進階搜尋

 
查詢範圍:「   」
顯示範圍:第筆 論文書目資料
顯示格式:全部欄位
共 12 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911145996
論文名稱(中文) 第三代行動通信與無線區域網路服務之比較分析
論文名稱(英文) none
校院名稱 成功大學
系所名稱(中) 電信管理研究所
系所名稱(英) Institute of Telecommunications and Management
學年度 92
學期 2
出版年 93
研究生(中文) 胡志男
學號 r9690111
學位類別 碩士
語文別 中文
口試日期 2004-06-18
論文頁數 90頁
口試委員 指導教授-高凱聲
指導教授-陳文字
口試委員-林福林
口試委員-魏健宏
關鍵字(中) 第三代行動通信
國際電信聯盟
交遞
頻譜
無線區域網路
關鍵字(英) WLAN
spectrum
handover
ITU
3G
學科別分類
中文摘要   第三代行動通信(Third Generation Wireless Communications)的標準是由國際電信聯盟(International Telecommunication Union,簡稱ITU)規劃,希望能夠在第二代行動通訊的既有基礎之上,提供用戶高速率的數據傳輸、更有效地運用頻譜、行動商務服務、多媒體影音服務、及用戶可隨時透過無線終端設備進行個人通訊,並實現全球漫遊(Global Roaming)的終極目標等為發展的主要目標。
  IMT-2000頻譜分配是1875MHz到1975MHz和2110MHz到2160MHz。考慮到包含在細胞到細胞交遞(cell-to-cell handoff)中的需求,傳輸速度的目標是固定不移動時2Mbps、行走或慢速移動時384Kbps和移動時144Kbps,在行動性方面,3G則較無線區域網路的表現為佳。
電信業者正致力於第三代(Third Generation,簡稱3G)無線通訊網路建設及發展所能提供的服務的同時,無線區域網路(Wireless Local Area Network,簡稱WLAN)發展的速度是如此令人刮目相看。
IEEE 802.11標準的制定與無線傳輸技術的成熟帶來市場的突破,面對行動資訊時代的來臨及網路媒體的多樣性,人們對於快速且可靠的數據傳輸需求與日俱增,在傳輸速率方面的表現,是以WLAN為優,因此本論文將對時下提供資訊行動化最熱門的無線網路技術,即第三代行動通信與無線區域網路服務作比較分析。
  將由無線電技術及以成大校園為建置的主體所需要的成本二構面分析第三代行動通信及無線區域網路,並對未來的發展及市場提出個人看法及建議。
英文摘要   The standard of the third generation wireless communication was planned by International Telecommunication Union (ITU) and based on the second mobile communication 3G hope to provide users with high data transmission rate, mobile e-commerce, video streaming, multimedia service. Users can communicate through wireless equipments. In addition, it will raise the utilization of spectrum and realize the global roaming.
  The frequency bands for IMT-2000 are form 1900MHZ to 1980MHz and from 2010MHz to 2179MHz. Considering the requirement of cell-to-cell handoff, the data rate is 2Mbps when stationary, 384kbps when walking or moving slowly and 144kbps when moving quickly. 3G has better performance than WLAN in mobility.
  When telecommunication operators were focusing on the infrastructure and the services of 3G, WLAN was unbelievable to develop so fast.IEEE 802.11 standard and the technology of wireless transmission will grow the telecommunication market. Facing the coming of mobile service and the variety of internet multimedia, the necessities of high data transmission rate and security are increasing day by day. WLAN perform better in data transmission rate. Therefore, this thesis will discuss the comparison between 3G and WLAN which are the popular wireless network technologies today.
  We will analyze the wireless technology and the cost of implementing the network of National Cheng Kong University and give some opinions and suggestions for the development in future.
論文目次 目錄
第一章 緒論 1
第一節 研究動機與背景 2
第二節 研究目的、流程、範圍與限制 3
第二章 文獻探討 5
第一節 第三代行動通信介紹及發展概況 5
第二節 無線區域網路發展概況 11
第三章 研究架構與方法 19
第一節 無線電技術構面 19
第二節 建置成本構面 20
第四章 3G與WLAN無線電技術之比較 25
第一節 3G之通訊技術分析 25
第二節 WLAN之通訊技術分析 38
第三節 3G與WLAN之通訊技術比較 58
第五章 3G與WLAN RF網路設計及分析 60
第一節 利用3G技術建構成大校園室外覆蓋 60
第二節 以3G技術設計成大建築物室內覆蓋 61
第三節 利用IEEE 802.11g/a設計成大室外覆蓋 63
第四節 以IEEE 802.11g/a設計成大建築物室內覆蓋 74
第五節 小結 79
第六章 結論與建議 82
附件一 成大室內覆蓋之微細胞、天線及分頻器數量估計 84
附件二 成大主要建築物及位置 86
參考文獻 88
參考文獻 【中文資料】
1.「第三代行動通信執照競價釋出整體規劃研究案」,日商野村總合研究所,行政院經建會委託研究,民國九十年二月二十七日。
2.林道燊,「我國無線區域網路發展現況」,台灣工業銀行產業研究報告,民國九十一年二月。
3.張正蔚,「行動網路系統業者之策略定位」,國立台灣大學商學研究所碩士論文,民國九十一年。
4.林政芳,「公眾無線區域網路服務之研究」,國立交通大學科技管理研究所碩士論文,民國九十一年。
5.高凱聲,「3G發展及執照發放之省思」,通訊雜誌81期,民國八十九年十月。
6.林傑斌、秦美惠、羅傑克,「WLAN&行動通訊網路」,台北市:文魁資訊,民國九十二年。
7.鄭同伯,「WLAN無線網路系統剖析與應用」,台北縣:博碩文化,民國九十二年。
8.張志文, 陳名吉,「W-CDMA行動通訊系統」,台北市:全華圖書,民國九十二年。

【英文資料】
1.James D. Solomon, “Mobile IP, The Internet Unplugged,” Prentice Hall, 1997.
2.Jaseph C. Liberti, JR. and Theodore S. Rappaport, “Smart Antennas for Wireless Communications”, Pretice Hall, 1999.
3.Magnus Madfors, “High Capacity with Limited Spectrum in Cellular Systems,” IEEE Communications Magazine Aug. 1997.
4.Don Tapscott, David Ticoll, and Alex Lowy, “Digital Capital: Harnessing the power of business web,” 2001.
5.IEEE Standards for local and metropolitan area networks: Standard for port based network access control. IEEE Draft P802.1X, March 2001.
6.Heikki Kaaranen, AriAhtiainen, Lauri Laitinen, Siamak Naghian, Valtteri Niemi, “UMTS Networks Architecture, Mobility and Services,” John Wiley & Sons, 2001.
7.IEEE Standard 802.11-1999-Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications.
8.IEEE Standard 802.11a-1999-Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band.
9.IEEE Standard 802.11b-1999-Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer Extension in the 2.4 GHz Band.
10.IEEE Standard 802.11g-2003-Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Further Higher Data Rate Extension in the 2.4 GHz Band.
11.L. Hanzo, “OFDM and MC-CDMA for broadband multi-user communications, WLANs, and broadcasting,”John Wiley & Sons, 2003.

【網站資料】
1.http://www.find.com.tw
2.http://www.itu.int
3.http://www.nii.org.tw
4.http://www.ericsson.com
5.http://www.nokia.com
6.http://www.3g.com.tw
7.http://www.dgt.gov.tw
8.http://www.chinatelecom.com.cn
9.http://www.agilent.com
10.http://www.ti.com.tw
11.http://iii.org.tw
12.http://www.3gpp.org
13.http://www.3gpp2.org

------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200913474365
論文名稱(中文) 以模糊邏輯實現服務導向之IEEE 802.16e換手機制
論文名稱(英文) Service-oriented IEEE 802.16e Handover Scheme Using Fuzzy Logic
校院名稱 成功大學
系所名稱(中) 資訊工程學系碩博士班
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 彭玉池
學號 P7694164
學位類別 碩士
語文別 中文
口試日期 2007-07-11
論文頁數 51頁
口試委員 指導教授-鄭憲宗
口試委員-黃崇明
口試委員-高榮鴻
口試委員-許健平
口試委員-劉崇汎
關鍵字(中) 選擇基地台
模糊邏輯
換手
WiMAX
IEEE 802.16e
關鍵字(英) handover
WiMAX
fuzzy logic
base station selection
IEEE 802.16e
學科別分類
中文摘要 當我們提起無線通訊網路,許多為技術陸續被發展出來為了滿足不同使用者對於網路的需求。其中IEEE 802.16e這個標準則是目前最熱門的議題之一,近幾年來許多論文與產品紛紛被發表出來。而當我們在討論行動通訊時,基地台之間換手(Handover)是一個相當關鍵的程序。在IEEE 802.16e標準中,對於如何在周圍基地台(Neighbor BS)中選擇一個最佳的基地台來當作行動用戶台(MSS)的換手對象是一個開放的議題。目前大部分為大家所使用的方式是採用RSSI最強的BS來當作目標基地台,但是能夠提供最強的RSSI訊號的基地台並不一定代表該基地台能夠提供行動用戶台最好的服務。在換手的過程中,除了RSSI之外尚有其他參數可用以輔助決策,例如CINR、relative delay以及可用頻寬(Available Bandwidth)等。本文設計了一個模糊決策系統將這些參數當作輸入來進行最佳目標基地台的選擇,而我們所設計的是一個以服務導向的機制,目的就是要貼近使用者目前使用服務的需求。因此本文針對了不同的服務型態有不同的設計方式。最後我們使用NS-2進行我們的模擬實驗,模擬IEEE 802.16的換手行為並對本文所提出的機制做驗證。
英文摘要 In wireless communication networks, several technologies have been developed to satisfy various needs when transmitting data. The IEEE 802.16e standard is one of the most popular issues being discussed in recent years. When we talk about mobile communications, handover is an essential issue. In the handover decision procedure of the IEEE 802.16e standard, how to select the best target BS from neighbor BSs for the MSS further handover is an open issue. In general way the serving BS always chose the BS with the strongest RSSI as the MSS’s target BS. However, the most RSSI doesn’t mean the BS have the most resource or have the best quality. There are still other indicators to assist decision, such as CINR, relative delay, and available bandwidth. We design a fuzzy decision system and utilize these useful parameters as inputs to select the target BS which can best serve the MSS. What we propose is a service-oriented handover scheme and design different criteria according to different service type. Then we simulate the handover process in NS-2 and verify our scheme.
論文目次 摘要 i
Abstract iv
致謝 v
圖目錄 vii
表目錄 viii
第一章 :論文簡介 1
1-1:前言 1
1-2:動機 2
1-3:論文架構 3
第二章 :背景知識與相關研究 4
2-1:IEEE 802.16e標準介紹 4
2-1-1:IEEE 802.16e MAC層介紹 5
2-1-2:IEEE 802.16e PHY層介紹 8
2-2:IEEE 802.16e換手機制介紹 9
2-3:相關研究 14
第三章 :以模糊邏輯實現換手機制 17
3-1:系統模型 17
3-2:模糊邏輯換手機制 18
3-2-1:目標 18
3-2-2:設計流程 22
第四章 :模擬實驗與結果 37
4-1:模擬工具介紹 37
4-2:實驗環境 40
4-3:UGS服務類型之效能評估比較 42
4-4:rtPS服務類型之效能評估比較 43
4-5:ertPS服務類型之效能評估比較 44
4-6:nrtPS服務類型之效能評估比較 45
4-7:BE服務類型之效能評估比較 46
第五章 :結論及未來工作 48
附錄A:參考文獻 49
參考文獻 [1] IEEE Std 802.16e-2005, “Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access System,” Feb 2006.
[2] Dimopoulou L., Leoleis G., Venieris I.O., “Fast handover support in a WLAN environment: challenges and perspectives, ” IEEE Network, pp. 14-20, May-June 2005.
[3] Yokoyama T., Yamaguchi M., and Aisaka, K., “Application-layer seamless handover for real-time communication service,” International Conference on Consumer Electronics, pp. 135-136, Jan. 2006.
[4] Sik Choi, Gyung-Ho Hwang, Taesoo Kwon, Ae-Ri Lim, and Dong-Ho CHo “Fast Handover Scheme for Real-Time Downlink Services in IEEE 802.16e BWA System,” Proc. IEEE Vehicular Technology Conference, pp. 2028-2032, May 2005.
[5] Doo Hwan Lee, Kyandoghere Kyamakya, and Jean Paul Umondi “Fast Handover algorithm for IEEE 802.16e Broadband Wireless Access System,” Wireless Pervasive Computing, pp. 6, Jan 2006.
[6] G.P. Pollini, “Trends in Handover Design,” IEEE Communications Magazine, pp.82-90, March 1996.
[7] Lan Wang, Zhisheng Niu, Yanfeng Zhu, Hui Deng, Masashi Yano “Itegration of SNR, Load and Time in Handoff Initiation for Wireless LAN,” Proc. IEEE Personal, Indoor and Mobile Radio Communications, pp. 2032-2036, Sept. 2003.
[8] S. Pack and Y. Choi, “Fast handoff scheme based on mobility prediction in public wireless LAN systems,” Proc. IEEE Communications, pp. 489-495, Oct. 2004
[9] Anthony J. Nicholson, Yatin Chawathe, and Mike Y. Chen, “Improved Access Point Selection,” ACM, June 2006.
[10] Hsin-Piao Lin, and Rong-Terng Juang, “Validation of an Improved Location-Based Handover Algorithm Using GSM Measurement Data,” IEEE Transactions on Mobile Computing, pp. 530-536, Sept.-Oct. 2005.
[11] C.C. Tseng, K.H. Chi, M.D. Hsieh, and H.H. Chang, “Location-based Fast Handoff for 802.11 Networks,” IEEE Communications Letters, pp. 204-206, April 2005.
[12] “Communication with Bandwidth Optimization in IEEE 802.16 and IEEE 802.11 Hybrid Networks,” IEEE International Symposium on Communications and Information Technology, pp. 27-30, Oct. 2005.
[13] Fennich, M., “Voice Input Calculating nstrument using Fuzzy Logic,” Computer Design Fuzzy Logic Conference, pp.31-57, 1994.
[14] Fujimoto J., Nakatani T. and Yoneyama M., “Speaker-independent Word Recognition Using Fuzzy Pattern Matching,” Fuzzy Sets and Systems 32, pp. 181-191, 1989.
[15] Jing Nie, Xin He, Zheng Zhou, and Cheng Lin Zhao, “Benefit-driven handoffs between WMAN and WLAN,” Military Communications Conference, pp. 2223-2229, Oct. 2005.
[16] George Edwards, Abraham Kandelb, and Ravi Sankar, “Fuzzy handoff algorithms for wireless communication,” Fuzzy Sets and Systems, pp. 379-388, March 2000.
[17] Edwards G.., Sankar R., “HAND-OFF USING FUZZY LOGIC,” IEEE Global Telecommunications Conference, pp. 524-528, Nov. 1995.
[18] Maturino-Lozoya H., Munoz-Rodriguez D., Jaimes-Romera F., Tawfik H., “Handoff Algorithms Based on Fuzzy Classifiers,” IEEE Transactions on Vehicular Technology, pp. 2286-2294, Nov. 2000.
[19] Lau S.S.-F., Kwan-Fai Cheung, Chuang J.C.I., “FUZZY LOGIC ADAPTIVE HANDOFF ALGORITHM,” IEEE Global Telecommunications Conference, Nov. 1995.
[20] Ching-Hugn Lee, and Chun-Jie Yu, “An Intelligent Handoff Algorithm for Wireless Communication Systems Using Grey Prediction and Fuzzy Decision System,” Proc. IEEE International Conference on Networking, Sensing & Control, March 2004.
[21] NIST, “IEEE 802.16 Module for NS-2”
http://www.antd.nist.gov/seamlessandsecure/download.html

