs," IEEE Trans. Power Electronics, vol. 24, no. 8, pp. 2032-2042, 2009.
[21]Z. M. Ye, F. Greenfeld, and Z. X. Liang, "A topology study of single-phase offline AC/DC converters for high brightness white LED lighting with power factor pre-regulation and brightness dimmable," IEEE Proc. IECON'08, pp. 1961-1967, 2008.
[22]Y. Q. Hu, L. Huber, and M. M. Jovanovic, "Single-stage flyback power factor correction front-end for HB LED Application," IEEE Proc. IAS'09, pp. 1-8, 2009.
[23]Z. M. Ye, F. Greenfeld, and Z. X. Liang, "Single-stage offline SEPIC converter with power factor correction to drive high brightness LEDs," IEEE Proc. APEC'09, pp. 546-553, 2009.
[24]D. L. O'Sullivan, M. G. Egan, and M. J. Willers, "A family of single stage resonant AC/DC converters with PFC," IEEE Trans. on Power Electronics, vol. 24, no. 2, pp. 398-408, 2009.
[25]E. Minerio Sa, F. L. M. Antunes, and A. J. Perin, "Low cost self-oscillating ZVS-CV driver for power LEDs," IEEE Proc. PESC'08, pp. 4196-4201, 2008.
[26]R. Elferich, P. Lurkens, "Resonant power LED control circuit with brightness and color control," US 20070080652 A1.
[27]International electromechanical commission, "IEC 61000-3-2 standards: Limits for harmonic current emissions," 2005.
[28]Energy Star, Energy Star Program Requirement for Solid State Lighting Luminaires, December 2008.
[29]T. J. Liang, S. C. Kang, C. A. Cheng, R. L. Lin, and J. F. Chen, "Analysis and design of single-stage electronic ballast with bridgeless PFC configuration," IEEE Proc. IECON'03, pp. 503-508, 2003.
[30]H. L. Chen, C. S. Moo, and W. M. Chen, "A novel single-stage high-power-factor electronic ballast with symmetrical topology," IEEE Trans. on Industrial Electronics, vol. 50, no. 4, pp. 759-766, 2003.
[31]N. Moham, T. M. Undealand, and W. P. Robbins, Power Electronics, Wiley, 2002.
[32]A. Sadiku, Fundamentals of Electric Circuits, McGraw-Hill, 2007.
[33]梁適安,「交換式電源供給器之理論與實務設計」,全華科技圖書股份有限公司,民國八十三年。
[34]Datasheets of the LED, http://www.nantec-led.com/index.php/tw/
[35]Pan Jit International Inc., "Ultrafast switching rectifier."
[36]ST Microelectronics, "L6574, CFL/TL ballast driver preheat and dimming," 2003.
[37]ST Microelectronics, "20 W dimmable CFL ballast solution," 2007.
[38]W. F. Feng, Y. Z. He, and F. G. Shi, "Investigation of LED light output performance characteristics under different alternating current regulation modes, " IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, pp. 720-723, 2011.
[39]S. Buso, G. Spiazzi, M. Meneghini, and G. Meneghesso, "Performance degradation of high-brightness light emitting diodes under DC and pulsed bias," IEEE Trans. on Device and Materials Reliability, vol. 8, no. 2, pp. 312-322, 2008.
[40]D. Gacio, J. M. Alonso, A. J. Calleja, J. Garcia, and M. Rico-Secades, "A universal-input single-stage high-power-factor power supply for HB-LEDs based on integrated buck-flyback converter," IEEE Trans. on Industrial Electronics, vol. 58, pp. 589-599, 2011.
[41]T. Z. Liu, S. S. Wang, S. Song, and T. Ai, "Research on high-efficiency driving technology for high power LED lighting," IEEE Proc. APPEEC, pp. 1-4, 2010.
