進階搜尋

 
查詢範圍:「   」
顯示範圍:第筆 論文書目資料
顯示格式:全部欄位
共 11 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910360193
論文名稱(中文) 應用大渦漩數值模擬於引擎氣缸內之紊流流場與熱傳現象研究
論文名稱(英文) Large Eddy Simulation Applied to Turbulent Flow and Heat Transfer in Cylinder of Engines
校院名稱 成功大學
系所名稱(中) 造船及船舶機械工程學系
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 91
學期 2
出版年 92
研究生(中文) 彭相武
學號 p1888103
學位類別 博士
語文別 中文
口試日期 2003-06-03
論文頁數 132頁
口試委員 召集委員-邱澄彬
口試委員-施國亮
口試委員-周煥銘
口試委員-朱存權
指導教授-吳鴻文
口試委員-周榮華
關鍵字(中) 大渦漩數值模擬
擠壓流
漩渦流
紊流熱傳
馬達帶動引擎
關鍵字(英) Swirl flow
LES
Squish flow
Turbulent heat transfer
Motored Engine
學科別分類
中文摘要 本文係以大渦漩數值模擬(large eddy simulation,簡稱LES)來分析探討活塞凹槽之擠壓運動對往復引擎氣缸內於馬達帶動下之紊流流場與燃燒室壁面熱傳的影響。本計畫使用SIMPLE-C法則與預設式共軛梯度法(preconditioned conjugate gradient method)配合之數值方法來解統御質量加權過濾方程式(mass-weighted filtered governing equations)—連續、動量和能量方程式,進行氣缸內紊流場與壁面熱傳之探討。
本文針對在引擎壓縮、膨脹過程,探討不同壓縮比(CR=6.8、8.7及10.6)、不同的活塞擠壓面積百分比(squish area percent, SQ=0%、46%及76%)、初始整體漩渦比(initial swirl ratio, SRo=1.325、5.3及9.5)與引擎轉速(600 rpm 、900 rpm 及1200 rpm)對引擎氣缸燃燒室內紊流流場及壁面熱傳之影響與效應。並對氣缸內之擠壓流(squish flow)與漩渦流(swirl flow)之相互影響作進一步的分析。本文亦針對大渦漩模擬(LES)之三種次尺度(SGS)紊流模式(修正型Smagorinsky model、Van Driest wall damping model、動態次尺度模式)之比較與探討。
由模擬結果得知,本文採用之數值方法能夠成功預測壓縮及膨脹行程時,燃燒室內空氣之紊流流場與溫度場之分佈。經與前人文獻之計算值與實驗數據相比較後,本文所採用之各種次尺度(SGS)紊流模式比傳統κ-ε紊流模式預測得準確,其中又以Van Driest wall damping模式預測的最準確。增加初始整體漩渦比SRo、壓縮比CR及活塞擠壓面積百分比SQ,均可增加平均壁面熱通量,且可加速空氣之運動及促進混合。
英文摘要 This project applies the large eddy simulation (LES) to investigate the influence of swirl and squish motion of the piston bowl on the turbulent flow and the combustion chamber wall heat transfer in a motored engine. In this project, we use LES to model the turbulent flow field and utilize the SIMPLE-C method coupled with preconditioned conjugate gradient methods to solve the mass-weighted filtered governing equations involving continuity, momentum and energy equations. Furthermore, we will investigate the flow field and the wall heat transfer in an engine cylinder.
This study investigates the effect of various compression ratios (taken as 6.8, 8.7, and 10.6), squish area percent (taken as 0%, 46% and 76%), initial swirl ratios (taken as 1.325, 5.3, and 9.5) and engine speeds (taken as 600 rpm, 900 rpm and 1200 rpm) on the turbulent flow and wall heat transfer in the combustion chamber of a motored engine during compression and expansion strokes. Then we will analyze the interrelation between the squish flow and the swirl in the cylinder. Besides, three SGS models (modified Smagorinsky model, Van Driest wall damping model, dynamic model) for the large eddy simulation (LES) are implemented into this study to investigate the turbulent flow field and wall heat transfer in the combustion chamber of a motored engine during compression and expansion strokes.
The results show that the numerical method predicts the turbulent heat transfer in the combustion chamber of a motored engine with reasonable accuracy. Overall results were comparable with those of the conventional K-εturbulence model; on the whole, the three SGS models of LES with modified wall function method give better predictions for the local heat flux and swirl velocity than the K-εmodel in two various engine geometries respectively. From among three SGS models, the Van Driest wall damping SGS model makes the best prediction for the local heat flux and swirl velocity. Increasing the initial swirl ratio, the compression ratio and squish area percent obviously promotes the mixing of fuel and air more effectively as well as enlarges the surface heat flux of wall boundaries in the combustion chamber.
論文目次 摘 要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧I
英文摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧II
目 錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧III
表目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧VII
圖目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧VIII
符號說明‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧XIII
第一章 緒論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
1-1 研究動機與背景‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
1-2 大渦漩數值模擬之概述‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3
1-3 數值方法之概述‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧5
1-3-1 處理對流項方法之概述‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 6
1-3-2 處理暫態項方法之概述‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 7
1-3-3 解線性方程式系統方法之概述‧‧‧‧‧‧‧‧‧‧‧‧ 8
1-4 本論文探討之主題及方法‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧9
第二章 紊流流場及熱傳現象之數學模式 ‧‧‧‧‧‧‧‧‧‧‧‧10
2-1 基本假設 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧10
2-2 統御方程式 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧10
2-3 次尺度模式(subgrid-scale model)‧‧‧‧‧‧‧‧‧‧‧‧‧16
2-4 邊界條件‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 20
2-4-1 牆函數‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 20
2-4-2 紊流及熱傳邊界條件‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 21
2-5 初始條件‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 22
2-6 氣體之熱力性質‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 23
第三章 數值方法‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 25
3-1 通式之離散方程式推導‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 25
3-2 全交錯格點系統‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 29
3-3 動量離散方程式之推導‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 29
3-4 速度修正方程式之推導‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 30
3-5 壓力修正方程式之推導‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 32
3-6 對流項之處理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 33
3-6-1 邊界條件之數值處理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 33
3-6-2 ELUD法在非均勻格點上的推導‧‧‧‧‧‧‧‧‧‧‧ 36
3-7 時間暫態項之處理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 41
3-8 線性方程式系統之解法之處理‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 42
3-8-1 共軛梯度法(conjugate gradient method)‧‧‧‧‧‧‧‧ 42
3-8-2 預設法(preconditioning)‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 44