------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200914051562
論文名稱(中文) 在IEEE 802.16e無線城域網路環境中之快速換手機制
論文名稱(英文) The Fast Handover Scheme in IEEE 802.16e WMANs
校院名稱 成功大學
系所名稱(中) 電腦與通信工程研究所
系所名稱(英) Institute of Computer & Communication
學年度 96
學期 1
出版年 97
研究生(中文) 黃國修
學號 q3694139
學位類別 碩士
語文別 中文
口試日期 2008-01-02
論文頁數 37頁
口試委員 指導教授-郭文光
口試委員-溫志宏
口試委員-蘇賜麟
口試委員-郭致宏
關鍵字(中) 換手技術
無線城域網路
關鍵字(英) IEEE 802.16e
Handover
學科別分類
中文摘要 在IEEE 802.16 無線通訊標準中,802.16d是以提供固定式的無線城域連接服務。而在隨後所推出的IEEE 802.16e 是為支援可移動性的服務所產生的。在支援可移動性服務的狀況下,換手技術(handover)的開發乃為其中的關鍵。因為使用者是移動的狀態,所以跟基地台的訊號強度會有所改變。若訊號強度不足以維持目前通訊的要求,那麼使用端必須要向鄰近的基地台請求連線。但是此過程必須花費一些時間。而使用者若是有及時性質的連線,就有可能會造成不可避免的封包遺失,甚至是會中斷此連線。所以如何縮短換手所需的時間,與確保資料的及時送達,才是本論文的重點。在本文中,利用結合SIP (Session Initiation Protocol) ,IP層和IEEE 802.16e的MAC層作連結,採用事先取得IP位址(Pre _ DHCP)及資料傳送(data forwarding)跟限定MAC層的啟動時機等方法,來降低換手所需的時間,與確保資料的及時性。
英文摘要 IEEE 802.16 Wireless MAN aiming to broadband wireless access (BWA) through the standardization of IEEE 802.16e supporting
mobility on existing fixed WirelessMAN systems(IEEE 802.16d)。 Because the mobility, a mobile subscriber station (MSS) maybe proceed handover process when it moves to another base station (BS). Therefore, the MSS is not able to send or receive the data during handover process and these data should be delayed or dropped for real-time service。 In this paper, we use Pre_DHCP , Data Forwarding and the MAC Layer start condition to decrease the handover process time ,so we could make the data would not be dropped by over delayed。
論文目次 第一章 序論 1
1.1 前言 1
1.2 目的 1
1.3 方法 1
1.4 論文架構 2
第二章 介紹IEEE802.16e 3
2.1 IEEE 802.16e 使用頻帶 3
2.2 OFDMA的應用簡介 4
第三章 IEEE 802.16E的換手流程 7
3.1 IEEE 802.16E 的換手流程大致分成四大步驟 7
3.3 IEEE 802.16E的信息交換流程 10
3.4 換手延遲分析 13
3.5 SIP re-invite沒有資料轉傳 14
3.6 SIP Re-Invite利用資料轉傳 15
3.6 有Pre_DHCP的IEEE 802.16E信息交換流程 16
3.7 更改後的換手延遲分析 17
3.8 Pre_DHCP跟MAC層的啟動條件 18
3.9 DHCP啟動過慢 20
3.10 再次改進 21
第四章 模擬與結果分析 22
4.1模擬環境的建立 22
4.2 結果討論跟分析 25
4.3 結論 33
參考文獻 34
參考文獻 [1]. Hui-Juan Yao; Geng-Sheng Kuo;” An Integrated QoS-Aware Mobility Architecture for Seamless Handover in IEEE 802.16e Mobile BWA Networks” Military Communications Conference, 2006. MILCOM 2006 Page(s):1 – 7 Oct. 2006
[2]. Iyer, P.; Natarajan, N.; Venkatachalam, M.; Bedekar, A.; Gonen, E.; Etemad, K.; Taaghol, P.; “All-IP network architecture for mobile WiMAX “
Mobile WiMAX Symposium, 2007. IEEE 25-29 Page(s):54 – 59 March 2007
[3]“Universal Mobile Telecommunications System (UMTS);Selection Procedures for the Choice of Radio Transmission Technologies of the UMTS:Annex B”,TR 101 112 V3.2.0(1998-04), UMTS 30.03 version 3.2.0..
[4]. Yin Ge; Geng-Sheng Kuo;“ Dynamic Bandwidth Quasi-reservation Scheme for Real-time Services in IEEE 802.16e Networks” Wireless Communications and Networking Conference, 2007.WCNC 2007. IEEE 11-15 Page(s):1700 - 1705 March 2007
[5] Jeon, W.S.; Jeong, D.G.;” Combined Connection Admission Control and Packet Transmission Scheduling for Mobile Internet Services” Vehicular Technology, IEEE Transactions on Volume 55, Issue 5, Page(s):1582 - 1593 Sept. 2006
[6]. Mark Cudak, Kevin Baum, Philippe Sartori,Motorola Inc.” Link Budget on the Uplink for IEEE 802.16e” IEEE C802.16e-04/237,2004-07-07
[7]. Lee, Lung-Sheng; Wang, Kuochen;“ A Network Assisted Fast Handover Scheme for IEEE 802.16E Networks” Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium 2007 Page(s):1 – 5 3-7 Sept.
[8].Sik Choi; Gyung-Ho Hwang; Taesoo Kwon; Ae-Ri Lim; Dong-Ho Cho,” Fast handover scheme for real-time downlink services in IEEE 802.16e BWA system”, Vehicular Technology Conference,2005 IEEE 61st,Volume 3,Page(s):2028 – 2032,2005-Spring.
[9]. Yonghui Zhang; Xinhua Jiang; Zhangxi Lin;” A Pre-Anticipated Handover Seamless QoS Scheme for IEEE 802.16e Based on Mobile Station Character Pattern” Wireless Communications, Networking and Mobile Computing, 2006. WiCOM 2006.International Conference 22-24 Page(s):1 – 4 Sept. 2006
[10]. Liping Wang; Fuqiang Liu; Yusheng Ji; Nararat Ruangchaijatupon;
“Admission Control for Non-preprovisioned Service Flow in Wireless Metropolitan Area Networks” Universal Multiservice Networks, 2007. ECUMN '07. Fourth European Conference Page(s):243 – 249 Feb. 2007
[11]. Sang Hoon Lee; Youngnam Han;”A Novel Inter-FA Handover Scheme for Load Balancing in IEEE 802.16e System” Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th 22-25 Page(s):763 – 767 April 2007
[12]. Chen, Jenhui; Wang, Chih-Chieh; Lee, Jiann-Der;“ Pre-Coordination Mechanism for Fast Handover in WiMAX Networks” Wireless Broadband and Ultra Wideband Communications, 2007. AusWireless 2007. The 2nd International Conference on 27-30 Page(s):15 – 15 Aug. 2007
[13]. Youn-Hee Han; Heejin Jang; Jinhyeock Choi; Byungjoo Park; Mcnair, J.;” A Cross-Layering Design for IPv6 Fast Handover Support in an IEEE 802.16e Wireless MAN ”Network, IEEE Volume 21, Issue 6, Page(s):54 – 62 November-December 2007
[14]. Nakhjiri, Madjid;” Use of EAP-AKA, IETF Hokey and AAA Mechanisms to Provide Access and Handover Security and 3G-802.16M Interworking” Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium 3-7 Page(s):1 - 5 Sept. 2007
[15]. Wha Sook Jeon ;Dong Geun Jeong ;Bonghoe Kim;"Packet scheduler for mobile Internet services using high speed downlink packet access"Wireless Communications, IEEE Transactions Volume: 3, Issue: 5 On page(s): 1789- 1801 Sept. 2004
[16]. Physical Layer Aspects of UTRA High Speed Downlink Packet Access(Release 4), Mar. 2001. 3GPP, 3G TR25.848 V4.0.0.
[17].Jing Nie; JiangChuan Wen; Qi Dong; Zheng Zhou,”A seamless handoff in IEEE 802.16a and IEEE 802.11n hybrid networks”, Communications, Circuits and Systems, 2005. Proceedings. 2005 International Conference on Volume 1,Page(s):383 - 387 May 2005
[18]. Jae Soong Lee; Young Serk Shim; Hwang Soo Lee;"Wibro Usage Scenarios and Requirements in Tactical Environment"
Military Communications Conference, 2006. MILCOM 2006
23-25 Page(s):1 - 5 Oct. 2006
[19]. Li, Peng; Yi, XiaoXin; Pan, Yan;"A Seamless Handover Mechanism For IEEE 802.16e Systems"Communication Technology, 2006. ICCT '06. International Conference on Page(s):1 - 4 Nov. 2006
[20]. Jinsoo Park; Dong-Hee Kwon; Young-Joo Suh;"An Integrated Handover Scheme for Fast Mobile IPv6 Over IEEE 802.16e Systems"Vehicular Technology Conference, 2006. VTC-2006 Fall. 2006 IEEE 64th Page(s):1 - 5 Sept. 2006
[21]. Wang, F.; Ghosh, A.; Love, R.; Stewart, K.; Ratasuk, R.; Bachu, R.; Sun, Y.; Zhao, Q.;"IEEE 802.16e system performance: analysis and simulations"Personal, Indoor and Mobile Radio Communications, 2005. PIMRC 2005. IEEE 16th International Symposium on Volume 2, 11-14 Page(s):900 - 904 Sept. 2005

------------------------------------------------------------------------ 第 4 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200914240379
論文名稱(中文) 在WiMAX無線城域網路環境中之換手機制探討
論文名稱(英文) The Discussion of Handover in WiMAX WMANs
校院名稱 成功大學
系所名稱(中) 電機工程學系專班
系所名稱(英) Department of Electrical Engineering (on the job class)
學年度 96
學期 2
出版年 97
研究生(中文) 王宏泰
學號 N2794127
學位類別 碩士
語文別 中文
口試日期 2008-07-23
論文頁數 52頁
口試委員 口試委員-郭致宏
口試委員-溫志宏
口試委員-蘇賜麟
指導教授-郭文光
關鍵字(中) 換手
關鍵字(英) Handover
學科別分類
中文摘要 在IEEE 802.16 無線通訊標準中,802.16d是以提供固定式的無線城域連接服務。而在隨後所推出的IEEE 802.16e 是為支援可移動性的服務所產生的。為支援可移動性服務的狀況下,換手技術(handover)的應用是移動服務的重要關鍵。處於移動狀態下的使用者,其與基地台的訊號強度會因距離和環境的變化而有所改變。若彼此間的通訊訊號強度不足以維持目前通訊的要求,那麼使用者端就必須要向鄰近的基地台請求連線。由於此過程必須花費一些時間,使用者若是有及時性質的連線,就有可能會造成封包的遺失,嚴重時甚至會造成連線中斷。在”WiMAX End-to-End Network Systems Architecture”[7][8]裡,WiMAX Forum 提出了ASN Anchor Mobility 的方式。這種移動換手方式是將服務的區域範圍延伸擴大,主要是分成多個 ASN ,而透過 ASN 中 ASN-GW 來負責封包的轉送,包括與 CSN 和其他 ASN 間的連結溝通。本論文將以IEEE 802.16e換手技術(換手時機的決策)結合ASN Anchor Mobility 方式後模擬 MS 有跨越 ASN 之情況進行換手的探討。
英文摘要 In IEEE 802.16 wireless communication standard, 802.16d is the fixed connection of wireless. IEEE 802.16e can support the moving service. In order to support the moving serves, the application of handover technology is very important. In the moving status, the signal intensity will change because of changing distance and the environment. If the intensity of communication signal between each other is not enough to maintain the request of the communication at present, MS must contact neighbouring BS. Handover need spend some time, if the user has real-time services, the data maybe lose. In " WiMAX End-to-End Network Systems Architecture " [7 ] [8 ], WiMAX Forum has proposed the way of ASN Anchor Mobility. This kind of movement handover way will be the regional range of the service is extended and expanded. Divide a lot of ASN , and ASN-GW forward to the data between CSN and the other ASNs. This thesis base on IEEE 802.16e handover technology and ASN Anchor Mobility architecture, to discuss the performance of handover.
論文目次 中文摘要 3
英文摘要 4
英文縮寫 8
第一章 序論 10
1.1 前言 10
1.2 目的 10
1.3 論文架構 11
第二章 介紹WiMAX 12
2.1 WiMAX Forum Structure 12
2.2 IEEE 802.16e 使用頻帶 13
2.3 OFDMA的應用簡介 14
第三章 換手流程 17
3.1 WiMAX 網路架構實體介紹 17
3.2 WiMAX ASN Anchored Mobility 26
3.3 IEEE 802.16E 的換手簡介 28
3.4 IEEE 802.16E 的換手流程大致分成四大步驟 28
3.5 IEEE802.16E不同程度的掃描及溝通 29
3.6 IEEE 802.16E的信息交換流程 31
3.7 WiMAX ASN Anchored Mobility 訊息交換 34
3.8 換手延遲分析 36
3.9 Pre_DHCP跟MAC層的啟動條件 37
3.10 有Pre_DHCP與資料轉傳的WiMAX 信息交換流程 38
第四章 模擬與結果分析 41
4.1模擬環境的建立 41
4.2 結果討論跟分析 45
4.3 結論 50
參考文獻 51
參考文獻 [1]. IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2:Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE Std 802.16e-2005 and IEEE Std 802.16-2004 / Cor 1-2005, 2006.
[2]. IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE Std 802.16-2004, 2004.
[3].“Universal Mobile Telecommunications System (UMTS);Selection Procedures for the Choice of Radio Transmission Technologies of the UMTS:Annex B”,TR 101 112 V3.2.0(1998-04), UMTS 30.03 version 3.2.0..
[4]. 葉 宗 驌“改善WiMAX ASN Anchor Mobility 換手之研究”, July . 2007
[5]. Jeon, W.S.; Jeong, D.G.;” Combined Connection Admission Control and Packet Transmission Scheduling for Mobile Internet Services” Vehicular Technology, IEEE Transactions on Volume 55, Issue 5, Page(s):1582 - 1593 Sept. 2006
[6]. Mark Cudak, Kevin Baum, Philippe Sartori,Motorola Inc.” Link Budget on the Uplink for IEEE 802.16e” IEEE C802.16e-04/237,2004-07-07
[7]. WiMAX End-to-End Network Systems Architecture (Stage 2: Architecture Tenets,Reference Model and Reference Points, WiMAX Forum Draft Document, Aug.2006
[8]. WiMAX End-to-End Network Systems Architecture (Stage 3: Detailed Protocols and Procedures), WiMAX Forum Draft Document, Mar. 2007
[9]. Sik Choi; Gyung-Ho Hwang; Taesoo Kwon; Ae-Ri Lim; Dong-Ho Cho,” Fast handover scheme for real-time downlink services in IEEE 802.16e BWA system”, Vehicular Technology Conference,2005 IEEE 61st,Volume 3,Page(s):2028 – 2032,2005-Spring.
[10]. IEEE 802.16e無線城域網路環境中之快速換手機制 , 2008 1月
[11]. Nakhjiri, Madjid;” Use of EAP-AKA, IETF Hokey and AAA Mechanisms to Provide Access and Handover Security and 3G-802.16M Interworking” Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th
[12]. Wha Sook Jeon ;Dong Geun Jeong ;Bonghoe Kim;"Packet scheduler for mobile Internet services using high speed downlink packet access"Wireless Communications, IEEE Transactions Volume: 3, Issue: 5 On page(s): 1789- 1801 Sept. 2004