[42]On semiconductor, "90-135 Vac up to 15 watt dimmable LED driver demo board operation," 2010

------------------------------------------------------------------------ 第 6 筆 ---------------------------------------------------------------------
系統識別號 U0026-1807201213511000
論文名稱(中文) 可調光發光二極體之數位可定址照明介面控制電路研製
論文名稱(英文) Design and Implementation of Dimmable LED Control Circuit with DALI Protocol
校院名稱 成功大學
系所名稱(中) 電機工程學系專班
系所名稱(英) Department of Electrical Engineering (on the job class)
學年度 100
學期 2
出版年 101
研究生(中文) 黃振豐
學號 q67981253
學位類別 碩士
語文別 中文
口試日期 2012-06-21
論文頁數 51頁
口試委員 指導教授-梁從主
口試委員-林瑞禮
口試委員-謝冠群
口試委員-陳耀銘
口試委員-曾國境
關鍵字(中) 單級
功因修正
DALI
發光二極體驅動電路
關鍵字(英) Single stage
Power factor correction
DALI
LED driver
學科別分類
中文摘要 本文主要研究為照明之數位可定址照明介面協定,並探討將此協定應用在發光二極體照明系統的可行性。本文中對數位可定址調光介面協定相關內容有詳盡之介紹,並介紹高功因返馳式轉換器之架構。在實作部份本文以Microsoft之Visual C#開發人機介面,使用者可以透過此程式下達指令,電腦與控制電路之間採用USB介面來連接。最後,利用Microchip的PIC單晶片做為控制電路與發光二極體驅動電路的調光與接收控制訊號電路,並針對協定內容撰寫程式完成符合數位可定址照明介面協定之系統。此系統之特色除了可以將電子控制裝置單獨控制調光之外,亦可對多組燈所組成的群組作群組控制,以及利用廣播模式作集體控制。實作之負載為3組LED模組,每個模組各含36顆紅光LED與13顆藍光LED。
英文摘要 In this thesis, a digital addressable lighting interface (DALI) protocol is studied and applied to a Light Emitting Diode (LED) lighting system. The DALI protocol was introduced and the dimmable LED drivers were realized. The user interface program in this system was developed by using the Microsoft Visual C#. Also, a USB–DALI conversion bridge circuit was also built for communication between the computer and the LED driver. In addition, a micro-controller PIC 16F684 was used for dimming control, processing DALI signal, and coding the protocol program. Finally, a lighting system prototype based on DALI protocol was implemented. The output loads are three LED modules, each module includes 36 red LEDs and 13 blue LEDs. The DALI lighting control modes including individual, group, and broadcast are realized in the laboratory prototype.
論文目次 摘 要 I
英文摘要 II
誌 謝 III
圖 目 錄 VI
第一章 緒論 1
1.1 研究背景與目的 1
1.2 本文架構簡介 3
第二章 發光二極體及驅動電路介紹 4
2.1 發光二極體發光原理簡介 5
2.2 發光二極體之電壓-電流特性 6
2.3 發光二極體驅動電路 7
第三章 高功因返馳式轉換器與數位可定址調光介紹 13
3.1 高功因返馳式轉換器介紹與實現 14
3.2 數位可定址調光介面之背景與由來 18
3.3 數位可定址調光介面之電路架構介紹 19
3.4 傳輸位元組定義及傳輸規範 25
3.5 測試與驗證 32
第四章 電路實作與量測 34
4.1 驅動電路設計規格 34
4.2 USB - DALI橋接電路 36
4.3 人機介面設計 37
4.4 電路實作波形量測 39
4.5 實際電路搭配LED模組測試結果 44
第五章 結論與未來展望 48
5.1 結論 48
5.2 未來展望 49
參考文獻 50
參考文獻 [1] 工業研究院網站: http://college.itri.org.tw。
[2] 經濟部能源局,「照明系統Q&A節能技術手冊」。
[3] 節約能源園區網站: http://www.energypark.org.tw。
[4] J. C. Juang, H. C. Wang, C. L. Lu, W. M. Chen, and C. W. Hsu, "A Touch-Dim Network for the Dimming Control of Lighting System," IEEE International Conference on Computational Aspects of Social Networks, pp.183 - 186, 2010.
[5] 藍德欽,「以 DALI為基礎之螢光燈照明系統研究」,國立成功大學電機工程學系碩士論文,民國九十五年七月。
[6] O. Petrov, M. Dimitrov, and V. Ruseva, "A specialised system for dynamic control and adjustment of the colour temperature and illumination of a lighting system," IEEE International Conference on Environment and Electrical Engineering, pp.1-3, 2011.
[7] LEDinside網站:http://www.ledinside.com.tw。
[8] D.A. Steigerwald, "Illumination With Solid State Lighting Technology," IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, no. 2, pp.310-320, 2002.
[9] 中華民國光電學會,「LED工程師基礎概念與應用」,五南圖書出版股份有限公司,2012年4月。
[10] 陳旻鴻,「交流發光二極體特性之研究」,國立成功大學電機工程學系碩士論文,民國九十八年六月。
[11] 蔡義傳,「單級式高頻脈波發光二極體驅動電路設計與研製」,國立成功大學電機工程學系碩士論文,民國一百年七月。
[12] B. Wang, X. Ruan, K. Yao, and M. Xu, "A Method of Reducing the Peak-to-Average Ratio of LED Current for Electrolytic Capacitor-Less AC–DC Drivers," IEEE Transactions on Power Electronics, vol.25, no. 3, pp.592-601, 2010.