3-8-3 Incomplete Cholesky conjugate gradient method (ICCG)‧‧ 45
3-8-4 Incomplete LU bi-conjugate gradient stabilized method (ILUBICGSTAB) ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 46
第四章 結果與討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 48
4-1 各種次尺度模式(subgrid-scale model)之比較‧‧‧‧‧‧‧‧‧ 48
4-1-1 網格獨立與時間間距獨立‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 50
4-1-2 平板型活塞引擎燃燒室內不同SGS模式之比較‧‧‧‧‧ 52
4-1-3 平板型活塞引擎燃燒室內紊流流場與溫度場之分析‧‧‧ 53
4-1-4 深碟型活塞引擎燃燒室內不同SGS模式之比較‧‧‧‧‧ 54
4-1-5 深碟型活塞引擎燃燒室內紊流流場之分析‧‧‧‧‧‧‧ 56
4-1-6 深碟型活塞引擎燃燒室內漩渦衰減現象之探討‧‧‧‧‧ 57
4-1-7 次尺度SGS模式之分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 58
4-2 引擎參數對燃燒室內紊流流場及壁面熱傳之影響與效應‧‧‧ 59
4-2-1 活塞擠壓面積百分比對燃燒室內紊流流場及壁面熱傳之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 62
4-2-2 引擎轉速對燃燒室內紊流流場及壁面熱傳之影響‧‧‧‧ 67
4-2-3 初始整體漩渦比對燃燒室內紊流流場及壁面熱傳之影響 70
4-2-4 壓縮比對燃燒室內紊流流場及壁面熱傳之影響‧‧‧‧‧ 71
第五章 結論與建議‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 74
5-1 綜合結論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 74
5-2 未來研究方向之建議‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 75
參考文獻‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 77
參考文獻 【1】 Dao, K., Uyehara, O. A. and Myers, P.S., “Heat Transfer Rates at Gas-Wall Interfaces in Motored Piston Engine,” SAE Paper 730632, 1973.
【2】 Morel, T., Wahiduzzaman, S., Tree, D. R. and Dewitt, D. P., “Effect of Speed, Load, and Location on Heat Transfer in a Diesel Engine—Measurement and Predictions,” SAE Paper 870154, 1987.
【3】 Yamada, S., Paulsen, H. and Farrel, P., “Heat Transfer Measurements in a Motored Engine,” SAE Paper 890313, 1989.
【4】 Gosman, A. D. and Johns, R. J. R., “Development of a Predictive Tools for In-Cylinder Gas Motion in Engines,” SAE Paper 780315, 1978.
【5】 Gosman, A. D., Johns, R. J. R. and Watkins, A. P., “Development of Prediction Methods for In-Cylinder Processes in Reciprocating Engines,” Combustion Modeling in Reciprocating Engines, edited by Mattavi, J. N. and Amann, C. A., Plenum Press, New York, pp.69-129, 1980.
【6】 Arcoumanis, C., Bicen, A. F. and Whitelaw, J. H., “Squish and Swirl-Squish Interaction in Motored Model Engines,” ASME Journal of Fluid Engineering, Vol.105, pp.105-112, March, 1983.
【7】 Gosman, A. D., Tsui, Y. Y. and Watkins, A. P., “Calculation of Three Dimensional Air Motion Model Engines,” SAE Paper 840229, 1984.
【8】 Kondoh, T., Fukumoto, A., Ohsawa, K. and Ohkubo, Y., “An Assessment of a Multi-Dimensional Numerical Method to Predict the Flow in Internal Combustion Engines,” SAE Paper 850500, 1985.
【9】 Itoh, T., Takagi, Y., Ishida, T., Ishikawa, S., and Ishikawa, T., ”Analysis of In-Cylinder Air Motion with LDV Measurement and Multi-Dimensional Modeling,” Proceeding of International Symposium on Diagonstics and Modeling of Combustion in Reciprocating Engines, September, Tokyo, Japan, pp.185-192, 1985.
【10】 Ikegami, M., Kidoguchi, Y. and Nishiwaki, K., “A Multi-Dimensional Model Prediction of Heat Transfer in Non-Fired Engine,” SAE Paper 860467, 1986.
【11】 Kamimoto, T., Yagita, M., Moriyoshi, Y., Kobayashi, H. and Morita, H., “Experimental Study of In-Cylinder Air Flow with a Transparent Cylinder Engine,” JSME Int. J. Series II, Vol.31, No.1, pp.150-157, 1988.
【12】 周煥銘,”引擎氣缸內擾流與層流場之數值模擬研究“,國立成功大學機械工程研究所碩士論文,1987.
【13】 吳澤松,”應用代數格點產生法模擬計算引擎汽缸內之擾流場與熱通量“,國立成功大學機械工程研究所博士論文,1990.
【14】 Chiu, Cheng Ping and Wu, Tser Son, “Study of Air Motion in Reciprocating Engine Using an Algebraic Grid Generation Technique,” Numerical Heat transfer, Part A, Vol. 17, No. 3, pp. 309-327, 1990.
【15】 Chiu, Cheng Ping and Wu, Tser Son, “Study on the Flow Fields of Irregular-Shaped Domains by an Algebraic Grid Generation Technique,” JSME International Journal, Series II, Vol. 34, No. 1, pp. 69-77, 1991.
【16】 郭英勝,”雙邊界格點產生法應用在活塞汽缸內之紊流熱傳問題研究“,國立成功大學機械工程研究所博士論文,1995.
【17】 Chiu, Cheng Ping and Kuo, Ying Sheng, “Study of Turbulent Heat Transfer in Reciprocating Engine Using an Algebraic Grid Generation Technique,” Numerical Heat transfer, Part A, Vol. 27, No. 3, pp. 255-271, 1995.
【18】 Chiu, Cheng Ping and Kuo, Ying Sheng, “Numerical Study of the Turbulent Heat Transfer in a Motroized Engine Utilizing a Two-Boundary Method Grid Generation Technique,” Numerical Heat transfer, Part A, Vol. 28, No. 2, pp. 215-230, 1995.
【19】 Chiu, Cheng Ping and Kuo, Ying Sheng, “Application of Two-Boundary Grid Generation Technique to the Calculation of Turbulent Flow inside a Piston-Cylinder System,” Journal of the Chinese Society of Mechanical Engineers, Vol. 17, No. 1, pp. 71-79, 1996.
【20】 Haworth, D. C. and Jansen, K., “Large-Eddy Simulation on Unstructured Deforming Meshes: Towards Reciprocating IC Engines,” Computers and Fluids, Vol. 29, No. 5, pp. 493-524, 2000.
【21】 Celik, I., Yavuz, I., Smirnov, A., Smith, J., Amin, E. and Gel, A., “Prediction of In-Cylinder Turbulent for IC Engines,” Combustion Science and Technology, Vol. 153, No. 1, pp. 339-368, 2000.
【22】 Saijyo, K., Nishiwaki, K. and Yoshihara, Y., “Numerical Analysis of the Auto-Ignition Process in a Premixed Charge Compression Ignition Engine,” Transactions of the Japan Society of Mechanical Enginneers, Part B, Vol. 68, No. 676, pp. 3452-3459, 2002.
【23】 Orszag, S. A. and Israeli, M., “Numerical Simulation of Viscous Incompressible Flows,” Ann. Rev. Fluid Mech., Vol. 6, pp.281-318, 1974.
【24】 Galperin, B. and Orszag, S., Large Eddy Simulation of Complex Engineering and Geophysical Flows, Cambridge University Press, Cambridge, 1993.
【25】 Smagorinsky, J., “General Circulation Experiments with Primitive Equations,” Monthly Weather Review, Vol. 91, No. 3, pp. 99-164, 1963.
【26】 Ferziger, J. H., “Higher-Level Simulation of Turbulent Flows,” Computational Methods for Turbulent, Transonic, and Viscous Flows, edited by J. A. Essers, Hemisphere Publishing Corporation, New York, pp. 93-182, 1995.
【27】 Yang, K. S. and Ferziger, J. H., “Large-Eddy Simulation of Turbulent Obstacle Flow Using a Dynamic Subgrid-Scale Model,” AIAA Journal, Vol. 31, No. 8, August, 1993.