------------------------------------------------------------------------ 第 5 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200914243226
論文名稱(中文) 適用於IEEE 802.16e 睡眠模式的鄰近基地台掃描機制
論文名稱(英文) The Neighbor Base Stations Scan Schemes for IEEE 802.16e Sleep Mode
校院名稱 成功大學
系所名稱(中) 電機工程學系專班
系所名稱(英) Department of Electrical Engineering (on the job class)
學年度 96
學期 2
出版年 97
研究生(中文) 吳孟書
學號 n2794117
學位類別 碩士
語文別 中文
口試日期 2008-07-23
論文頁數 67頁
口試委員 指導教授-郭文光
口試委員-蘇賜麟
口試委員-郭致宏
口試委員-溫志宏
關鍵字(中) 簡單線性廻歸模型
換手
換手預測
鄰近基地台掃描機制
睡眠模式
省電模式
關鍵字(英) simple linear regression model
power saving mode
neighbor base stations scan schemes
IEEE 802.16e
handover prediction
handover
學科別分類
中文摘要 IEEE 802.16e在MAC層定義了MS的省電模式稱為睡眠模式(Sleep Mode),以節省MS的電源消耗及減少佔用Serving BS的air interface資源。在睡眠模式下由於MS的行為受到了限制,MS的運作與其在正常運作模式(Normal operation or No sleep)下的運作有很大的差異,若要將正常運作模式下的鄰近基地台掃描機制直接運用於睡眠模式,則將大大降低MS省電的效能。
為了兼顧MS的行動性及省電的效能,本文從三方向著手,(1)使MS在適當的時機進行掃描(When to scan) ,(2)使MS有適用的機制可以進行掃描(How to scan) ,(3)減少掃描的次數,提出改良式應用簡單線性廻歸模型的換手預測、 MS與Serving BS或鄰近BS相對運動方向的判定方法、Candidate Target BS選擇的方法及應用前述方法的三種掃描機制。這三種掃描機制分別為(Scheme A)簡單周期性掃描 (Scheme B)有換手預測及預估線性迴歸線斜率輔助的非週期性掃描 (Scheme C)僅有預估線性迴歸線斜率輔助的非週期性掃描。
這三種掃描機制經過模擬與分析在相同換手成功率下以Scheme C的省電效能最佳,Scheme A,Scheme B次之,但均可在犧牲部份睡眠時間的情況下,達成兼顧MS的行動性及省電效能並減少佔用Serving BS的air interface資源的三重目的。
英文摘要 In the MAC layer of IEEE 802.16e, a power saving mode that is well known as sleep mode is defined to minimize MS power usage and decrease usage of Serving BS air interface resources. The behavior of each MS involved in sleep mode is restricted, and the operation of such a MS is much different to that in normal mode (i.e. no sleep.) It will significantly decrease the power efficiency of a MS to apply the neighbor base stations scan schemes which are normally used in normal mode.
In order to consider both mobility and power efficiency of a MS, this thesis proceeds to deal with these issues from three aspects: (1) let the MS be aware of when to scan, (2) providing the MS with workable scan schemes to be conducted in sleep mode, (3) reducing the scan frequencies. To fulfill the objectives mentioned above, this thesis introduces the improved handover prediction scheme by applying the simple linear regression model, a method which makes MS be able to sense the relative moving direction among Serving BS and neighbor base stations and the candidate target BS selection method. We propose three scan schemes, applying our introduced methods, and these scan schemes are: (1) Simple Periodic Scanning (Scheme A), (2) Non-periodic Scanning with Handover Prediction and the Slope of Estimated Linear Regression Line Support (Scheme B) and (3) Non-periodic Scanning just with the Slope of Estimated Linear Regression Line Support(Scheme C).
Through simulation and performance analysis, Scheme C presents high performance in power efficiency, while the performance of Scheme A and Scheme B is worst than Scheme C on the basis of the same HO successful rate. However, only sacrificing part of sleep time, the proposed three scan schemes can achieve the triple objectives of mobility, power efficiency and decreasing usage of Serving BS air interface resources.
論文目次 摘 要 i
Abstract ii
誌 謝 iii
第一章 緒論 1
1.1 前言 1
1.2 目的 1
1.3 方法 2
1.4 論文架構 2
第二章 IEEE 802.16e 睡眠模式及換手程序簡介 3
2.1 IEEE 802.16e 睡眠模式簡介 3
2.1.1 Unavailability interval及Availability interval 3
2.1.2 Power Saving Classes 4
2.1.3 Power Saving Class的啟動(Activation)及撤銷(Deactivation) 7
2.1.4 以觸發的方式來喚醒睡眠模式下的MS 9
2.1.5 睡眠模式啟動(Activation)及撤銷(Deactivation)的訊息交換流程 10
2.1.6 MS SLPID的更新 15
2.1.7 Availability interval期間MS與BS的同步 16
2.1.8 睡眠模式下的Periodic Ranging 16
2.1.9 睡眠模式下MDHO/FBSS Diversity Set的維持 17
2.2 正常運作(Normal Operation)模式下的換手(Handover)程序簡介 17
第三章 相關文獻探討 20
3.1 IEEE 802.16e正常運作模式下的鄰近基地台掃描機制 20
3.2 Adaptive Channel Scanning(ACS) for IEEE 802.16e 24
3.2.1 ACS階段1: 預估通道掃描的時間 24
3.2.2 ACS階段2: 間隔插入scan及data transmission intervals 25
3.2.3 ACS流程圖及演算法 27
3.3 簡單線性廻歸模型(Simple Linear Regression Model) 30
第四章 問題敘述與建議的處理機制 31
4.1 問題敘述 31
4.2 換手預測(Handover Prediction) 32
4.2.1 利用簡單線性迴歸模型的換手預測(Handover Prediction) 32
4.2.2 簡單線性廻歸模型做換手預測的限制 34
4.2.3 預估線性廻歸線的斜率與Candidate Target BS的選擇 35
4.3 睡眠模式下鄰近基地台掃描機制分析 36
4.4 Scheme A : 簡單周期性掃描 36
4.5 Scheme B : 有換手預測及預估線性迴歸線斜率輔助的非週期性掃描 39
4.6 Scheme C : 僅有預估線性迴歸線斜率輔助的非週期性掃描 44
第五章 模擬及結果分析 49
5.1 模擬環境 49
5.2 預估線性迴歸線與其斜率及三種鄰近基地台掃描機制之模擬結果及分析 52
5.2.1 SBS與NBSs之RSS─TIME關係圖 54
5.2.2 第一次預測之SBS與Candidate TBS預估線性廻歸線 55
5.2.3 SBS與NBSs之預估線性廻歸線斜率之變化 55
5.2.4 SBS與NBSs之預估線性廻歸線預測HO時間變動曲線 56
5.2.5 三種掃描機制HO成功率比較 57
5.2.6 預測之HO時間採用率 57
5.2.7 HO失敗原因分析 58
5.2.8 Scan time佔Power Saving Class Type 1的比率 59
5.2.9 Scan time佔Power Saving Class Type 2的比率 59
5.2.10 三種機制省電效能的比較及省電效能分析 60
5.3三種掃描機制調整Interleaving Duration改善省電效能之模擬結果及分析 61
第六章 結論 65
參考文獻 66
參考文獻 [1] IEEE Std. 802.16-2004, “Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” Oct. 2004.

[2] IEEE Std. 802.16e-2005, “Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems,” Dec. 2005.

[3]黃國修,「在IEEE 802.16e無線城域網路環境中之快速換手機制」,國立成功大學電腦與通信工程研究所,中華民國九十七年一月

[4] R. Rouil and N. Golmie, “Adaptive Channel Scanning for IEEE 802.16e,” Proceedings of 25th Annual Military Communications Conference (MILCOM 2006), Washington, D.C., October 23-25, 2006.

[5]顏月珠,「統計學」, 三民書局, pp.329-331, 中華民國80年8月

[6] Yong-Hoon Choi,“Mobility Management of IEEE 802.16e Networks,” IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.2, February 2008

[7] Jeon, W.S.; Jeong, D.G.,” Combined Connection Admission Control and Packet Transmission Scheduling for Mobile Internet Services” Vehicular Technology, IEEE Transactions on Volume 55, Issue 5, Page(s):1582 - 1593 Sept. 2006

[8] Wha Sook Jeon; Dong Geun Jeong; Bonghoe Kim; "Packet scheduler for mobile Internet services using high speed downlink packet access" Wireless Communications, IEEE Transactions Volume: 3, Issue: 5 On page(s): 1789- 1801 Sept. 2004

[9] Mark Cudak, Kevin Baum, Philippe Sartori,Motorola Inc.” Link Budget on the Uplink for IEEE 802.16e” IEEE C802.16e-04/237,2004-07-07

[10] Sik Choi; Gyung-Ho Hwang; Taesoo Kwon; Ae-Ri Lim; Dong-Ho Cho,” Fast handover scheme for real-time downlink services in IEEE 802.16e BWA system”, Vehicular Technology Conference,2005 IEEE 61st,Volume 3,Page(s):2028 – 2032,2005-Spring.

[11] Neung-Hyung Lee; Saewong Bahk; “MAC sleep mode control considering downlink traffic pattern and mobility” Vehicular Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st Volume 3, Issue , 30 May-1 June 2005 Page(s): 2076 - 2080 Vol. 3

[12] Yeongmoon Son; Jungje Son; Changhoi Koo;” Sleep mode operation during Handoff” IEEE C802.16e-03/49, 2003-09-04

[13] Doo Hwan Lee, Kyandoghere Kyamakya, and Jean Paul Umondi “Fast Handover algorithm for IEEE 802.16e Broadband Wireless Access System,” Wireless Pervasive Computing, pp. 6, Jan 2006.

[14] S. Choi, G. Hwang, T. Kwon, A. Lim, and D. Cho., “Fast handover scheme for Real-Time Downlink Services in IEEE 802.16e BWA System.”, In Vehicular Technology Conference, 2005. VTC 2005-Spring. pp.2028-2032, January 2005.

[15] Boone, P. Barbeau, M. Kranakis, E., “Strategies for Fast Scanning and Handovers in WiMax/802.16,” Access Networks & Workshops, 2007. AccessNets '07. Second International Conference, page(s): 1-7, 22-24 Aug. 2007.

[16] Kitazawa, D.; Chen, L.; Kayama, H.; Umeda, N.; “ Downlink packet-scheduling considering transmission power and QoS in CDMA packet cellular systems,” Mobile and Wireless Communications Network, 2002. 4th International Workshop on, Publication Date: 2002, On page(s): 183- 187.

------------------------------------------------------------------------ 第 6 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200914271479
論文名稱(中文) 在IEEE 802.16e網路中之跨層快速換手機制
論文名稱(英文) The Cross-Layer Fast Handover Scheme in IEEE 802.16e
校院名稱 成功大學
系所名稱(中) 電機工程學系專班
系所名稱(英) Department of Electrical Engineering (on the job class)
學年度 96
學期 2
出版年 97
研究生(中文) 韓清圳
學號 n2794118
學位類別 碩士
語文別 中文
口試日期 2008-07-23
論文頁數 43頁
口試委員 指導教授-郭文光
口試委員-郭致宏
口試委員-溫志宏
口試委員-蘇賜麟
關鍵字(中) Mobile IPv6
換手
IEEE 802.16e
關鍵字(英) IEEE 802.16e
Handover
Mobile IPv6
學科別分類
中文摘要 在IEEE 802.16無線通訊標準中,IEEE 802.16e是為支援可移動性的服務所產生的。在支援可移動性服務的狀況下,基於使用者的移動情形,與基地台之間的信號強度變化情形,更換基地台是必然的現象,而換手技術(handover)乃為其中的關鍵,基於IEEE 802.16e及行動式Mobile IPv6的跨層換手協定的研究,如何整合第二層MAC Layer與第三層IP Layer的換手機制,縮短換手所需的延遲時間,確保資料的及時送達,才是研究的目標。
在本文中,利用結合SIP (Session Initiation Protocol),IP層和IEEE 802.16e的MAC層作連結,採用事先取得DHCP Server提供的新IP位址(Pre _ DHCP)及資料傳送(data buffering/forwarding)跟限定MAC層的啟動時機等方法,來降低換手所需的時間,與確保資料的及時性與完整性。
英文摘要 IEEE 802.16e is the mobile standard and supporting of IEEE 802.16. Since the mobility of end point equipment (Mobile Station), the RF signal between Mobile Station and Base Station is changing during the movement. The handover between serving Base Station and Mobile Station is necessary and is the key technology for mobility. In the IEEE 802.16e and Mobile IPv6 environment, how to integrate the handovers of MAC Layer and IP Layers, how to decrease the handover delay, and how to secure the delivery of data stream are the focus in the study.
We propose a fast handover scheme to improve the cross-layer handover in the IEEE 802.16e (MAC Layer), Mobile IPv6 (IP Layer), and SIP (Application Layer) environment. The proposed handover scheme includes IP/MAC handover trigger, Fast Handover Mobile IPv6 and data buffering and forwarding. The proposed scheme can reduce the delay time of handover and secure the SIP data stream.
論文目次 論文摘要 ii
Abstract iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 前言 1
1.2 目的 2
1.3 方法 2
1.4 論文架構 2
第二章 文獻回顧 4
2.1 IEEE 802.16e的換手流程 4
2.2 Mobile IPv6 10
2.3 Fast Mobile IPv6 13
2.4 Mobile IPv6 Fast Handover over IEEE 802.16e Networks 16
第三章 IEEE 802.16e網路環境之跨層換手機制 19
3.1 IEEE 802.16e的跨層換手信息交換流程 20
3.2 跨層換手延遲分析 23
3.3有Pre_DHCP的IEEE 802.16e跨層換手信息交換流程 25
3.4更改後的跨層換手延遲分析 26
3.5 Pre_DHCP跟MAC層的跨層換手模擬啟動條件 27
3.6 FMIPv6 Predictive Mode來不及預先完成換手流程 28
3.7 再次改進 29
第四章 模擬與結果分析 30
4.1模擬環境的建立 30
4.2 結果討論跟分析 33
4.3 結論 41
參考文獻 42
參考文獻 1. IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE Std 802.16e-2005 and IEEE Std 802.16-2004 / Cor 1-2005, 2006.
2. IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE Std 802.16-2004, 2004.
3. D. Johnson, C. Perkins, “Mobility Support in IPv6", IETF RFC-3775, June 2004.
4. R. Koodli, Ed, “Fast Handovers for Mobile IPv6", IETF RFC-4068, July 2005.
5. Heejin Jang, Junghoon Jee, Youn-Hee Han, Soohong Daniel Park, Jaesun Ch “Mobile IPv6 Fast Handovers over IEEE 802.16e Networks", IETF Internet-Draft, 27 February 2006.
6. Fu-Yia Hsieh, Yeh-Wen Chen, and Po-Wei Wu, "Cross Layer Design of Handovers in IEEE 802.16e Network", 2006 International Computer Symposium conference, 29 Jan 2007. P703-P708.
7. C. Perkins, Ed., “IP Mobility Support for IPv4”, IETF RFC-3344, Aug. 2002
8. WiMAX End-to-End Network Systems Architecture (Stage 2: Architecture Tenets, Reference Model and Reference Points, Release 1, Version 1.2 WiMAX Forum Document, Jan. 2008
9. WiMAX End-to-End Network Systems Architecture (Stage 3: Detailed Protocols and Procedures), Release 1, Version 1.2 WiMAX Forum Document, Jan. 2008
10. IDC: The premier global market intelligence firm http://www.idc.com/
11. 黃國修“在IEEE 802.16e無線城域網路環境中之快速換手機制”, Jan. 2008.
12. Jeon, W.S.; Jeong, D.G.;” Combined Connection Admission Control and Packet Transmission Scheduling for Mobile Internet Services” Vehicular Technology, IEEE Transactions on Volume 55, Issue 5, Page(s):1582 - 1593 Sept. 2006
13. Mark Cudak, Kevin Baum, Philippe Sartori,Motorola Inc.” Link Budget on the Uplink for IEEE 802.16e” IEEE C802.16e-04/237,2004-07-07
14. Iyer, P.; Natarajan, N.; Venkatachalam, M.; Bedekar, A.; Gonen, E.; Etemad, K.; Taaghol, P.; “All-IP network architecture for mobile WiMAX “ Mobile WiMAX Symposium, 2007. IEEE 25-29 Page(s):54 – 59 March 2007
15. Sik Choi; Gyung-Ho Hwang; Taesoo Kwon; Ae-Ri Lim; Dong-Ho Cho,” Fast handover scheme for real-time downlink services in IEEE 802.16e BWA system”, Vehicular Technology Conference,2005 IEEE 61st,Volume 3,Page(s):2028 – 2032,2005-Spring.
16. “Universal Mobile Telecommunications System (UMTS);Selection Procedures for the Choice of Radio Transmission Technologies of the UMTS:Annex B”,TR 101 112 V3.2.0(1998-04), UMTS 30.03 version 3.2.0.
17. Nakhjiri, Madjid;” Use of EAP-AKA, IETF Hokey and AAA Mechanisms to Provide Access and Handover Security and 3G-802.16M Interworking” Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium 3-7 Page(s):1 - 5 Sept. 2007