[13] J. Sebastián, D. G. Lamar, M. Arias, M. Rodríguez, and M. M. Hernando, "A very simple control strategy for Power Factor Correctors driving High-Brightness Light-Emitting Diodes", IEEE APEC, pp.537-543, 2008.
[14] S. J. Cheng, Y. C. Yan, C. C. Chuang, H. J. Chiu, Y. K. Lo, and S. C. Mou, "A Single-Stage High Efficiency High Power Factor LED Driver," IEEE Vehicle Power and Propulsion Conference, pp.1416-1420, 2009.
[15] J. Chen, "Analysis and Design of a Low-Stress Buck-Boost Converter in Universal-Input PFC Applications," IEEE Transactions on Power Electronics, vol.21, no. 2, pp.320-329, 2006.
[16] D. Lamar, J. Zuniga, R. Alonso, M. Gonzales, and M. Hernando, "A very simple control strategy for power factor correctors driving high-brightness LEDs," IEEE Trans. Power Electronics, vol. 24, no. 8, pp.2032-2042, 2009.
[17] International electromechanical commission, "IEC 61000-3-2 standards: Limits for harmonic current emissions," 2005.
[18] Energy Star, Energy Star Program Requirement for Solid State Lighting Luminaires, December 2008.
[19] W. K. Lun, "Bilevel Current Driving Technique for LEDs," IEEE Transations on Power Electronics, vol. 24, no. 12, pp.2920-2932, 2009.
[20] P. Narra, and D. S. Zinger, "An Effective LED Dimming Approach," IEEE Industry Applications Conference, 39th IAS Annual Meeting, pp.1671-1676, 2004.
[21] W.A. Rodrigues, L.M.F. Morais, P.F. Donoso-Garcia, P.C. Cortizo, S.I. Seleme JR," Comparative Analysis of Power LEDs Dimming Methods," IEEE 37th Annual Conference on IEEE Industrial Electronics Society, pp.2907-2912, 2011.
[22] ST Microelectronics, " Design equations of High-Power-Factor Flyback Converters Based on the L6561," 2003.
[23] DALI-AG, http://www.dali-ag.org.
[24] P. F. Hein, "DALI- A Digital Addressable Lighting Interface For Lighting Electronics," IEEE Industry Applications Conference, 36th IAS Annual Meeting, pp.901-905, 2001.
[25] H. Li, M. Wu, and Y. Zhong, " Development and research of lighting system based on DALI," IEEE Conference on Industrial Electronics and Applications, pp.1302-1307, 2008.
[26] USB網站:http://www.usb.org。
[27] 許永和,「USB規格與理論剖析」,儒林圖書有限公司,2009年9月。
[28] IEC60929 : AC-supplied electronic ballast for tubular fluorescent lamps – performance requirements, 2006.
[29] 蔡文龍,曹祖聖,吳昱宗,「Visual C# 2010基礎必修課」,碁峰資訊股份有限公司,2011年6月。
[30] Microchip網站:http://www.microchip.com。

------------------------------------------------------------------------ 第 7 筆 ---------------------------------------------------------------------
系統識別號 U0026-2307201211453500
論文名稱(中文) 具均流之發光二極體驅動電路設計與研製
論文名稱(英文) Design and Implementation of a LED Driver with Current Balancing
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 郭子瑄
學號 n26994449
學位類別 碩士
語文別 中文
口試日期 2012-05-30
論文頁數 60頁
口試委員 指導教授-梁從主
口試委員-陳建富
口試委員-莫清賢
口試委員-鄭竣安
口試委員-顏豪呈
關鍵字(中) 均流電路
發光二極體驅動電路
半橋串聯諧振換流器
關鍵字(英) Current balancing
LED driver
Half-Bridge series resonant circuit
學科別分類
中文摘要 本文研製一具均流之發光二極體驅動電路,此電路架構包含前級昇壓型功率因數修正電路和後級半橋串聯諧振電路,此驅動電路並具有均流功能,以平衡多串發光二極體之電流。本文將探討發光二極體等效電路對半橋串聯諧振換流器電路特性之影響與其電路動作原理,並對所提出之均流策略進行特性分析與設計考量。最後實際研製一具均流之發光二極體驅動電路,驅動4個發光二極體負載模組,每模組包含15 顆1W白光發光二極體,以驗證理論分析之可行性,輸入電壓可操作於90~260 Vrms,效率為84.3%以上,最高滿載效率為87.9%。
英文摘要 In this thesis, the design and implementation of a LED driver with current balancing are presented. The proposed driver includes a boost power factor correction converter as front-stage and a half-bridge resonant inverter as rear-stage. With the current balancing scheme, the driver is suitable to drive the multi-string LEDs. The effect of the LED equivalent model on the resonant circuit and the driver operating principles are discussed. The design and characteristics of proposed current balancing scheme are also considered. Finally, a two-stage LED driver with current balancing is implemented to drive 4 strings LED module, which contains 15 pieces 1W white light LEDs for each string. Experimental results show that the proposed circuit can be operated at 90~264Vrms AC input voltage range and the highest efficiency is 87.9 %.