【28】 Piomelli, U., “High Reynolds Number Calculations Using the Dynamic Subgrid Scale Stress Model,” Phys. Fluids A, Vol. 5, No. 6, pp.1484-1490, 1993.
【29】 Germano, M., Piomelli, U., Moin, P. and Cabot, W., A Dynamic Subgrid-Scale Eddy Viscosity Model, Summer Program, Center for Turbulence Research, Stanford Univ., Stanford, CA, 1990.
【30】 Moeng, C.-H., “A Large Eddy Simulation Model for the Study of Planetary Boundary Layer Turbulence,” J. Atmos. Sci., Vol. 41, No. 13, Apr., pp.2052-2062, 1984.
【31】 Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Chap.5-6, pp.79-138, McGraw-Hill, New York, 1980.
【32】 Raithby, G. and Van Doormaal, I., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows,” Num. Heat Trans., Vol. 7, pp. 147-163, 1984.
【33】 Leonard, B. P., “Simple High-Accuracy Resolution Program for Convective Modeling of Discontinuities,” International J. Numerical Methods in Fluids, Vol. 8, pp. 1291-1318, 1988.
【34】 Tsui, Y. Y., “A Study of Upstream Weighted High-Order Differencing for Approximation to Flow Convection,” Int. J. Num. Methods in Fluids Vol. 13, pp.167-199, 1991.
【35】 Van Doormaal, I. and Raithby, G., “Evaluation of New Techniques for Calculation of Internal Recirculating Flows,” AIAA-87-0059, 1987.
【36】 Reynilds, W. L., “The Potential and Limitations of Direct and Large Eddy Simulation,” Lecture Notes in Mathematics 357, pp. 314-343, Springer-Verlag, 1989.
【37】 Khosla, P. K. and Rubin, S. G., “Consistent Strongly Implicit Iterative Procedures for Two-Dimensional Unsteady and Three-Dimensional Space-Marching Flow Calculations,” Computers and Fluids, Vol. 15, No. 4, pp. 361-377, 1987.
【38】 Kim, J. and Moin, P., “Application of a Fractional-Step Method to Incompressible Navier-Stokes Equation,” J. Comp. Physics, Vol. 59, pp. 308-323, 1985.
【39】 Deng, G. B., Piquet, J., Queutey, P. and Visonneau, M., “A New Fully Coupled Solution of the Navier Stokes Equations,” Int. J. Num. Methods in Fluids, Vol. 19, pp. 605-639, 1994.
【40】 Kershaw, David, “The Incomplete Cholesky-Conjugate Gradient Method for the Iterative Solution of Systems of Linear Equations,” J. Comp. Phys., Vol. 26, pp. 43-65, 1978.
【41】 Van Der Vorst, H., “BI-CGSTAB: A Fast and Smoothly Converging Variant of BI-CG for the Solution of Nonsymmetric Linear System,” SIAM J. Sci. Stat. Comput., Vol. 13, No. 2, pp. 631-644, 1992.
【42】 Tu, J. Y. and Fuchs, L., “Overlapping Grids and Multigrid Methods for Three-Dimensional Unsteady Flow Calculation in IC Engines,” Int. J. Num. Methods in Fluids, Vol. 15, pp. 693-714, 1992.
【43】 Launder, B. E. and Spalding, D. B., Lectures in Mathematical Models of Turbulence, Chap. 5, pp. 90-110, Academic, London, 1972.
【44】 Moin, P., Squires, K., Cabot, W. and Lee, S., “A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport,” Phys. Fluids A, Vol. 3, pp. 2746-2757, 1991.
【45】 Verman, A. W., Geurts, B. J., Kuerten, J. G. M. and Zandbergen, P. J., “A Finite Volume Approach to Large Eddy Simulation of Compressible, Homogeneous Isotropic, Decaying Turbulence,” Int. J. Num. Methods in Fluids, Vol. 15, pp. 799-816, 1992.
【46】 Wilcox, D., Turbulence Modeling in CFD, 2nd ed., pp. 52-53, DCW Industries, Inc., Glendale, CA, 1993.
【47】 Lilly, D. K., “The Representation of Small-Scale Turbulence in Numerical Simulation Experiments,” Proc. IBM Scientific Computing Symp. Environmental Sci., pp. 195-210, 1967.
【48】 Sakamoto, S., Murakami, S. and Mochida, A., “Numerical Study on Flow Past 2D Square Cylinder by Large Eddy Simulation: Comparison between 2D and 3D Computations,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 50, pp. 61-68, 1993.
【49】 Huh, Kang Y., Chang, I-Ping and Martin, Jay. K., “A Comparison of Boundary Layer Treatments for Heat Transfer in IC Engines,” SAE Paper 900252, 1990.
【50】 Khalil, E. E., Modeling of Furnaces and Combustors, Chap. 3, pp. 13-48, Abacus Press, England, 1982.
【51】 Smith, Jason R., An Accurate Navier-Stokes Solver with an Application to Unsteady Flows, PhD thesis, West Virginia University, Morgantown West Virginia, 1996.
【52】 Agarwal, R. K., “A Third-Order Accurate Upwind Scheme for Navier-Stokes at High Reynolds Number,” AIAA Paper, 81-0112, 1981.
【53】 Reynolds, W. L., “The Potential and Limitations of Direct and Large Eddy Simulations,” in Lecture Notes in Mathematics 357, Springer-Verlag, pp. 314-343, 1989.
【54】 Hestenes, M., Conjugate Direction Methods in Optimization, Springer-Verlag, New York, 1980.
【55】 Dongarra, J. J., Leaf, G. K. and Minkoff, M., “A Preconditioned Conjugate Gradient Method for Solving a Class of Non-Symmetric Linear Systems,” Argonne National Lab Report ANL-81-71, 1981.
【56】 Sonneveld, R. and Turkel, E., “CGS, a Fast Lanczos-Type Solver for Nonsymmetric Linear Systems,” SIAM J. Stat. Comput., Vol. 10, No. 1, pp. 36-52, 1989.
【57】 Yang, J., Pierce, P., Martin, J. K. and Foster, D. E., “Heat Transfer Predictions and Experiments in a Motored Engine,” SAE Trans., Vol. 97, Section 6, pp. 1608-1622, 1988.
【58】 Ohkubo, Y., Ohtsuka, M., Kato, J., Kozuka, K. and Sugiyama, K., “Study of the In-Cylinder Flow,” (Part 1: Swirl Velocity Measurements by Back-Scattered LDV) in Japanese, 4th Joint symposium on Internal Combustion Engines, pp. 31-36, 1984.
【59】 Kuo, T. W. and Duggal, V. K., “Modeling of In-Cylinder Flow Characteristics-Effect of Engine Design Parameters,” in: T. Uzkan (Ed.), Flows in Internal Combustion Engines-II, ASME, pp. 9-17, 1984.
【60】 Wakisaka, T., Shimamoto, Y. and Isshiki, Y., “Three-Dimensional Numerical Analysis of In-Cylinder Flows in Reciprocating Engines,” SAE Paper 860464, 1986.
【61】 Lawton, B., “Effect of Compression and Expansion on Instantaneous Heat Transfer in Reciprocating Internal Combustion Engines,” Proc. Instn. Mech. Engrs., Vol. 201, No. A3, pp. 175-185, 1987.
【62】 Overbye, V. D., Bennthumn, J. E., Uyehara, O. A. and Myers, P. S., “Unsteady Heat Transfer in Engines,” SAE Trans., Vol. 69, pp. 461-494, 1961.