------------------------------------------------------------------------ 第 7 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915054541
論文名稱(中文) 以SIP為基礎的多連接移動式網路適用於異質網路之無接縫換手機制
論文名稱(英文) A Seamless Handoff Mechanism for Multihomed SIP-Based Network Mobility on Heterogeneous Networks
校院名稱 成功大學
系所名稱(中) 資訊工程學系碩博士班
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 97
學期 1
出版年 98
研究生(中文) 曾柏漢
學號 p7696422
學位類別 碩士
語文別 英文
口試日期 2009-01-06
論文頁數 51頁
口試委員 指導教授-黃崇明
口試委員-李忠憲
口試委員-蘇銓清
關鍵字(中) 獨立換手機制
會話初始化協議
移動網路
多連接技術
關鍵字(英) IEEE 802.21 Media Independent Handover (MIH)
Session Initiation Protocol (SIP)
Network Mobility (NEMO)
Multihoming
學科別分類
中文摘要 為了在移動車輛裡面保持不間斷的通訊,車載網路通訊技術近年來變成熱門的研究主題,國際網路標準組織 (Internet Engineering Task Force, IETF) 延伸了移動IPv6 (Mobile IPv6) 協定制定出移動網路 (Network Mobility, NEMO) 協定來解決車輛裡面的網路移動問題。而在異質網路中,為了讓車輛可以達到連線的不間斷性,車輛上會裝配不同的網路卡介面在一個或多個車載單元(On-Board Units, OBU)上。然而,根據IETF的分析,傳統移動網路協定使用多連接技術(multihoming)會造成多重通通道 (tunnel-in-tunnel) 問題。為了克服這個藉由雙向通道 (bi-directional tunnel) 衍生出的問題,一個應用會話初始化協議 (Session Initiation Protocol, SIP) 通訊協定並且結合獨立換手機制 (IEEE 802.21 Media Independent Handoff function, MIHF)功能的移動式網路協定在此論文中提出,此SIP為基礎的移動式網路 (SIP-NEMO) 協定可以支持多連接技術。如果當車輛透過多個介面連結網路時,利用其結合的獨立換手機制,可以協助車輛管理多個不同的網路卡在一個或多個車載單元上。一旦其中一個傳輸介面訊號變得不穩定,獨立換手機制功能可以觸發SIP-NEMO,藉由重新傳送SIP邀請訊息 (SIP INVITE),將會話分配到其他不同的介面上。或是藉由SIP 轉送方法 (SIP REFER) ,將會話轉移到其他的車載單元上。當傳輸介面訊號消失,獨立換手機制便會利用SIP註冊 (SIP REGISTER)要求,來更新目前介面的狀態。根據實驗結果,我們所提出的多連接SIP-NEMO技術,在傳輸資料上可以達到無縫換手和路徑的最佳化。
英文摘要 In order to maintain uninterrupted communication of a vehicle, the IETF has extended the original Mobile IPv6 mechanism to handle the network mobility problem. Since a vehicle can carry many passengers, multihoming techniques can aggregate bandwidth to provide good enough transmission quality. A vehicle is equipped with several kinds of egress interfaces on one or multiple on-board units (OBUs) to guarantee the connection continuity on heterogeneous networks. However, according to the analysis of the IETF, the state-of-the-art Network Mobility (NEMO) basic support protocol would suffer the tunnel-in-tunnel issue while extending to support multihoming. In order to avoid the same issue due to the bi-directional tunnel, a new SIP-based network mobility (SIP-NEMO) mechanism that integrates IEEE 802.21 Media Independent Handoff Function (MIHF) to support multihoming is proposed in this paper. If a vehicle can connect to the Internet via multiple access networks, MIHF helps the proposed mechanism to manage multiple interfaces on one or multiple OBUs. When one of interfaces is unstable, MIHF triggers the multihomed SIP-NEMO to distribute sessions to other available interfaces by sending a SIP INVITE request with a URI list or to transfer sessions to other available OBUs by using SIP REFER method. Once the interface is disabled, MIHF triggers the multihomed SIP-NEMO to update its status by sending a SIP REGISTER request. From the simulation results, our proposed multihomed SIP-NEMO can achieve seamless handoff and route optimization for data transmission.
論文目次 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Multihoming Analysis in MIPv6-NEMO . . . . . . . . . . . . . . . . . . . 4
2.2 IEEE 802.21 Media Independent Handover Function . . . . . . . . . . . . . 6
3 MIH-based Multihomed SIP-NEMO . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Multiple Interfaces Registration . . . . . . . . . . . . . . . . . . . . 14
3.3 Dynamic Multiple OBUs Synchronization Operation . . . . . . . . . . . . . 16
3.4 Call Establishment Operation . . . . . . . . . . . . . . . . . . . . . . 18
3.5 MIH-based Handoff Operation . . . . . . . . . . . . . . . . . . . . . . . 23
4 Simulation Models and Results . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Call Establishment and Handoff Latency . . . . . . . . . . . . . . . . . 29
4.2 Transmission Routing . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Signaling Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Session Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 OBU Handoff Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
參考文獻 [1] “National Institute of Standards and Technology,”http://www.antd.nist.gov/seamlessandsecure.shtml.
[2] “Network Simulator 2 (NS2),” http://www.isi.edu/nsnam/ns/.
[3] “Draft IEEE Standard for Local and Metropolitan Area Networks: Media Independent Handover Services,” IEEE Draft: P802.21/D10.0, Apr. 2008.
[4] F. Cacace and L. Vollero, “Managing mobility and adaptation in upcoming 802.21 enabled devices,” in Proceedings of the 4th international workshop on Wireless mobile applications and services on WLAN hotspots. ACM New York, NY, USA, 2006, pp. 1–10.
[5] Y. Choi, B. Kim, S.-H. Kim, M. In, and S. Lee, “A Multihoming Mechanism to Support Network Mobility in Next Generation Networks,” Proceedings of Asia-Pacific Conference on Communications (APCC), pp. 1–5, Aug. 2006.
[6] V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert, “Network Mobility Basic Support Protocol,” IETF RFC 3963, Jan. 2005.
[7] T. Ernst, “Network Mobility (NEMO) Support Goals and Requirements,” IETF RFC 4886, July 2007.
[8] T. Ernst and J. Charbon, “Multihoming with NEMO Basic Support,” Proceedings of the 1st International Conference on Mobile Computing and Ubiquitous Computing (ICMU), Jan. 2004.
[9] T. Ernst and H. Lach, “Network Mobility Support Terminology,” IETF RFC 4885, July 2007.
[10] T. Ernst, N. Montavont, R. Wakikawa, C. Ng, and K. Kuladinithi, “Motivations and Scenarios for Using Multiple Interfaces and Global Addresses,” IETF Monami6 DRAFT: draft-ietf-monami6-multihoming-motivation-scenario-03.txt, Nov. 2008.
[11] G. Gehlen, E.Weiss, S. Lukas, C. Rokitansky, and B.Walke, “Architecture of a vehicle communication gateway for media independent handover,” Proc. of WT2006, pp. 205–209, 2006.
[12] C.-M. Huang, C.-H. Lee, and J.-R. Zheng, “A Novel SIP-Based Route Optimization for Network Mobility,” IEEE Journal on Selected Areas in Communications (JSAC), vol. 24, no. 9, pp. 1682–1691, Sep. 2006.
[13] C.-M. Huang and C.-H. Lee, “Signal Reduction and Local Route Optimization of SIPBased Network Mobility,” pp. 482–487, Jun. 2006.
[14] D. Johnson, C. Perkins, and J. Arkko, “Mobility Support in IPv6,” IETF RFC 3775, June 2004.
[15] A. Johnston, S. Donovan, R. Sparks, C. Cunningham, and K. Summers, “Session Initiation Protocol (SIP) Basic Call Flow Examples,” IETF RFC 3665, Dec. 2003.
[16] W. Kellerer, C. Bettstetter, C. Schwingenschlogl, and P. Sties, “Auto Mobile Communication in a Heterogeneous and Converged World,” IEEE Personal Communications, vol. 8, no. 6, pp. 41–47, Dec. 2001.
[17] M. Kim, H. Radha, and H. Choo, “On Multicast-Based Binding Update Scheme for NEMO Environments,” in International Conference on Computational Sciences and Its Applications (ICCSA), 2008, pp. 3–8.
[18] M. Kim, H. Radha, J.-Y. Lee, and H. Choo, “An Efficient Multicast-based Binding Update Scheme for Network Mobility,” KSII Transactions on Internet and Information Systems (TIIS), vol. 2, no. 1, pp. 23–36, 2008.
[19] R. Kuntz and J. Lorchat, “Building Fault Tolerant Networks Using a Multihomed Mobile Router: A Case Study,” Proceedings of Asian Internet Engineering Conference (AINTEC), pp. 222–234, Nov. 2006.
[20] H.-Y. Lach, C. Janneteau, and A. Petrescu, “Network Mobility in Beyond-3G Systems,”IEEE Communications Magazine, vol. 41, no. 7, pp. 52–57, Jul. 2003.
[21] G. Lampropoulos, A. Salkintzis, and N. Passas, “Media-independent handover for seamless service provision in heterogeneous networks,” Communications Magazine, IEEE, vol. 46, no. 1, pp. 64–71, 2008.
[22] N. Montavont, T. Noel, and T. Ernst, “Multihoming in nested mobile networking,” in Applications and the Internet Workshops, 2004. SAINT 2004 Workshops. 2004 International Symposium on, 2004, pp. 184–189.
[23] Q. Mussabbir, W. Yao, Z. Niu, and X. Fu, “Optimized FMIPv6 Using IEEE 802.21 MIH Services in Vehicular Networks,” IEEE Transactions on Vehicular Technology, vol. 56, no. 6, pp. 3397–3407, Nov. 2007.
[24] C. Ng, T. Ernst, E. Paik, and M. Bagnulo, “Analysis of Multihoming in Network Mobility Support,” IETF RFC 4980, Oct. 2007.
[25] C. Ng, P. Thubert, M. Watari, and F. Zhao, “Network Mobility Route Optimization Problem Statement,” IETF RFC 4888, Jul. 2007.
[26] C.-W. Ng and T. Ernst, “Multiple Access Interfaces for Mobile Nodes and Networks,”Proceedings of 12th IEEE International Conference on Networks (ICON), vol. 2, pp. 774–779, Nov. 2004.
[27] C. Ng and T. Ernst, “Multiple access interfaces for mobile nodes and networks,” in Networks, 2004.(ICON 2004). Proceedings. 12th IEEE International Conference on, vol. 2, 2004.
[28] S. Pack, X. Shen, J. Mark, and J. Pan, “Mobility Management in Mobile Hotspots with Heterogeneous Multihop Wireless Links,” IEEE Communications Magazine, vol. 45, no. 9, pp. 106–112, Sep. 2007.
[29] E. Perera, V. Sivaraman, and A. Seneviratne, “Survey on Network Mobility Support,”ACM SIGMOBILE Mobile Computing and Communications Review, vol. 8, no. 2, pp. 7–19, Apr. 2004.
[30] C. Perkins and Ed, “IP Mobility Support for IPv4,” IETF RFC 3344, Aug. 2002. [31] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation Protocol,” IETF RFC 3261, Jun. 2002.
[32] K. Shima, Y. Uo, N. Ogashiwa, and S. Uda, “Operational Experiment of Seamless Handover of a Mobile Router using Multiple Care-of Address Registration,” JOURNAL OF NETWORKS, vol. 1, no. 3, p. 23, 2006.
[33] R. Sparks, “The Session Initiation Protocol (SIP) Refer Method,” IETF RFC 3515, Apr. 2003.
[34] P. Thubert, R.Wakikawa, and V. Devarapalli, “Network Mobility Home Network Models,”IETF RFC 4887, July 2007.
[35] M. Tsukada, T. Ernst, R. Wakikawa, and K. Mitsuya, “Dynamic Management of Multiple Mobile Routers,” 13th IEEE International Conference on Networks jointly held with the 7th IEEE Malaysia International Conference on Communication, vol. 2, pp. 1108–1113, Nov. 2005.
[36] R. Wakikawa, V. Devarapalli, T. Ernst, and K. Nagami, “Multiple Care-of Addresses Registration,” IETF Monami6 DRAFT: draft-ietf-monami6-multiplecoa-09.txt, Aug. 2008.
[37] E. Weiss, G. Gehlen, S. Lukas, and C. Rokitansky, “Mycarevent- vehicular communication gateway for car maintenance and remote diagnosis,” Computers and Communications, 2006. ISCC ’06. Proceedings. 11th IEEE Symposium on, pp. 318–323, June 2006.