論文目次 摘 要 I
英文摘要 II
誌 謝 III
目 錄 IV
表 目 錄 VI
圖 目 錄 VII
第一章 緒論 1
1.1 研究背景與目的 1
1.2 本文架構簡介 3
第二章 發光二極體及其驅動電路介紹 4
2.1 發光二極體及其等效電路分析 5
2.2 發光二極體驅動電路 8
2.2.1 常見發光二極體驅動電路架構介紹 8
2.2.2 半橋串聯諧振電路 9
2.2.3 功率因數修正電路 10
2.3 發光二極體均流驅動電路 13
第三章 發光二極體均流驅動電路分析 16
3.1功率因數修正電路 16
3.2 半橋串聯諧振換流器 19
3.2.2 諧振網路特性分析 30
3.2.3 均流電路特性分析 32
第四章 驅動電路設計與實驗結果討論 36
4.1 驅動電路系統規格 36
4.2 功率因數修正電路參數設計 38
4.3 均流電容及半橋串聯諧振換流器參數設計 39
4.4 實驗波形及相關數據討論 43
4.5 均流效果與光學特性量測與討論 51
第五章 結論與未來展望 56
5.1 結論 56
5.2 未來展望 57

參考文獻 [1] J. Brodrick, "Next-Generation Lighting Initiative at the U.S. Department of Energy Catalyzing Science into the Marketplace," IEEE Journal of Display Technology, vol. 3, no. 2, pp.91-97, 2007.
[2] E. F. Schubert, Light-Emitting Diodes, Cambridge Univ. Press, 2006.
[3] N. Narendran and Y. Gu, "Life of LED-Based White Light Sources," IEEE Journal of Display Technology, vol. 1, no. 1, pp. 167-171, Sep. 2005.
[4] Y. K. Cheng and K. W. E. Cheng, "General Study for Using LED to Replace Traditional Lighting Devices," IEEE Proc. ICPESA, pp. 173-177, 2006.
[5] LEDinside,"Ban on Incandescent Lamp Creates Immense Business Potential," Belight, vol. 3, pp. 14-16, 2010.
[6] M. T. Lin, "Multiphase Voltage Sources Driven AC-LED," US7701149, Apr. 2010.
[7] 郭朝龍,「具數位調光之高頻交流發光二極體驅動電路設計與研製」,國立成功大學電機工程學系碩士論文,民國九十八年六月。
[8] 陳旻鴻,「交流發光二極體特性之研究」,國立成功大學電機工程學系碩士論文,民國九十八年六月。
[9] 林明德,「高功率AC LED交流電壓驅動特性研究」,國立中央大學光電科學碩士論文,民國九十六年七月。
[10] Cree Sets New R&D Performance Record with 254 lm/W Power LED (2012, Apr. 12) . [Online]. Available: http://www.ledsmagazine.com/press/34764.
[11] 李麗玲、李清然、黃素琴,「照明節能介紹與範例探討」,工業技術研究所,能源與環境研究所,民國九十八年。
[12] I. L. Azevedo, M. G. Morgan, and F. Morgan, "The Transition to Solid-State Lighting, " IEEE Proc. Invited paper, vol. 97, no. 3, pp. 481-510, 2009.
[13] 廖啟男,「三原色發光二極體操作特性研究」,國立中山大學電機工程學系碩士論文,民國九十八年六月。
[14] I. H. Codas, C. S. Postiglione, C. B. Nascimento, and A. J. Perin, "A Single-Stage PFC Converter for Solid-State Lighting Applications," IEEE Proc. IECON'09, pp. 3490-3493, 2009.
[15] Y. C. Chuang, Y. L. Ke, H. S. Chuang, and C. C. Hu, "Single-Stage Power Factor Correction Circuit with Flyback Converter to Drive LEDs for Lighting Aapplications," IEEE Proc. IAS'10, pp. 1-9, 2010.