------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910374535
論文名稱(中文) 深次微米ULSI中應力影響鈷矽化物形成之研究及深次微米ULSI中受假性金屬線電荷堆積誘發鎢插拴腐蝕之研究
論文名稱(英文) The Study of Stress Effect on the Formation of CoSi2 in Deep Submicron ULSI Technology and The Study of Dummy Metal Charging Effect Induced Tungsten Plug Corrosion in Deep Submicron ULSI Technology
校院名稱 成功大學
系所名稱(中) 微電子工程研究所碩博士班
系所名稱(英) Institute of Microelectronics
學年度 91
學期 2
出版年 92
研究生(中文) 方崧任
學號 q1690409
學位類別 碩士
語文別 英文
口試日期 2003-06-23
論文頁數 103頁
口試委員 口試委員-劉文超
指導教授-褚伯韜
指導教授-何彥仕
指導教授-方炎坤
關鍵字(中) 鈷矽化物
擠壓應力
拉伸應力
假性金屬線
鎢插拴腐蝕
關鍵字(英) dummy metal
tungsten plug corrosion
CoSi2
the compressive stress
the tensile stress
學科別分類
中文摘要 金屬矽化物早已成為半導體元件製程中導線與接觸之材料。在不同的矽化物中,因鈷矽化物對窄線寬效應、低電阻率與良好的熱穩定度有免疫力,所以鈷矽化物是近來最被廣泛使用在自行對準矽化物技術的材。然而,隨著元件尺寸不斷地縮小至深次微米,物理結構產生的壓力已經明顯地影響鈷矽化物形成。所以,本論文把針對緊鄰不同物理結構的鈷矽化物形成,列為主要的研究主題。
在形成鈷矽化物期間,由於固態反應與體積變化作用,使鈷原子成為主要的擴散物質。根據實驗研究結果,吾人發現溝渠與上緣溝渠角所產生的擠壓應力(The Compressive Stress),會增加鈷矽化物之形成及降低片電阻;反之,氮化矽間隙壁與活化區摻雜物所產生的拉伸應力(The Tensile Stress),則會減緩鈷矽化物之形成及升高片電阻。而升高片電阻最主要是來自,座落在溝渠凹槽上的氮化矽間隙壁產生大的拉伸應力,所引起不均的鈷矽化物形成。
除此之外,根據所有樣品電性的比較,較大的擠壓應力會產生較大的鈷矽化物導線電阻溫度係數(The Temperature Coefficient of Resistance);較大的拉伸應力會產生較小的電阻溫度係數。根據不同溝渠凹槽的內裏氧化層厚度對接合漏電的影響非常輕微來看,上緣溝渠角的壓力對鈷矽化物形成的影響,是較小於其它物理結構的影響。又,擠壓應力所產生的接合漏電大於拉伸應力。