------------------------------------------------------------------------ 第 8 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915121840
論文名稱(中文) 應用多重介面與快速換手機制之無線行動網路階層三行動管理
論文名稱(英文) Layer 3 Mobility Management for Wireless Mobile Networks Using Multihomed and Fast Handover Techniques
校院名稱 成功大學
系所名稱(中) 資訊工程學系碩博士班
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 江孟書
學號 p7891107
學位類別 博士
語文別 英文
口試日期 2009-06-10
論文頁數 96頁
口試委員 口試委員-黃仁竑
口試委員-許蒼嶺
口試委員-周立德
口試委員-鄭憲宗
口試委員-童曉儒
指導教授-黃崇明
召集委員-賴威光
關鍵字(中) 通道
轉交位址
快速換手
多重介面
行動節點
關鍵字(英) fast handover
multihomed
care-of-address
and tunnel
mobile node
學科別分類
中文摘要 當行動節點 (mobile node) 在不同網段移動時,行動 IP (Mobile IP) 技術提供了行動管理機制,可以讓行動節點持續的存取資料,但行動 IP技術因為過長的換手延遲 (handover latency) 時間,因而造成較低的網路效能。換手延遲包含了階層二 (layer 2) 與階層三 (layer 3) 的延遲時間,可能會造成封包遺失與降低網路效能。在本論文中我們設計了無線行動網路階層三行動管理機制 (layer 3 mobility management for wireless mobile networks) 來降低換手延遲時間。在此管理機制中,我們使用了預先換手準備功能,其中包含了兩種方法: (1) 使用者端運用多重介面技術 (multihomed) 的預先換手準備方法 (2) 伺服端運用快速換手 (fast handover) 技術的預先換手準備方法。
在第一種方法中,我們設計了階層二驅動 (layer 2 trigger) 來輔助多重介面技術,此階層二驅動是用來監控無線連線的訊號強度,當目前無線訊號微弱時,可以自動連線到附近區域訊號較強的無線存取點 (access point)。使用多重介面技術時,行動節點可以裝備兩個無線連線介面,其中一個無線連線介面連接到目前無線連線來存取資料,而另一個無線連線介面用來選擇較合適的無線存取點來連線,使用這種方式,行動節點可在換手過程中持續接收資料,因此可以在無線行動網中無縫的漫遊。
快速換手技術利用以下方法來做預先換手準備:(1) 預先取得轉交位址 (CoA: care-of-addres) (2) 在換手前預先建立一條通道 (tunnel) 來轉送 (forwarding) 封包。因此快速換手技術比行動 IP技術有較好的網路效能,但快速換手仍有兩個問題待解決:(1) 轉送封包之通道會形成三角傳輸,而需要較長的封包傳輸時間 (2) 如果行動節點無法在目前連線斷線前做好換手準備時,換手效能將會降低。因此在伺服端換手準備方法中,我們提出兩種技術來克服以上問題: (1) 動態傳輸點 (DFP: dynamic forwarding point) 管理機制 (2) 反應式通道 (RT: reactive tunneling) 管理機制。在動態傳輸點管理機制中,利用一個合適的中繼傳輸點來轉送封包,以減少多餘的封包傳輸路徑。在反向通道管理機制中,行動節點將可以在換手前取得新的轉交位址、並且可以用較少的時間來建立通道,因此行動節點將花費較少的時間在換手準備上,其結果就有較高的機會在斷線前做好換手準備。
英文摘要 Mobile IP defines a mobility management for mobile nodes (MNs) to continuously access data
when they change current attachment to another. However, Mobile IP suffers from the problem
of inefficient network performance due to long handover latency. The handover latency,
which consists of layer 2 (L2) and layer 3 (L3) handover delay time, may cause packet loss
and downgrade the performance of network transmission. In the dissertation, some L3 mobility
management schemes are designed and analyzed. In order to reduce handover latency,
a handover preparation procedure is applied in the proposed L3 mobility management. Two
approaches that are adopted in the dissertation are: (1) a client-side handover preparation using
multihomed technique and (2) a network-side handover preparation using fast handover
technique.
In the client-side handover preparation using multihomed technique, a L2 assisted multihomed
control scheme is proposed. It includes the design of L2 trigger and multihomed techniques.
Based on the L2 trigger, MN can collect signal strengths of nearby Access Points (APs)
and switch to a new link automatically when the current link becomes unsuitable to connect.
Using the multihomed technique, MN can prepare for handover using 2 interfaces, in which (1)
one is connected with the original link to receive packets and (2) the other one is used to access
nearby APs and select the most suitable one as the new link, in the same time. In this way, MN
can continuously transmit and receive packets during handover.
The fast handover scheme can prepare handover using two functionalities: (1) obtaining
a new care-of-address (CoA) in advance and (2) building a tunnel for packet forwarding before
handover. Therefore, the fast handover scheme has better performance than Mobile IP scheme.
However, two problems are remained to be resolved: (1) tunnel for packet forwarding causes
triangle transmission, which results in longer packet delivery time. (2) handover performance
is downgraded if MN can not complete the handover preparation before the associated link is
broken. In the network-side handover preparation scheme using the fast handover technique,
we propose (1) a dynamic forwarding point control scheme (DFP) (2) a reactive tunneling (RT)
scheme to resolve the aforementioned problems. In the DFP scheme, a forwarding point is
selected to dispatch packets to the MN. During handover, packets sent from corresponding
node (CN) to MN will be intercepted by the forwarding point and then be forwarded to MN. In
this way, the packet transmission path are reduced. In the RT scheme, a new CoA is obtained
before handover and a tunnel is built with short delay time. As a result, MN has a better chance
to finish handover preparation than fast handover scheme.
論文目次 1 Introduction 1
1.1 Mobil IP Control Scheme . . . . . 2
1.2 Handover Procedure and Problems .. . 2
1.3 Layer 3 Mobility Management Control Schemes . 4
1.3.1 Layer 2 Assisted Multihomed Technique .. . . 4
1.3.2 Fast Handover Technique Using Dynamic Forwading Point . . . . . . . 5
1.3.3 Fast Handover Technique Using Reactive Tunneling .7
1.4 Dissertation Organization . . . . 8
2 Preliminary . . . . . . . . . 9
2.1 Related Layer 2 Handover Control Schemes .. . . 9
2.2 Related Layer 3 Handover Control Schemes . . . 11
2.3 Combination of Layer 2 and Layer 3 Handover Control Schemes . . . . . . . . 13
3 Layer 2 Assisted Multihomed Control Scheme 14
3.1 Layer 2 Assistance in Multihomed . . . . 14
3.2 State Diagram . . . . . . . . . . . . . 15
3.2.1 The state diagram of mobile IP . . . . 16
3.2.2 The state diagram of fast handover . . 16
3.2.3 The state diagram of our proposed L2 assisted multihomed technique . 17
3.2.4 Operation of the ”handover state” state . 21
3.3 Algorithm of the proposed Scheme . . . . . . . 22
3.4 Handover Processing Overhead Analysis . . . . 24
3.4.1 The Handover Processing Overhead of Mobile IP . 25
3.4.2 The Handover Processing Overhead of Fast Handover 27
3.4.3 The Handover Processing Overhead of the Proposed LAM . 28
3.5 Performance Analysis .. . . . . . . . . . . . . . 29
II
3.5.1 Experiment Design and Implementation .. . . . . 30
3.5.2 Experiment Result . . . . . . . . . . . . . 32
3.5.3 Linear movement configuration . . . . . . . . 32
3.5.4 Ping-pong movement configuration . . . . . . . 38
4 Fast Handover Control Scheme 41
4.1 Concept of Fast Handover Control Scheme .. . . . 41
4.1.1 Predictive Mode of Fast Handover Control Scheme 42
4.1.2 Reactive Mode of Fast Handover Control Scheme . 43
4.2 Problems of Fast Handover Control Scheme . . . . 44
4.2.1 Packet Forwarding Problem . . . . . . . . . . 44
4.2.2 Fast Binding Update Acknowledgement Problem . . 46
5 Fast Handover Using Dynamic Forwarding Point Control Scheme 48
5.1 Flow Label .. . . . . . . . . . . . . . . 48
5.2 Algorithm of Dynamic Forwarding Point (DFP) Control Scheme . . . . . . . . 49
5.3 Results and Analysis .. . . . . . . . . . . . 52
5.3.1 Analysis of Handover Overhead . . . . . . . 52
6 Fast Handover Using Reactive Tunneling Control Scheme 61
6.1 Concept of Tunneling and Reverse Tunneling . . . 61
6.2 Algorithm of Reverse Tunneling .. . . . . . . . . 62
6.3 Results and Analysis . . . . . . . . . . . . . 65
7 Conclusion 69
參考文獻 [1] J. Abley, B. Black, and V. Gill, ”Goals for IPv6 Site-Multihoming Architectures”, RFC 3582, Aug. 2003.
[2] I. F. Akyildiz, J. Xie, and S. Mohanty, ”A survey of mobility management in nextgeneration all-IP-based wireless systems”, IEEEWireles Communications, VOL. 11, NO. 4, pp. 16-28, Aug. 2004.
[3] N. Blefari-melazzi, M. Femminella and F. Pugini, ”A Layer 3 Movement Detection Algorithm Driving Handovers in Mobile IP”, ACM Wireless Networks VOL. 11, NO. 3, pp. 223-233, 2005.
[4] C. Blondia, O. Casals, L. Cerda, N. van den Wijngaert and G. Willems, ”Performance Evaluation of Layer 3 Latency HandoffMechanisms”, ACM Mobile Networks and Application, VOL. 9, NO. 6, pp. 633-645, 2004.
[5] JinHyoeck Choi, DongYun Shin, ”Fast Router Discovery with RA”, IETF draft-jinchoimobileip-frd-00.txt, June 2002.
[6] JH. Choi, DongYun. Shin, W. Haddad ”Fast Router Discovery with L2 support”, IETF Draft-ietf-dna-frd-02.txt, August 30, 2006.
[7] S. Debashis, M. Amitava, M. I Saha, and C. Mohuya, ”Mobility Support in IP: A Survey of Related Protocols,” IEEE Network, November 2004.
[8] S. Deering and R. Hinden, ”Internet Protocol, Version 6 (IPv6)”, RFC 2460, IETF, December, 1998.
[9] G. Daley ”Effects of Fast Router Advertisement on Mobile IPv6 Handovers,” ISCC 2003.
[10] L. Dimopoulou, G. Leoleis, and I. S. Venieris, ”Fast handover support in a WLAN environment: challenges and perspectives”, IEEE network, VOL. 19, NO. 3, pp. 14-20, June 2005.
[11] N. A. Fikouras, A. J. Konsgen, and C. Gorg, ”Accelerating Mobile IP Handoffs through Link Layer Information”, Proceedings of International Multiconference on Measurement, Modelling, and Evaluation of Computer-Communication Systems (MMB’01), Aachen, Germany, Sept. 2001.
[12] W. Fritsche, F. Heissenhuber, ”Mobile IPv6: Mobility Support for Next Generation Internet”, IPv6 Forum, white paper, 2000.
[13] E. Gustafsson, A. Jonsson, and C. E. Perkins, "Mobile IPv4 regional registration”, Internet draft, IETF, draft-ietf-mobileip-reg-tunnel-09.txt, June 2004.
[14] D. Hadaller, S. Keshav, and T. Brecht, ”MV-MAX: Improving wireless infrastructure access for multi-vehicular communication”, Proceedings of the 2006 SIGCOMM workshop on Challenged networks, 2006.
[15] J. HeeYoung and K. SeokJoo, ”Fast handover support in hierarchical Mobile IPv6”, Proceedings of the 6th International Conference on Advanced Communication Technology, VOL. 2, pp. 551-554, 2004.
[16] A. Helmy, ”AMulticast-based Protocol for IPMobility Support”, Proceedings of the ACM SIGCOMM 2nd International Workshop on Networked Group Communication (NGC 2000), pp. 49-58, Palo Alto, Nov. 2000.
[17] R. Hsieh, A. Seneviratne, ”A Comparison of Mechanisms for ImprovingMobile IP Handoff Latency for End-to-End TCP”, Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, pp. 29-41, September 2003.
[18] R. Hsieh, Z. G. Zhou and A. Seneviratne, ”S-MIP: A Seamless Handoff Architecture for Mobile IP”. Proceedings of IEEE INFOCOM, VOL 3, pp. 1774-1784, 2003.
[19] S. H. Hwang, et.al, ”Signaling Time Analysis for Optimal Fast Handovers for Mobile IPv6”, 2004 IEEE 60th Vehicular Technology Conference, VOL.5, pp.3275-3280, 2004.
[20] R. Koodli, Ed., ”Fast Handovers for Mobile IPv6,” RFC 4068, IETF, July, 2005.
[21] S. Krishnan, N. Montavont, E. Njedjou, S. Veerepalli, A. Yegin, Ed.,”Link-layer Event Notifications for Detecting Network Attachments”, IETF draft-ietf-dna-link-information-06, February 15, 2007.
[22] H. W. Lee, S.H. Kim, W. Ryu and C. H. Yoon, ”Performance of an efficient method for association admission control in public wireless LAN systems”, Proceeding of the 60th IEEE Vehicular Technology Conference, VOL. 7, pp. 5049- 5053, Sept. 2004.
[23] R. Li, J. Li; K. Wu, Y. Xiao, and J. Xie, ”An Enhanced Fast Handover with Low Latency for Mobile IPv6”, IEEE Transactions on Wireless Communications,VOL. 7, NO. 1, Jan. 2008.
[24] Lei LI and Shinji ABE, ”A Xcast-based Seamless Handover Scheme overWireless LAN”, IEICE Transactions on Communication, VOL. E88-B, NO. 3, pp. 965-972, March 2005.
[25] M. Liebsch, A. Singh, H. Chaskar, D. Funato, and E. Shim, ”Candidate access router discovery,” Internet Draft draft-ietf-seamoby-card-protocol-08.txt, IETF, Sept. 2004.
[26] B. Liu, P. Martins, P. Bertin, ”The operation mode selection in FMIPv6”, IEEE Symposium on Computers and Communications (ISCC), pp.742-749, 2008.
[27] K. El Malki and H. Soliman, ”Simultaneous Bindings for Mobile IPv6 Fast Handovers”, Internet Draft draft-elmalki-mobileip-bicasting-v6-06.txt, July 2005.
[28] H. V. Nguyen, S. H. Roh, J. K. Ryu and S. Park, ”A Modification for Fast Handover in Hierarchical Mobile IPv6”, Proceeding of the 9th IEEE International Conference on Advanced Communication Technology, pp. 815-818, Feb 2007.
[29] A. Mishra,M. Shin, andW. Arbaugh, ”An empirical analysis of the ieee 802.11 mac layer handoff process”, SIGCOMM Comput. Commun. Rev., vol. 33, no. 2, pp. 93-102, 2003.
[30] W. Ma, Y. Fang, ”Dynamic hierarchical mobility management strategy for mobile IP networks”, IEEE Journal on Selected Areas in Communications, VOL. 22, NO. 4, pp. 664-676, May 2004.
[31] S. Mohanty, Ian F. Akyildiz, ”Performance Analysis of Handoff Techniques Based on Mobile IP, TCP-Migrate, and SIP”, IEEE Transactions on Mobile Computing, VOL. 6,
NO. 7, JULY 2007.
[32] N. Montavont and T. Noel, ”Anticipated handover over IEEE 802.11 networks”, Proceeding of IEEE International Conference on Wireless And Mobile Computing, Networking
And Communications (WiMob’2005), 2005.
[33] N. Moore, ”Optimistic Duplicate Address Detection”, IETF RFC 4429, April 2006.
[34] T. Narten, E. Nordmark, W. Simpson, H. Soliman, ”Neighbor Discovery for IP version 6 (IPv6)”, RFC 2461, IETF, December 1998.
[35] M. Nicolas and T. Noel, ”Analysis and Evaluation of Mobile IPv6 Handovers over Wireless LAN”, ACM Mobile Networks and Applications, VOL. 8, NO. 6, pp. 643-653, 2003.
[36] B. Park, S. Lee, and H. Latchman, ”A Fast Neighbor Discovery and DAD Scheme for Fast Handover in Mobile IPv6 Networks”, Proceedings of International Conference on
Mobile Communications and Learning Technologies (ICN/ICONS/MCL), pp. 201-206, April 2006.
[37] C. Perkins, Ed. ”IP Mobility Support,”, RFC 2002, IETF, 1996.
[38] C. Perkins, IP Mobility support for IPv4. RFC 3344, IETF, August 2002.
[39] C. Perkins and D. Johnson, ”Route optimization in Mobile IP”, Internet Draft draft-ietfmobileip-optim-08.txt, IETF, Feburary 1999.
[40] C. Perkins and D. Johnson, ”Mobility Support in IPv6,” RFC 3775, IETF, 2004.
[41] P. Pongpaibool, P. Sotthivirat, S. I. Kitisin, and C. Srisathapornphat, ”Fast Duplicate Address Detection for Mobile IPv6”, Proceedings of 15th IEEE International Conference on Networks (ICON), 2007.
[42] I. Ramani and S. Savage. "SyncScan: Practical Fast Handoff for 802.11 Infrastructure Networks". Proceedings of IEEE INFOCOM, pp. 675- 684, March 2005.
[43] P. Savola and T. Chown, ”A Survey of IPv6 Site Multihoming Proposals”, Proceedings of the 8th International Conference of Telecommunications (ConTEL 2005), 2005.
[44] S. Sharma, N. N. Zhu and T. C. Chiueh, ”Low-Latency Mobile IP Handoff for Infrastructure-Mode Wireless LANs”, IEEE Journal on Selected Areas in Communications, VOL. 22, NO. 4, pp. 643-652, May 2004.
[45] M. Shin, A. Mishra, and W. Arbaugh, ”Improving the Latency of 802.11hand-offs using Neighbor Graphs,” Proceedings of the 2nd international conference on Mobile systems, applications, and services, pp. 70-83, June 2004.
[46] S. Shin, A. G. Forte, A. S. Rawat, and H. Schulzrinne, ”Reducing MAC layer handoff latency
in IEEE 802.11 wireless LANs”, Proceedings of the second international workshop on Mobility management and wireless access protocols, pp. 19-26, 2004.
[47] H. Soliman, C. Castelluccia, K. EL-Malki, and L. Bellier, ”Hierarchical MIPv6 Mobility Management (HMIPv6)”, IETF RFC 4140, August, 2005.
[48] A. Stephane, A. Mihailovic, A. H. Aghvami,”Mechanisms and hierarchical topology for fast handover in wireless IP networks”, IEEE Communications Magazine, VOL. 38, NO. 11, pp. 112-115, 2000.
[49] S. Thomson and T. Narten, ”IPv6 Stateless Address Autoconfiguration”, RFC 2462, IETF, Dec, 1998.
[50] C.-C. Tseng, Y.-C. Wong, L.-H. Yen, and K.-C. Hsu, ”Proactive DAD: A Fast Address-Acquisition Strategy for Mobile IPv6 Networks”, IEEE Internet Computing, VOL. 10,
NO. 6, Nov.-Dec 2006.
[51] D. SU, S.-J. YOO, ”Fast Handover Failure-Case Analysis in Hierarchical Mobile IPv6 Networks”, IECE Transactions on communications, VOL. E89-B, NO. 6, pp. 1892-1895, 2006.
[52] H. Velayos and G. Karlsson, ”Techniques to Reduce IEEE 802.11b MAC Layer Handover Time”, Sweden, Tech. Rep. TRITA-IMIT-LCN R 03:02, ISSN 1651-7717, ISRN
KTH/IMIT/LCN/R-03/02.SE, April 2003.
[53] I. Vivaldi, B. Ali, H. Habaebi, V. Prakash, and A. Sali,”Routing scheme for macro mobility handover in hierarchical mobile IPv6 network,” Proceeding of 4th National Conference on Telecommunication Technology, 2003, pp. 88-92.
[54] C. Vogt, ”A Comprehensive and Efficient Handoff Procedure for IPv6 Mobility Support”, Proceedings of the 2006 International Symposium onWorld ofWireless,Mobile andMultimedia Networks, pp. 212 - 218, 2006.
[55] R. Wakikawa, etc, ”Multiple Care-of Addresses Registration”, IETF draft-ietf-monami6-multiplecoa-01, Oct 2006.
[56] A. Yegin et al., ”Supporting Optimized Handover for IP Mobility Requirements for Underlying Systems”, Internet Draft draft-manyfolks-12mobilereq-02.txt, IETF, 2002.
[57] K. Yong-Sung, K. Dong-Hee, B. Kyung-Jin, and S. Young-Joo, ”Performance Comparison ofMobile IPv6 and Fast Handovers forMobile IPv6 overWireless LANs”, Proceedings of IEEE Vehicular Technology Conference (VTC 2005-Fall), pp.807-811, September 2005.
[58] http://www.isi.edu/nsnam/ns/.
[59] KAME project. http://www.kame.net/.
[60] the IETF IPv6 Multihoming Working Group. http://www.ietf.org/html.charters/multi6-charter.html.
[61] Open Source Software by the Naval Research Laboratory (NRL) PROTocol Engineering Advanced Networking (PROTEAN) Research Group - MGEN(version 4).
http://mgen.pf.itd.nrl.navy.mil/. http://www.isi.edu/nsnam.
[62] MIPL Mobile IPv6 for Linux - MIPL. http://www.mobile-ipv6.org/.