[17] D. G. Lamar, J. S. Zuniga, A. R. Alonso, M. R. Gonzales, and M. M. H. Alvarez, "A Very Simple Control Strategy for Power Factor Correctors Driving High-Brightness LEDs," IEEE Trans. Power Electronics, vol. 24, no. 8, pp. 2032-2042, 2009.
[17] Z. M. Ye, F. Greenfeld, and Z. X. Liang, "A Topology Study of Single-Phase Offline AC/DC Converters for High Brightness White LED Lighting with Power Factor Pre-Regulation and Brightness Dimmable," IEEE Proc. IECON'08, pp. 1961-1967, 2008.
[18] R. L. Steigerwald, " A Comparison of Half-Bridge Resonant Converter Topologies," IEEE Trans. Power Electronics, vol. 3, no. 2, pp. 174-182, Apr. 1988.
[19] E. M. Sa, F. L. M. Antunes, and A. J. Perin, "Low Cost Self-Oscillating ZVS-CV Driver for Power LEDs," IEEE Proc. PESC'08, pp. 4196-4201, 2008.
[20] R. Elferich and P. Lurkens, "Resonant Power LED Control Circuit with Brightness and Color Control," US 20070080652 A1, Apr. 2007.
[21] International electromechanical commission, "IEC 61000-3-2 standards: Limits for Harmonic Current Emissions," 2005.
[22] Energy Star, "Energy Star Program Requirement for Solid State Lighting Luminaires, " Dec. 2008.
[23] S. Choi, P. Agarwal, T. Kim, J. Yang, and B. Han, "Symmetric Current Balancing Circuit for Multiple DC loads, " IEEE Applied Power Electronics Conference (APEC) Proc., pp. 512-518, 2010.
[24] Texas Instruments, "Ballast Resistor Calculation-Current Matching in Parallel LEDs," Apr. 2009.
[25] Y. Hu and M.M. Jovanovi´c, "LED Driver With Self-Adaptive Drive Voltage, " IEEE Trans. Power Electronics, vol. 23, no. 6, pp. 3116-3125, 2008.
[26] W. K. Lun, K. H. Loo, S. C. Tan, Y. M. Lai, and C. K. Tse, "Bilevel Current Driving Technique for LEDs, " IEEE Trans. Power Electronics, vol. 24, no. 12, pp. 2920-2930, 2009.
[27] Y. Hu and M.M. Jovanovi´c, "A New Current-Balancing Method for Paralleled LED Strings," IEEE Applied Power Electronics Conference (APEC) Proc., pp. 705-712, 2011.
[28] K. H. Jung, J. W. Yoo, and C. Y. Park, "A Design of Current Balancing Circuit for Parallel Connected LED strings using Balancing Transformers," IEEE Power Electronics and ECCE Asia (ICPE & ECCE), pp. 528-535, 2011.
[29] K. I. Hwu and S. C. Chou, "A Simple Current-Balancing Converter for LED Lighting" IEEE Applied Power Electronics Conference (APEC) Proc, pp. 587-590, Feb. 2009.
[30] J. Zhang, J. Wang, and X. Wu, "A Capacitor-Isolated LED Driver with Inherent Current Balance Capability," IEEE Trans. Industrial Electronics, vol. 59, no. 4, pp. 1708-1716, 2011.
[31] S. M. Baddela and D. S. Zinger, "Parallel Connected LEDs Operated at High Frequency to Improve Current Sharing," IEEE Industry Applications Conference, 2004.
[32] ST Microelectronics, "L6561, Power Factor Corrector," 2004.
[33] ST Microelectronics, "AN996 Application note, L6561, Enhanced Transition Mode Power factor Corrector," 2003.
[34] Datasheets of the LED, http://www.nantec-led.com/index.php/tw/.
[35] Motorola, "Switching Mode Power Rectifier, MUR160," 1996.
[36] W. F. Feng, Y. Z. He, and F. G. Shi, "Investigation of LED Light Output Performance Characteristics Under Different Alternating Current Regulation Modes, " IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, pp. 720-723, 2011.
[37] ST Microelectronics, "L6574, CFL/TL Ballast Driver Preheat and Dimming," 2003.
[38] ST Microelectronics, "AN993, Electronic Ballast with PFC Using L6574 and L6561," 2003.

 


如您有疑問,請聯絡圖書館
聯絡電話:(06)2757575#65773
聯絡E-mail:etds@email.ncku.edu.tw