本論文針對假性金屬線上電荷堆積誘發鎢插拴腐蝕,作一系列深入之研究並提出改善的方法。鎢插拴腐蝕可能發生於剝離高分子溶液中,甚至被這些溶液經由電化學作用溶解掉。吾人經由SEM觀察化學機械研磨後的樣品發現鎢插拴並沒有被掀舉,而證實鎢插拴腐蝕是發生於前述剝離高分子製程中。
此外,吾人發現利用過度蝕刻(Over Etch)或者灰化光阻(Photoresist Ash)中的被電漿游離氣體分子,並無法釋放在假性金屬線上的堆積電荷。唯有在剝離高分子製程前,另加水蒸氣的低溫烘烤,才能有效消除鎢插拴腐蝕現象。
英文摘要 Metal silicides have been developed as interconnect and contact materials for semiconductor device fabrication. Among different silicides, CoSi2 is the most widely used material for salicide technology recently, since it has immunity to narrow line width effect, lower resistivity and good thermal stability. However, with the continued scaling down of device features, the stress induced by physical structures has noticeable effect on the formation of CoSi2 in deep sub-micron ULSI technology. In this thesis, the formation of CoSi2 affected by the neighboring different physical structures induced stress has been studied in detail.
During the growth of CoSi2, it has been reported that the main diffusing specie is Co atom for the solid phase reaction and volumetric change. We found the diffusion of Co atoms is also affected by the stress, i.e. the compressive stress caused by trench and top trench corner enhances the CoSi2 formation and gains a lower sheet resistance. On the contrary, the tensile stress caused by silicon nitride spacer or impurity dopant retards the CoSi2 formation and a higher sheet resistance.Additionally, the major contribution to the higher sheet resistance is the large tensile stress caused by the silicon nitride spacer on narrow trench. The tensile stress will cause the poor formation of CoSi2.
Furthermore, there is a trend that the TCR (The Temperature Coefficient of Resistance) of the CoSi2 wire is higher with higher compressive stress but is lower for higher tensile stress. Next, the difference in junction leakage is very small with different thickness of lining oxide. Therefore, the stress effect of top trench corner for the formation of CoSi2 is smaller than other physical structures. Finally, the junction leakage of N+/Pwell or P+/Nwell caused by the compressive stress is more significant than that by the tensile one.