------------------------------------------------------------------------ 第 9 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915241860
論文名稱(中文) 建立急性病人交班有效性改善模式之實務研究-以南部某區域醫院手術室為例
論文名稱(英文) Improve the Effectiveness of Handover for Acute Patients Transfer-An Empirical Study of Communication in Operation Room of a Regional Hospital in Taiwan
校院名稱 成功大學
系所名稱(中) 高階管理碩士在職專班(EMBA)
系所名稱(英) Executive Master of Business Administration (EMBA)
學年度 97
學期 2
出版年 98
研究生(中文) 唐修治
學號 r0795408
學位類別 碩士
語文別 中文
口試日期 2009-06-28
論文頁數 56頁
口試委員 口試委員-洪堯勳
口試委員-彭泉
口試委員-傅新彬
指導教授-呂執中
關鍵字(中) 交班
交班有效性
團隊資源運作
模擬演練分析
經營流程管理
關鍵字(英) Simulation analysis
Business Process Management
Patient transfer
Effectiveness of Handover
TeamSTEPPS
學科別分類
中文摘要 在二十世紀末全球醫學的進步已經接近人類健康照護的夢想,但潛藏醫療流程面的研究卻無法並駕齊驅。1999年「人就是會犯錯」(To Err is Human)報告一棒敲醒沉醉在自滿中的醫療界,經過四年向企業界與軍事領域的學習與檢討後,在2003年提出「以病人安全為中心」的呼籲,其中交班溝通問題一直是造成病人安全警訊事件的最大根本原因。在醫療科技日益分工之際,病人輾轉在各種專家與部門之間接受檢查、診斷、治療與復健,交班更是臨床上例行且重要的工作。雖然一直列入改善病人安全目標,但在醫學界如何向企業界學習交班流程改善的研究卻是寥寥無幾。
許多研究顯示「經營流程管理」(Business Process Management)能協助企業持續改善流程以保有高度的競爭力,流程改善與人的參與是經營流程管理的兩大核心精神。本研究探討經由團隊資源運作與模擬演練介入的經營流程管理對於交班模式的影響力;並設計問卷對於改善前後之維護病人安全、交班正確完整性與交班效率三部份進行資料收集。本研究期待引用此手法,先探討交班現況的問題,最後建立出最佳交班流程。以檢討這兩種介入措施後改善交班模式的幅度。
本研究於引進團隊資源運作與模擬演練的過程中,逐步改善流程設計與增進團隊人員的參與感,有效落實經營流程管理於交班模式中。藉由本研究所發展之交班有效性改善模式,快速建立個案醫院之最佳交班模式,大幅改善交班正確完整性與交班效率,以維護病人安全。經統計分析,發現在交班過程會影響病人安全時,藉由經營流程管理的手法確能改善交班模式的有效性。
英文摘要 In the twentieth century global medical progress is close to human health care dream, but the studies focusing on lurk medical processes are unable to work in parallel plane. In 1999, the IOM report about “to err is human” sounds the alarm for those medical professionals who immerse themselves in complacency. After 4 years benchmarking studies and reviews to the business world and the military field, in 2004 WHO urged all WHO states to pay the closes possible attention to the problems of patient safety. Through the studies of sentinel events resulting in patient harm, the communication breakdowns was the main root cause. On the occasion of the growing division of medical technology, the patient who was transferred among a variety of experts and authorities to accept checks, diagnosis, treatment and rehabilitation, handovers between experts is one of the clinically routine and important efforts. Although there have been included to improve patient safety goals, but in the medical sector studies about handovers to enhance the communication process is sparse.
Many studies show that “business process management” could assist enterprises continued to make better processes to retain a high degree of competitiveness. Process improvement and people's participation are the two central cores in business process management. So, we tried to employ TeamSTEPPS and simulation walkthrough business process management for perking up the medical handovers. We collected the data using questionnaire for the measurement of improving the patient safety, the shift in the correct integrity and efficiency of handover. This study looks forward to measure the improvement and to establish the best handover process through the both intervention.
This study was to introduce TeamSTEPPS and simulation that swiftly but surely improve medical process and augment the sense of team involvement, effective implementation of the business process management to handover mode. Through this study of development effectiveness improvement mode, change for the better handover was rapidly established in hospital, substantially improve the integrity and the efficiency of patient safety. With the launch of the business process management can improve the effectiveness of the handover mode in health care.
論文目次 目錄
摘要 I
ABSTRACT II
誌 謝 III
目錄 V
圖目錄 VIII
表目錄 IX
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究範圍與目的 4
一、 研究範圍 4
二、 研究目的 5
第四節 研究步驟 5
第二章 文獻探討 8
第一節 病人交班 8
第二節 經營流程管理 12
一、 經營流程 (Business Process) 12
二、 經營流程管理 (BPM, Business Process Management) 12
三、 經營流程再造 (BPR, Business Process Re-engineering) 13
四、 經營流程管理與經營流程再造之比較 13
第三節 團隊資源運作 15
一、 組員資源管理 (Crew Resource Management; CRM) 16
二、 團隊資源運作 (TeamSTEPPS) 17
第四節 模擬演練分析 17
第五節 維護病人安全 18
第六節 交班正確完整性與交班效率 19
一、 交班正確完整性 19
二、 交班效率 20
第三章 研究架構與現況分析 21
第一節 研究架構 21
第二節 研究設計 22
第三節 現況交班流程(AS-IS MODEL) 23
第四節 現況流程分析中檢討的問題 26
第四章 研究方法與衡量工具 28
第一節 研究使用工具 28
一、 BPM運用 28
二、 TeamSTEPPS運用之工具 28
三、 模擬演練分析 30
四、 調查問卷查核準則 30
第二節 各操作變項之定義與問卷之設計 31
一、 維護病人安全 31
二、 交班正確完整性 31
三、 交班效率 32
第三節 研究樣本之決定以及抽樣方法 32
第四節 研究進行方式 32
第五節 統計分析方法 34
一、 敘述性統計 34
二、 統計流程管制圖 35
三、 各構面改善階段之差異性檢定 35
第五章 研究結果與討論 36
第一節 資料整理與觀察 36
一、 敘述性統計 36
二、 統計流程管制圖 37
三、 條狀圖 38
第二節 兩樣本T檢定分析法 39
第三節 相關性分析法 41
一、 改善前三個構面的相關性 41
二、 改善後三個構面的相關性 41
第四節 交班最佳改善模式(TO-BE MODEL) 42
第六章 結論與建議 46
第一節 研究結論 46
一、 介入模式前後差別 46
二、 維護病人安全與錯誤率的關係 46
三、 交班效率 47
四、 結論 47
第二節 研究建議 47
第三節 研究限制與未來方向 49
一、 研究限制 49
二、 未來研究方向 49
參考資料 51
【附件一】手術室交班狀況問卷調查表 55

圖目錄
圖1-1 研究流程 7
圖3-1 研究架構 22
圖3-2 研究設計 23
圖3-3 現況交班流程(As-Is Model) 25
圖5-1 不同改善階段「維護病人安全」統計流程管制圖(i-Chart) 38
圖5-2 不同改善階段交班時間統計流程管制圖(i-Chart) 38
圖5-3 不同改各階段交班錯誤率長條圖 39
圖5-4 交班最佳改善模式(To-Be Model) 45

表目錄
表2-1 台灣病人安全目標演進 9
表2-2 美國國家病人安全目標演進 10
表2-3 BPR與BPM的比較表 15
表4-1 TeamSTEPPS團隊資源管理運用時機 29
表4-2 研究進行階段表 34
表5-1 回收問卷調查表基本資料 37
表5-2 各構面改善前後的t檢定分析 40
表5-3 改善前各構面間之相關性分析 41
表5-4 改善後各構面間之相關性分析 42
參考文獻 參考資料
中文部份
行政院衛生署 (2008). 醫療品質及病人安全年度工作目標建議參考作法手冊. 財團法人醫院評鑑暨醫療品質策進會.
呂俊德;黃郁琮;陳秀貲 (2007). ARIS流程管理方法在醫療作業流程之應用:以某區域醫院為例. 醫務管理期刊, 8(2), 172-193.
周碧琴、王麗玲、施靜宜、彭郁茹、林玉梅、李麗琴、趙倩、李碧雲 (1997). 護理人員交班方式改善方案. 長庚護理, 8(2), 81-89.
張嘉娟、江靜怡、黃錦鳳、江健婷 (1998). 交班改善方案之成效探討. 長庚護理, 9(3), 50-59.
陳秀蓮、林玉如、賴瑞婷、黃家萍、黃春戀、郭婷婷 (2002). 急診病患轉送病房護理交班之改善方案. 醫務管理期刊, 3(3), 104-117.