&

In this thesis, the tungsten plug corrosion induced by the charges on dummy metal surfaces after metal etch process was studied in detail. The tungsten plug corrosion can be induced during polymer strip in solvent and even be almost dissolved by electrochemical reaction. These phenomena were evidenced by in-line inspections with wafer level SEM (Scanning Electron Microscope) scanning at the step of post tungsten CMP (Chemical Mechanical Polish) and found no tungsten plug lifting.
Next, at the discharge step of post over etch or post photoresist ash, the plasmolyzed gases not only can’t release charges on dummy metal surfaces, but also even increase via failure rates. However, an extra added baking in H2O vapor ambient prior to soak in polymer strip solvent is a good approach to improve tungsten plug corrosion.
論文目次 Abstract (Chinese)……………………………………Ⅰ
Abstract (English)……………………………………Ⅲ
Acknowledgment (Chinese)……………………………Ⅴ
Table of Contents…………………………………… Ⅵ
Table and Figure Captions………………………… Ⅷ

Chapter1 Introduction…………………………………1
Chapter2 Investigation of Cobalt Salicide………3
2-1 Formation of Cobalt Salicide………………… 3
2-2 The Effect of Stress…………………………… 5
2-2.1 Compressive stress…………………………… 6
2-2.1.1 Shallow Trench Isolation………………… 6
2-2.1.2 Trench Top Corner……………………………7
2-2.2 Tensile stress………………………………… 8
2-2.1.1 Formation of Divot………………………… 8
2-2.2.2 Sidewall Spacer………………………………9
2-3 Source/Drain Dopant Impurity Segregation…10
Chapter3 Design, Fabrication and Measurement of Samples………………………………………………… 12
3-1 Sample Design…………………………………… 12
3-2 Sample Fabrication………………………………13
3-3 Experiment…………………………………………15
3-3.1 Trench Lining Oxide………………………… 15
3-3.2 Source and Drain Implant……………………15
3-4 Measurement……………………………………… 16
3-4.1 SheetResistance……………………………… 16
3-4.2 Junction Leakage………………………………17
Chapter4 Results and Discussions…………………18
4-1 Physical Characteristics………………………18
4-2 Electrical Characteristics……………………22
Chapter5 Conclusion………………………………… 25

&

Abstract (Chinese)……………………………………Ⅰ
Abstract (English)……………………………………Ⅱ
Table of Contents…………………………………… Ⅲ
Table and Figure Captions………………………… Ⅳ

Chapter1 Introduction…………………………………1
Chapter2 Observations of Tungsten Plug Corrosion
and Mechanisms………………………………………… 3
2-1 TEM and SEM Analysis of Tungsten Plug
Corrosion and Mechanisms…………………………… 3
2-2 Processes to Induce Tungsten Plug
Corrosion…………………………………………………4
2-2.1 Main and Over Etch…………………………… 5
2-2.2 Photoresist Ash and Polymer Strip…………5
Chapter3 Sample Design, Fabrication and
Measurement………………………………………………7
3-1 Sample Design………………………………………7
3-2 Sample Fabrication……………………………… 7
3-3 Measurement…………………………………………8
Chapter4 Results and Discussions………………… 9
3-1 Electrical Characteristics…………………… 9
3-2 Corrosion Prevention……………………………10
Chapter5 Conclusion………………………………… 12
參考文獻 [1] Guo-Ping Ru, Jing. Liu, Xin-Ping Qu, and F. Cardon, “An atomic force microscopy study of thin CoSi2 films formed by solid state reaction,” IEEE Solid-State and Integrated Circuit Technology, pp. 328-331, 1998

[2] Joo-Hyoung Lee, Sung-Hyung Park, Key-Min Lee and Hi-Deok Lee, “A study of stress-induced p+/n salicides junction leakage failure and optimized process conditions for sub-0.15-um CMOS technology,” IEEE Electron Devices, vol. 49, no. 11, pp. 1985-1992, 2002

[3] M. Lawrence A. Dass, David B. Fraser, and Chih-Shih Wei, “Growth of epitaxial CoSi2 on (100)Si,” Appl. Phys. Lett., Vol. 58, No. 12, pp. 1308-1310, 1991

[4] Abu H. M. Kamal, Nicholas S. Argenti, and Chris S. Blair, “Obtaining silicide free spacers by optimizing sputter etch for deep submicron CMOS process,” IEEE Semiconductor Manufacturing, Vol. 15, No. 3, pp. 350-354, 2002

[5] Bing-Zong Li, Xin-Ping Qu, Guo-Ping Ru, Hong-Xiang Mo, Jing Liu, “Multilayer solid phase reaction and epitaxial growth of metal silicide on Si,” IEEE Solid-State and Integrated Circuit Technology, pp. 251-255, 1998

[6] James D. Plummer, Michael D. Deal, Peter B. Griffin, “Silicon VLSI Technology: Fundamentals, Practice and Modeling,” Prentice Hall, New Jersey, pp.84-90, 2000

[7] Karen Maex and Marc van Rossum, “Properties of metal silicides,” INSPEC, Stevenage, pp. 15-18, 1995

[8] P. Fornara and A. Poncet, “Modeling of local reduction in TiSi2 and CoSi2 growth near spacers in MOS technologies: Influence of mechanical stress and main diffusing speices,” IEEE Electron Devices Meeting, pp. 73-76, 1996

[9] Stanley Wolf Ph.D., Richard N. Tauber Ph.D, “Silicon processing for the VLSI ERA Volume 1: Processing technology,” Lattice Press, California, pp.113-122, 1986

[10] M. Nandakumar, A. Chatterjee, S. Sridhar, K. Joyner, M. Rodder and I.-C.Chen, “Shallow trench isolation for advanced ULSI CMOS technologies,” IEEE Electron Devices Meeting, pp. 133-136, 1998

[11] S. M. Sze., “VLSI technology,” McGraw-Hill, New York, pp.111-115, 1988

[12] C. Stuer, J. Van Landutyt, H. Bender, I. De Wolf, R. Rooyackers, and G. Badene, “Investigation by convergent beam electron diffraction of the stress around shallow trench isolation structures,” Journal of The Electrochemical Society, Vol. 148, No. 11, pp. 597-601, 2001

[13] K.F. Dombrowski, B. Dietrich, I. De Wolf, R. Rooyackers, G. Badenes, “Investigation of stress in shallow trench isolation using UV micro-Raman spectroscopy,” Microelectronics Reliability, Vol. 41, pp. 511-515, 2001

[14] J.M. Regis, A. M. Joshi, T. Lill, M.Yu, “Reactive ion etch of silicon nitride spacer with high selectivity oxide,” IEEE Advanced Semiconductor Manufacturing Conference and Workshop, pp.252-256, 1997

[15] Yeong-Cheol Kim, Jongchae Kim, Jun-Ho Choy, Ju-Chul Park, and Hong-Min Choi, “Effects of cobalt silicidation and postannealing on void defects at the sidewall spacer edge of metal-oxide-silicon field-effect transistors,” Appl. Phys. Lett., Vol 75, No. 9, pp. 1270-1272, 1999

[16] Hiroshi Takahashi, Shigetoshi Muramatsu, Masayasu Itoigawa, “A new contact programming ROM architecture for signal processor,” IEEE Symposium on VLSI Circuit Digest of Technical Papers, pp. 158-161, 1998

&

[1] S. Bothra, H. Sur, V. Liang, “A new failure mechanism by corrosion of tungsten in a tungsten plug process,” IEEE Reliability Physics Symposium Proceedings, pp. 150-156, 1998

[2] Leong-Tee Koh, Kho-Liep Chok, He Ming Li, Simon Y.M.Chooi, “Titanium corrosion in 0.25 μm metal interconnects,” IEEE Interconnect Technology, pp. 47-49, 1999

[3] S. Bothra, H. Sur, V. Liang, R. Annapragada, J. Patel, “Corrosion of tungsten due to plasma charging in a metal plasma etcher,” IEEE International Symposium on Plasma Process-Induced Damage, pp. 227-230, 1998

[4] Ephraim G. Mammo, N. Singh, R. C. Manaquil, D. R. Mers, “Optimization of resist strip recipe for aluminum metal etch process,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, pp. 376-380, 2002

[5] Jang-Eun Lee, Ju-Hyuk Chung, Heungsoo Park, Tae Wook Seo, Sun-Hoo Park, U-In Chung, Geung-Won Kang, Moon-Yong Lee, “Plasma charge-induced corrosion of tungsten-plug vias in CMOS devices,” IEEE International Conference, pp. 273-275, 1999

[6] R. Carel, W.S. Blackley, E.E. Thompson, J. Chen, “Process trends for DPS metal etch: a case study for Al-1%Cu logic devices,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, pp. 246-251, 1997

[7] Michael A. Lieberman, Allan J. Lichtenberg, “Principles of plasma discharges and materials processing,” JOHN WILEY & SONS, Canada, pp.507-510, 1994

[8] C.Y. Chang, S.M.Sze, “ULSI technology,” McGRAW-HILL, Singapore, pp. 333-334, 1996

[9] Hua Li, Mikhail Baklanov, Werner Boullart, Thierry Conard, Bert Brijs, Karen Maex, and Ludo Froyen, “Analyses of post metal etch cleaning in downstream H2O-based plasma followed by a wet chemistry,” Journal of The Electrochemical Society, Vol. 146, Issue 10, pp. 3843-3851, 1999

[10] 莊達人, “ VLSI 製造技術,” 高立, 台北縣, pp. 372-377, July 2002.