英文部份
Aiken, L. H. (2006). Nursing Research: Methods and Critical Appraisal for Evidence-Based Practice: Mosby.
Benson, E., Rippin-Sisler, C., Kimberfyjabusch, & Keast, S. (2007). Improving Nursing Shift-to-Shift Report. Journal Nursing Care Quality, 22(1), 80-84.
Berkenstadt, H. (2008). Improving handoff communications in critical care: utilization simulation-based training toward process improvement in managing patient risks. Chest, 134, 158-162.
Bosilj-Vuksic, V., Stemberger, M. I., Jaklic, J., & Kovacic, A. (2002). Assessment of e-business transformation using simulation modeling. Simulation, 78(12), 731-744.
Brennan, T. A. L., Lucian L.; Laird, Nan M., et al. (1991). Incidence of adverse events and negligence in hospitalized patients: Results of the Harvard Medical Practice Study I. New England Journal of Medicine, 324, 370-376.
Carpinetti, L. (2003). Quality management and improvement: a framework and a business–process reference model. Business Process Management Journal, 9(4), 543-554.
Catchpole, K., Giddings, A., & Leval, M. d. (2006). Identification of systems failures in successful paediatric cardiac surgery. Ergonomics, 49, 567-588.
Catchpole, K., Leval, M. D., & McEwan, A. (2007). Patient handover from surgery to intensive care: using formula 1 pit-stop and aviation models to improve safety and quality. Pediatric Anaesthesiology, 17, 470-478.
Davenport, T. H. (1993). Need radical innovation and continuous improvement? Integrate process reengineering and TQM. Planning Review, 21(3), 6-12.
Davenport, T. H., & Short, J. E. (1990). The new industrial engineering: information technology and business process redesign. Sloan Management Review(Summer), 11-27.
Davies, J. M., & Helmreich, R. L. (1996). Simulation: it’s a start. . Can Anaesth Soc J, 43, 425-429.
Defontes, J., & Surbida, S. (2004). Preoperative safety briefing project. The Permanente Journal, 8, 21-27.
Derossis AM, B. J., Sigman HH, Fried GM (1998). The effect of paroctice on performance in a laparoscopic simulator. Surg Endoscopy, 12, 1117-1120.
Dusterberry, J. (1975). Introduction to simulation systems. Society of Photo-optical Engineers, 59, 141-142.
Elzinga, J. (1995). Business process management: survey and methodology. IEEE Transactions on Engineering Management, 42(2), 119-128.
Ericsson, A. K. (1996). The Road to Excellence: The Acquisition of Expert Performance in the Arts and Sciences, Sports, and Games: Lawrence Erlbaum Assoc Inc.
Gaba DM, H. S., Flanagan B, Smith BE, Fish KJ, Botney R. (1998). Assessment of clinical performance during simulated crisis using both technical and behavorial ratings. . Anesthesiology, 89, 8-18.
Gordon MS, E. G., Eflner JM (1980). Teachin Bedside cardiologic examination skills using "Harvey" the cardiology simulator. Med Clin North Am, 64, 305-313.
Grogan EL, S. R., France DJ, et al. (2004). The impact of aviation-based teamwork training on the attitudes of healthcare professionals. . J Am Coll Surg. , 199, 843-848.
Grogan, E. L., Stiles, R. A., & France, D. J. (2004). The impact of aviation-based teamwork training on the attitudes of healthcare professionals. . J Am Coll Surg. , 199, 843-848.
Hammer, M. (1990). Reengineering work: don't automate, obliterate. Harvard Business Review, 68(4), 104-112.
Hammer, M. (1996). Beyond Reengineering: How the Process-Centered Organization is Changing Our Work and Our Lives: New York: Harper Collins.
Hammer, M., & Champy, J. (1993). Reengineering the Corporation: A Manifesto for Business Revolution: New York: Harper Business.
Hung, R. Y.-Y. (2006). Business Process Management as Competitive Advantage: a Review and Empirical Study. Total Quality Manangement, 17(1), 21-40.
JCAHO (2007). Improving America's hospitals: the Joint Commission's annual report on quality and safety, 2007, from http://www.jointcommissionreport.org/pdf/JC_2007_Annual_Report.pdf
JCAHO (2009). 2009 National Patient Safety Goals Implementation Expectations 2008., from http://www.jointcommission.org/accredited+organizations/patient+safety/09_nssg_ie.pdf
Kaneko M, P. N., Copeland JG (1988). A simple, working heart and lung transplant model for assessing preservation methods in the rabbit. Transplantation, 46(4), 624-626.
Kilmann, R. (1995). A holistic program and critical success factors of corporate transformation. European Management Journal, 13(2), 175-186.
Kohn, L. T., Corrigan, J. M., & Donaldson, M. S. (1999). To Err Is Human: Building a Safer Health System: Committee on Quality of Health Care in America, Institute of Medicine.
Lauber JK, O. H., Foushee HC Cockpit resource management: background and overview. Cockpit resource management training: proceedings of the NASA/MAC workshop. Moffett Field, Calif: NASA-Ames Research Center. NASA Conference Publication, 2455.
LK, K. (2002). The new paradigm of crew resource management: just what is needed to reengage the stalled collaborative movement. J Qual Improv., 28, 235-241.
Malloch, K., Moore, N., & D.Sluyter (2000). Relationship centered care: achieving true value in healthcare. . J Nurs Adm., 30, 379-385.
Mosher, C., & Bontomasi, R. (2006). How to Improve Your Shift Report The American Journal of Nursing 96(8), 32-34.
Nieva, V., & Sorra, J. (2003). Safety culture assessment: a tool for improving patient safety in healthcare organizations. Quality Safety Health Care, 12(Suppl 2:ii), 17-23.
Pizzi L, G. N., Nash DB. (2001). Crew resource management and its application in medicine. Rockville Agency for Healthcare Research and Quality.
Pritchard, J. P., & Armistead, C. (1999). Business process management - lessons from European business. Business Process Management Journal, 5(1), 10-35.
Pronovost, P., & Weast, B. (2005). Implementing and validating a comprehensive unit-based safety program. Journal Patient Safety, 1, 33-40.
Reiley, P., & Stengrevice, S. (1988). Change-of-shift report put it in writing. Nursing Managemen t, 20(9), 54-56.
Rosemann, M., Alonso, G., & Dadam, P. (2007). Business process management : 5th international conference, BPM 2007, Brisbane, Australia, September 24-28, 2007 : proceedings. Berlin ; New York: Springer.
S. Barry Issenberg. (1999). Simulation Technology for Health Care Professional Skills Training and Assessment. JAMA, 282(9), 861-866.
Schniederjans, M., & Kim, G. (2003). Implementing enterprise resource planning systems with total quality control and business process reengineering. Int. J. Oper. Prod. Manag., 23, 418-429.
Smith, H., & Fingar, P. (2007). Business process management : the third wave ([4th Anniversary ed.). Tampa, Fla.: Meghan-Kiffer Press.
The Flight Management Attitudes Questionnaire (FMAQ)(1993).
Vincent, C. (2007). from http://www.utpatientsafety.org
Vincent, C., Taylor-Adams, S., & Stanhope, N. (1998). Framework for analyzing risk and safety in clinical medicine. British Medical Journal, 316, 1154-1157.
Waugh RA, M. J., Ewy GA (1995). Multimedia computer-assisted insturction in cardiology. Arch Intern Med, 155, 197-203.
Weller J, W. L., Robinson B. (2003). Survey of change in proctice following simulation-based training in crisis management. Anaesthesia, 58, 471-479.
Wiener, E. L., Kanki, B. G., & Helmreich, R. L. (1993). Cockpit resource management. . San Diego, Calif: Academic Press, Inc.
Williams, A. J. (1998). Managing change in the nursing handover. Nursing Standard, 12(18), 39-42.
Zairi, M. (1997). Business process management: a boundaryless approach to modern competitiveness. Business Process Management Journal, 3(1), 64-75.
Zairi, M., & Sinclair, D. (1995). BPR and process management: a survey of current practice and future trends in integrated management. Business Process Re-engineering and Management Journal, 1(1), 8-29.
ZinnC. (1995). 14,000 preventable deaths in Australia. British Medical Journal, 310(1487).

------------------------------------------------------------------------ 第 10 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915314786
論文名稱(中文) 於異質性網路使用SIP實作應用層無縫交遞之多媒體服務
論文名稱(英文) Application-Layer Handover for Seamless Multimedia Service using SIP in Heterogeneous Networks
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 97
學期 2
出版年 98
研究生(中文) 廖碧玲
學號 n9696409
學位類別 碩士
語文別 中文
口試日期 2009-07-27
論文頁數 49頁
口試委員 口試委員-胡家正
口試委員-丁建文
指導教授-黃悅民
口試委員-鄧德雋
口試委員-李維聰
關鍵字(中) 異質性網路
無縫交遞
關鍵字(英) SIP
Handover
Seamless Multimedia
學科別分類
中文摘要 無線網路技術已蓬勃發展,如WiFi、WiMAX、HSDPA等,其頻寬、網路涵蓋範圍及價格都不盡相同,隨著這些網路技術的發展與普及,現今市面上如筆記型電腦、智慧型手機等可攜式裝置,大多開始具備多種網路存取介面,以提供使用者多樣化選擇。然而使用者在異質性網路中使用網路多媒體服務時,常常因使用者移動而導致服務連線品質不佳甚至中斷,使用者必須手動選取另一個網路介面重新連線以期再度使用網路多媒體服務,這對使用者來說是相當不方便的問題,故無縫多媒體服務的需求油然而生。
本篇論文即是針對此問題,提出在網路應用層上以SIP訊息為輔助,實作異質性網路之間的交遞(handover),並使用多重介面接收多媒體串流,讓交遞過程更為平順。因系統架構是實作在應用層上,無需更改現今網路硬體架構,故在成本上相對降低許多,且更容易移植至其他作業平台。
英文摘要 The wireless network technology has already developed multiplicity now, for example WiFi, WiMAX, HSDPA,etc. They have different bandwidth , coverage rate of the network and payment. With the development and popularization of these network technologies, portable devices have multiple network interface on the market now, such as computer, intelligent cell-phone,etc. This can supply users multiple choice.
But when using the network multimedia service in the heterogeneous network ,the mobility of the user often results in bad quality of service and even the shutdown of service suddenly . Then the user must choose another network interface to link in the hope of using the network multimedia service once again. It is a quite inconvenient for the user. So the request of seamless multimedia service has showed up.
This paper is directed against this question to implement handover on application layer using SIP in the heterogeneous network . The structure uses multiple interface to receive multimedia stream for the smooth of handover. Because the systematic structure is done on application layer, so it do’t need to alter the hardware device of the network now. So it reduces relatively on the cost, and is easier to transplant to other operation platform.
論文目次 第一章、序論................................................................................................................1
1.1、研究動機與目的...........................................................................................1
1.2、研究步驟.......................................................................................................2
1.3、章節介紹.......................................................................................................2
第二章 背景知識..........................................................................................................4
2.1、SIP簡介.........................................................................................................4
2.1.1、SIP元件介紹......................................................................................5
2.1.2、SIP 控制訊息....................................................................................8
2.1.3、SIP會談建立、終止........................................................................14
2.1.4、SIP之REFER、NOTIFY方法.........................................................16
2.2、SDP簡介.....................................................................................................17
2.3、SIP即時傳訊服務.......................................................................................19
2.4、SIP註冊機制...............................................................................................20
2.5、SIP穿越NAT方法.......................................................................................22
2.5.1、NAT類型..........................................................................................23
2.5.2、NAT所造成的問題..........................................................................24
2.5.3、STUN、TURN與ICE方法..............................................................25
第三章、交遞相關研究..............................................................................................27
3.1、預測交遞(Proactive Handover)..................................................................27
3.2、訊息緩衝儲存(Message Caching)..............................................................30
3.3、同時接收兩個串流.....................................................................................31
第四章、系統架構與實作..........................................................................................33
4.1、系統環境.....................................................................................................33
4.2、系統架構.....................................................................................................34
4.2.1、Client Device...................................................................................35
4.2.2、SIP Server........................................................................................37
4.2.3、Multimedia Server...........................................................................37
4.3、Handover Procedure....................................................................................37
4.4、系統實作結果.............................................................................................40
第五章、結論與未來展望..........................................................................................47
參考文獻及資料..........................................................................................................48
參考文獻 [1] Csaba A. Szabo, Sandor Szabo, Laszlo Bokor, ” Design Considerations of a Novel Media Streaming Architecture for Heterogeneous Access Environment”, International Workshop on Broadband Wireless Access for ubiquitous Networking, September 20, 2006.
[2] Elin Sundby Boysen, Hkon Eyde Kjuus, Torleiv Maseng, “Proactive Handover in Heterogeneous Networks using SIPs”, 2008 IEEE DOI 10.1109/ICN.2008.111.
[3] Yu-Chin Wang, Hsiang-Fu Lo, Ya-Chun Li, Wei-Tsong Lee” Seamless Handover with Buffer Prediction for Wireless Networks Based on IEEE 802.21”,
[4] Jong-Min Lee, Myung-Ju Yu, Seong-Gon Choi and Bo-Seok Seo, “Proxy-based Multimedia Signaling Scheme Using RTSP for Seamless Service Mobility in Home Network”, 2008 IEEE
[5] Toru Yokoyama, Muneaki Yamaguchi, and Kazuo Aisaka, “Application-Layer Seamless Handover for Real-time Communication Service”, 2006 IEEE
[6] Henry Sinnreich, Alan B. Johnston, “Internet Communications Using SIP”
[7] Rogelio Martinez,”Internet Multimedia Communications Using SIP”
[8]Yen-Wen Lin, Bo-Yau Chang, Da-Ho Huang,” A Smooth Handoff Protocol for Heterogeneous Wireless Networks”
[9] Adrian Popescu,Dragos Ilie,David Erman,Markus Fiedler,Alexandru Popescu,Karel de Vogeleer,” An Application Layer Architecture for Seamless
Roaming”, 2009 IEEE
[10] Jinho Kim, Jongpil Jeong, Hyunseung Choo,” An Efficient Handover Scheme with Pre-Configured Tunneling in IEEE 802.16e Systems”, 2007 IEEE
[11] Yousun Hwang, Aesoon Park,” Vertical Handover Platform over Applying the Open API for WLAN and 3G LTE Systems”, 2008 IEEE.
49
[12] Takeshi Takahashi, Koichi Asataniz, Hideyoshi Tominaga,” Multicast Source Handover Scheme based on Proxy Router Discovery”, 2005 IEEE
[13] Mohammed Smadi, Vahid Azhari and Terence D. Todd,” A Measurement-Based Study of WLAN to Cellular Handover”, 2006 IEEE
[14]賈文康,”SIP會談啟始協議操典”
[15]陳冠中,”以SIP為基礎之階層式細微化位置資訊整合系統”,國立成功大學工程科學研究所碩士論文,June 2002

------------------------------------------------------------------------ 第 11 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915402484
論文名稱(中文) 基於SCTP協定之無縫式影音通訊設計與實作
論文名稱(英文) Design and Implementation of SCTP-Based Seamless Multimedia Communications
校院名稱 成功大學
系所名稱(中) 資訊工程學系碩博士班
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 方仁揚
學號 p7696143
學位類別 碩士
語文別 英文
口試日期 2009-07-27
論文頁數 56頁
口試委員 口試委員-陳培殷
口試委員-張保榮
口試委員-蘇銓清
口試委員-張大緯
指導教授-楊中平
關鍵字(中) 多宿
多串流
交遞
PR-SCTP
串流控制傳輸協定
關鍵字(英) PR-SCTP
SCTP
Handover
multi-homing
multi-streaming
學科別分類
中文摘要 近年來,無線通訊網路結合不同的有線及無線網路,而行動裝置在各種不同網路中移動,因此,裝置必需由舊的網路切換到新的網路,這個過程就是交遞(Handover)。
而在傳統的TCP與UDP協定中,當某一個端點有數個網路介面時,UDP/TCP只能選擇其中一個使用,而且不能更改,當介面或網路失效時,就會造成網路連結中斷。因為有如此先天上的限制,所以,若要處理交遞的動作,有一些新的協定,例如IP層使用新的Mobile IP,但是,如此一來必需更新所有的網路設備來支援Mobile IP。為了改善UDP/TCP用於多重連結網路環境的效能,而使用IETF所提出的串流控制傳輸協定(Stream Control Transmission Protocol)提供了幾個很好的特性「多宿(Multi-homing)」,使得一個端點可以擁有多個網路IP,透過這一個特性,可以更容易的在不同的IP的切換。並且,可以動態的加入新的網路位址到連線中,也可以動態的由連線中移除某一個網路位址。透過這一個特性,使得我們很容易透過SCTP來完成多個網路之間移動,並不會讓使用者查覺資料傳送中的中斷。
本論文主要透過SCTP的多宿、多串流、不完全可靠性傳輸的特性,在Linux下實作一影像語音通話程式,並提出了在交遞時,必需要變更stream number來達到不會產生堵塞的機制。
英文摘要 In recent years, networks are composed by complex subnets. When a mobile device moves for a subnet to another, the network interface of the device must switch from original network IP address to the new one. The procedure is named “Handover”.
If TCP or UDP protocol is applied, the application program can choose only one network interface when the PC has multi-network interface. When the default network interface failed in the handover situation, the application program can’t change to the available one. Therefore, there is a new protocol, Mobile IP, used to solve the handover issue. However, the existing infrastructures have to be updated to support the Mobile IP. In order to improve the performance on multi-network interface environment, the IETF (Internet Engineering Task Force) standardized the new transport protocol Stream Control Transmission Protocol (SCTP). There are some good features of SCTP, “multi-homing”, “multi-streaming” and “PR-SCTP”.
The feature of multi-homing allows an SCTP node has multiple IP addresses. We apply one of the SCTP extensions: dynamic IP address reconfiguration to handler the handover problems. It can provide a graceful method to add/delete/change to the interface of an existing association when the node moves from subnet to another.
By using SCTP features, multi-homing, multi-streaming and PR-SCTP, we design and implement a video/audio SCTP-Based Seamless multimedia application on Linux operating system. We also propose a mechanism, which changes the stream number, to avoid blocking during handover procedure.
論文目次 摘 要 iv
Abstract v
誌謝 vi
CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES x
CHAPTER 1 INTRODUCTION 1
1.1 Overview 1
1.2 Motivation 2
1.3 Organization of this thesis 4
CHAPTER 2 RELATED WORKS 5
2.1. Mobile IP-based Handover 8
2.2. SIP-based Handover 11
CHAPTER 3 BACKGROUND TECHNOLOGIES 17
3.1 Introduction to SCTP 19
3.2 SCTP Multi-homing 23
3.3 SCTP Multi-streaming 24
3.4 SCTP Handover 26
3.5 Partial Reliability SCTP (PR-SCTP) 27
3.6 Monitoring 28
3.7 Dynamic IP Address Reconfiguration 29
CHAPTER 4 SYSTEM DEVELOPMENT 31
4.1 Software Architecture 31
4.1.1 Qt library 31
4.1.2 SoundTouch 32
4.1.3 Speex 32
4.1.4 OpenCV 34
4.2 System Architecture 34
4.2.1 Voice data path 34
4.2.2 Video data path 35
4.2.3 SCTPIP-Handler Module 36
4.3 Fully-Integrated and Friendly GUI environment 37
4.3.1 Caller and Callee Function 37
4.3.2 Voice Controller 37
4.3.3 Multi-Call 38
4.3.4 Video Controller 39
4.3.5 Transmission Path Setting and Monitor 39
4.4 Format of the defined packet 40
4.5 Path Monitoring and Selecting 41
4.6 Transmit using multi-streaming 44
CHAPTER 5 PERFORMANCE EVALUATION 47
5.1 Experiment Environment 47
5.2 Evaluation Results for handover and image data transmission 48
CHAPTER 6 CONCLUSION AND FURTHER WORK 52
6.1 Conclusion 52
6.2 Future Works 53
參考文獻 [1]. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, V. Paxson, “ Stream Control Transport Protocol, ”IETF RFC2960, Oct. 2000
[2]. Schulzrinne, H., Casner, S., Frederick, R., and V.Jacobson, "RTP: A Transport Protocol for Real-Time Applications", STD 64, RFC 3550, July 2003.
[3]. IEEE 802.11 Specifications, [online]. Available http://grouper.ieee.org/groups/802/11/main.html
[4]. K. El Malki et al, “Low Latency Handovers in Mobile IPv4,” draft-ietf-monileip-lowlatency-handovers-v4-03.txt, IETF Internet draft, Nov. 2001.
[5]. G. Dommety et al, “Fast Handovers for Mobile IPv6,” draft-ietf-mobileip-fast-mipv6-04.txt, IETF Internet draft, Mar. 2002.
[6]. D. B. Johnson, C. Perkins, J. Arkko, “Mobility Support in IPv6,” draft-ietf-mobileip-ipv6-17.txt, IETF Internet draft, May 2002.
[7]. R. Hsieh, Zhe Guang Zhou, A. Seneviratne, “S-MIP: a seamless handover architecture for mobile IP,” In Proceedings of IEEE INFOCOM 2003.
[8]. C. Perkins, “IP Mobility for IP v4, revised” RFC 3220, January 2002
[9]. S. Deering, R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” RFC 2460, Dec. 1998.
[10]. C. Perkins, Ed. “IP Mobility Support for IPv4,” RFC 3344, Aug. 2002.
[11]. V. Ghini, G. Pau, P. Salomoni, M. Roccetti, M. Gerla, “Smart Download on the Go: A Wireless Internet Application for Music Distribution over Heterogeneous Networks,” Submitted for publication, 2004.
[12]. M. Schlaeger, B. Rathke, S. Bodenstein, and A. Wolisz, “Advocating a Remote Socket Architecture for Internet Access using Wireless LANs,” Mobile Networks & Applications (Special Issue on Wireless Internet and Intranet Access), vol. 6, no. 1, pp. 23-42, January 2001.
[13]. D. Maltz, P. Bhagwat, “MSOCKS: An architecture for transport layer mobility,” In Proc. of IEEE Infocom, p.p. 1037-1045, March 1998.
[14]. A. C. Snnoeren, “A Session-Based Approach to Internet Mobility,” PhD Thesis, Massachusetts Institute of Technology, December 2002.
[15]. A. Matsumoto, M. Kozuka, K. Fujikawa, Y. Okabe, “TCP Multi-Home Options,” draft-arifumi-tcp-mh-00.txt, IETF Internet draft, Oct. 2003.
[16]. M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: Session Initiation Protocol”, RFC 2543, March 1999.
[17]. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation Protocol”, RFC3261, June 2002.
[18]. J. Rosenberg, H. Schulzrinne, and G. Camarillo. The Stream Control Transmission Procotol (SCTP) as a Transport for the Session Initiation Protocol (SIP). RFC 4168, IETF, October 2005.
[19]. H. Schulzrinne and E. Wedlund, “Application-Layer Mobility Using SIP”, ACM Mobile Computing and Commun. Review, Vol. 1, No. 2, pp. 1-9, 2001
[20]. J. Rosenberg et al, “Best Current Practices for Third Party Call Control (3pcc) in the Session Initiation Protocol (SIP),” IETF RFC 3725, April 2004
[21]. A. Jungmaire, E. Rathgeb, and M. Tuxen, “On the use of SCTP in failover-scenarios,” Proc. SCI 2002, pp.363-369, 2002.
[22]. S. Kashihara, T. Nishiyama, K. Iida, H. Koga, Y. Kadobayashi, and S. Yamaguchi, “ Path Selection Using Active Measurement in Multi-Homed Wireless Networks,”Proc. the 2004 International Symposium on Applications and the Internet (SAINT2004), pp.273-276, 2004.
[23]. R. Stewart, M. Ramalho, and Q. Xie et. al., Stream Control Transmission Protocol (SCTP) Partial Reliability Extension, RFC 3758, IETF, May 2004.
[24]. R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad, “Stream Control Transmission Protocol (SCTP) Dynamic Address Reconfiguration”, draft-ietf-tsvwg-addip-sctp-13(work in progress), November 2005.
[25]. I Hear U Project Codec for Free Speech, [online]. Available http://ihu.sf.net
[26]. SoundTouch Audio Processing Library, [online]. Available http://www.surina.net/soundtouch/
[27]. Speex: A Free Codec For Free Speech,[online]. Available http://www.speex.org/
[28]. OpenCV (Open Source Computer Version), [online]. Available http://opencv.willowgarage.com/wiki

------------------------------------------------------------------------ 第 12 筆 ---------------------------------------------------------------------
系統識別號 U0026-3108201220112500
論文名稱(中文) 正交分頻多工微型基地台網路中上行鏈路換手機制之研究
論文名稱(英文) On the Handover Scheme for the Uplink Transmissions in OFDMA Femtocell Network
校院名稱 成功大學
系所名稱(中) 電腦與通信工程研究所
系所名稱(英) Institute of Computer & Communication
學年度 100
學期 2
出版年 101
研究生(中文) 黃正揚
學號 Q36994388
學位類別 碩士
語文別 英文
口試日期 2012-07-30
論文頁數 52頁
口試委員 指導教授-張志文
口試委員-李彥文
口試委員-劉光浩
關鍵字(中) 微型基地台
換手機制
共層級干擾問題
跨層級干擾
通道選擇
功率分配
關鍵字(英) Femtocell
handover
cross-layer interference
co-layer interference
channel selection
power allocation
學科別分類
中文摘要 在正交分頻工多工微型基地台網路中,與大型基地台之間的跨層級干擾和鄰近微型基地台共層級干擾往往會影響整體環境的表現。在上行鏈路中,當大型基地台用戶鄰近微型基地台時, 會對使用者造成極大的干擾,本文將大型基地台用戶換手到微型基地台以解決跨層級干擾之問題。我們把換手機制分成兩部分:通道選擇和功率分配。在通道選擇中,提出不同的考量方式:最大化容量和最小干擾量,並設計一兼俱此兩種方法優勢之混合方式。模擬結果顯示,混合方式選出通道可以達到最大的通道容量。在功率分配方面,我們討論兩種傳送功率的方法,一為貪婪方式, 二為平衡訊號 ––干擾 ––雜訊比值方式,結果顯示,平衡訊號干擾雜訊比值的方式可以較低功率來達到對雙方使用者均衡通道容量。整體而言,本文提出的方法將有助於提升換手機制處理跨層級與共層級干擾問題的表現。 本文最後針對此類問題與其解決方法提出若干深入的討論與可行之建議。
英文摘要 In the OFDMA femtocell network, the cross-layer interference between macrocell and femtocell and co-layer interference between neighboring femtocells can deteriorate the overall affect system performance. In uplink transmissions, when a macrocell user is close to the femtocell base station, it can cause severe interference. In this paper, we propose an algorithm that led the MUE to select a sub-channel in femtocell to eliminate the cross=layer and co-layer interference. We divide the handover procedure into two parts: subchannel selection and power allocation process. In the subchannel selection, we propose three selection schemes: The maximum capacity selection, minimum interference selection and hybrid SINR and interference selection. In the power allocation we discuss greedy power allocation and balanced SINRs allocation schemes. According to the simulation results, we observed that the hybrid selection scheme can achieve higher channel capacity. This observations reveals that the balanced SINRs allocation scheme can achieve balanced SINR among users using less transmission power. To sum up, the propose methods can improve overall system performance thanks to the handover mechanism by eliminiating the cross-layer interference and co-layer interference. Some suggestions for possible research topics in the future are provided in the end of the thesis.
論文目次 Chinese Abstract i
English Abstract ii
Acknowledgements iii
Contents iv
List of Tables vi
List of Figures vii
Glossary of Symbols x
1 Introduction 1
1.1 Problem Formulation and Solution 1
1.2 Thesis Outline 2
2 Background and Literature Survey 3
2.1 Femtocell 3
2.1.1 Access control mechanisms 4
2.1.2 Interference Scenarios 5
2.2 Orthogonal Frequency-Division Multiple Access (OFDMA) 8
2.3 Literature Survey on Handovers in Femtocell Network 9
3 System Model and Problem Formulation 11
3.1 System Model 11
3.2 Subcarrier Selection for Handovers 16
3.2.1 Maximum Capacity Selection 16
3.2.2 Minimum Interference Selection 19
3.2.3 Hybrid SINR and Interference Selection 22
3.3 Power Allocation Schemes 25
3.3.1 Greedy Power Allocation 25
3.3.2 Balanced SINRs Allocation 26
4 Simulation Results 27
4.1 Simulation Setup 27
4.2 Performance Comparison with Greedy Power Allocation 30
4.2.1 Two Femtocell Base Stations 30
4.2.2 Comparison with Variable System Parameters 33
4.3 Performance Comparison with Balanced SINRs Allocation 36
4.3.1 Two Femtocell Base Stations 36
4.3.2 Comparison with Variable System Parameters 41
4.4 Performance Comparison between Greedy Power and Balanced SINRs Allocation 45
5 Conclusions and Future works 47
5.1 Conclusions 47
5.2 Future Research 48
Bibliography 49
Vita 52
參考文獻 [1] D. Lopez-Perez, A. Valcarce, G.D.L. Roche and J. Zhang, “OFDMA Femtocells:A Roadmap on Interference Avoidance,” IEEE Commun. Mag., vol. 47, pp. 41–48,Sep. 2009.
[2] V. Chandrasekhar, J. G. Andrews and A. Gathererl, “Femtocell Networks: A Survey,” IEEE Commun. Mag., vol. 46.
[3] V. Chandrasekhar and J. G. Andrews, “Uplink Capacity and Interference Avoidance for Two-Tier Femtocell Networks,” IEEE Transactions on Wireless Communications, vol. 8, no. 7, pp. 3498–3509, Jul. 2009.
[4] G.D. L. Roche, A. Valcarce, D. Lopez-Perez and Zhang, “Access Control Mechanisms for Femtocells,” IEEE Commun. Mag., vol. 48, pp. 33–39, 2010.
[5] A. Golaup, M. Mustaphaand L. B. Patanapongpibul, and V.Group, “Femtocell Access Control Strategy in UMTS and LTE,” IEEE Commun. Mag., vol. 47, pp.117–123, Sep. 2009.
[6] N. Saquib, E. Hossain, L. B. Le and D. I. Kim, “Interference management in OFDMA femtocell networks: issues and approaches,” IEEE Commun. Mag., vol. 19, pp. 86–95, Jun. 2012.
[7] W. Noh, “A Distributed Resource Control for Fairness in OFDMA Systems : English-Auction with Imperfect Information,” in Global Telecommunications Conference, Nov. 2008, pp. 1–6.
[8] J. Gora, K. I. Pedersen, A. Szufarska, and S. Strzyz, “Cell-Specofic Uplink Power Control for Heterogeneous Networks in LTE,” in IEEE Vehicular Technology Conference, Sep. 2010.
[9] I. Guvenc, M. Jeong, F. Watanabe, and H. Inamura, “A Hybrid Frequency Assignment for Femtocells and Coverage Area Analysis for Co-Channel Operation,” IEEE Communications Letters, pp. 880–882, Dec. 2009.
[10] Y. Bai, J. Zhou, and L. Chen, “Hybrid Spectrum Usage for Overlating LTE Macrocell and Femtocell,” in Global Telecommunications Conference, Dec. 2009, pp. 1–6.
[11] L. Yang, L. Zhang, T. Yang and W. Fang, “Location-based Hybrid Spectrum Allocation And Resue For Tiered LTE-A Networks,” in Vehicular Technology Conference, May. 2011, pp. 1–5.
[12] M. Z. Chowdhury, W. Ryu, E. Rhee and Y. M. Jang, “Handover between Macrocell and Femtocell for UMTS based Networks,” in Advanced Communication Technology., Feb. 2009, pp. 237–241.
[13] N. Nasser, A. Hasswa and H.Hassaneinl, “Handoffs in Fourth Generation heterogeneous networks,” IEEE Commun. Mag., pp. 96–103, Oct. 2006.
[14] Z. Fan and Y. Sun, “Access and handover management for femtocell systems,” in Vehicular Technology Conference., May 2010, pp. 1–5.
[15] H. A. Mahmoud, I. Guvenc and F. Watanabe, “Performance of Open Access Femtocell Networks with Different Cell-Selection Methods,” in Vehicular Technology Conference, May 2010, pp. 1–5.
[16] I. Demirdogen, I. Guvenc and H. Arslan, “A Simulation Study of Performance Trade-offs in Open Access Femtocell Networks,” in Personal, Indoor and Mobile Radio Communications Workshops, Sep. 2010, pp. 151–156.
[17] C. Ma, G. Yu and J. Zhang, “Inter-tier Handover in Macrocell/Relay/Femtocell Heterogeneous Networks,” in Vehicular Technology Conference, May 2012.
[18] J. Moon and D Cho, “Efficient Handoff Algorithm for Inbound Mobility in Hierarchical Macro/Femto Cell Networks,” IEEE Communications Letters, pp. 755–757, Oct. 2009.
[19] Y. Wang, K. I. Pedersen and F. Frederiksen, “Detection and Protection of Macro-Users in Dominance Area of Co-channel CSG Cells,” in Vehicular Technology Conference, May 2012, pp. 1–5.
[20] L. C. Tseng, C. Y. Huang and A. F. Hanif, “Dynamic Resource Management for OFDMA-based Femtocells in the Uplink,” in Wireless Communications and Mobile Computing Conference, Jul. 2011, pp. 528–533.
[21] H. Holma, A. Toskala, LTE for UMTS - OFDMA and SC-FDMA Based Radio Access, 1st ed.John Wiley & Sons, Ltd, 2009.

 


如您有疑問,請聯絡圖書館
聯絡電話:(06)2757575#65773
聯絡E-mail:etds@email.ncku.edu.tw