------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911375221
論文名稱(中文) 韌性剪力牆行為之有限元素分析
論文名稱(英文) Finite Element Analysis Of High Seismic Performance Walls
校院名稱 成功大學
系所名稱(中) 建築學系碩博士班
系所名稱(英) Department of Architecture
學年度 93
學期 2
出版年 94
研究生(中文) 陳冠帆
學號 n7691417
學位類別 碩士
語文別 中文
口試日期 2005-07-13
論文頁數 99頁
口試委員 指導教授-邱耀正
口試委員-王永明
口試委員-朱聖浩
指導教授-許茂雄
關鍵字(中) 韌性行為
斜向配筋
擠壓現象
關鍵字(英) OpenSees
Finite Element Analysis
pinching -effect
學科別分類
中文摘要   近年來台灣在歷經921大地震的重傷後,結構物的耐震能力比起過去格外的受到重視,而鋼筋混凝土所構成的剪力牆也正廣泛的被應用在建築結構上以作為耐震構材之一;剪力牆或者鑲嵌於柱樑構架內的RC牆在結構耐震安全上所呈現的主要功能為提升結構的勁度與消能,但是在傳統剪力牆的結構行為趨向脆性結構行為,且其載重-變形遲滯圈的行為也明顯顯示了擠壓現象(pinching -effect)而降低消能。因此,如何提升剪力牆之結構韌性與消能行為實為國內、外研究學者所亟欲解決之問題。
  本文研究目的在探求剪力牆-構架之結構韌性行為,找出良好的韌性消能機制並藉由有限元素法的理論分析驗證實驗所得結果;另外則探究純構架系統與剪力牆系統之間的差異並比較不同鋼筋形式排列對韌性消能的影響。鋼筋混凝土剪力牆主要承受的為剪力,不同於梁、柱所承受的撓曲作用,但是由於混凝土材料的特性,鋼筋混凝土結構受力後容易產生裂縫,最終造成開裂破壞,這即為剪力牆受力行為的主要破壞機制。
本文實驗規劃旨在探求出一高韌性的剪力牆行為機制,以便地震力屆臨時達到良好的消能作用及耐震行為,因此實驗規劃中除了比較純構架系統與含邊柱剪力牆系統的差異外,並針對剪力牆的主應力分佈作一扇型配筋形式的改良以求得到良好的消能行為。故試體的原型系統共分:(a)構架系統(柱樑系統)(b)傳統配筋含邊柱剪力牆系統(c)45度斜向配筋含邊柱剪力牆系統(d)扇形配筋含邊柱剪力牆系統,利用側向反覆載重加載至破壞之實驗結果配合OpenSees (Open System for Earthquake Engineering Simulation)有限元素分析,探討鋼筋混凝土含牆構架之開裂載重、降伏載重、極限載重與結構韌性等牆體力學性質並比較其差異。
英文摘要  The Chi-Chi earthquake (September 21, 1999) in Taiwan induced severe damage of school buildings. The investigations on the failure of buildings show that these damaged buildings are mainly caused by shear failure of short column, insufficient walls, and too small column cross-section. RC Shear walls have been recognized as efficient earthquake resistance elements. Framed shear walls are extensively used as the components of earthquake resistance buildings. However, the conventional shear walls, which the reinforcements are in vertical and horizontal directions, frequently possess pinching-effect in the load-displacement curves. The improvement of conventional shear wall to reduce the pinching-effect sounds an essential research.
The OpenSees (Open System for Earthquake Engineering Simulation) finite element model is adopted to analyze the experimental results. These specimens include framed shear walls with high-, middle-, low-rise framed shear walls, pure frames, pure walls, and high seismic performance framed walls. The reinforcements of high seismic performance walls were designed with 45° reinforcements, 45° and boundary vertical reinforcements, and hybrid conventional and 45° reinforcements.
 The experimental results showed that the failure of high-rise shear walls is flexural; their ductility factors are greater than those of low-rise shear walls; their displacements are also greater. The middle-rise shear walls failed by a combination of both flexure and shear. The experimental results also show that the crack load, yield load, and limit load are superior for specimens with higher concrete strength and frame with wall. The numerical solutions agree well with the experimental results.
The results show that the pinching-effect, which frequently existed in the conventional shear walls, is remarkably improved in the new design high seismic performance walls. The larger steel ratio in the shear walls with 45° reinforcements induces less pinching-effect. The structural behavior is highly dependent on the layout of reinforcements of walls. The new design shear wall possesses high potential to improve the seismic performance of buildings, and the proposed numerical model will be a fundamental of model-based simulation of concrete structures.
論文目次 目錄
第一章 緒論
1-1 研究動機…………………………………………………………7
1-2 文獻回顧…………………………………………………………8
1-3 研究目的…………………………………………………………12
1-4 研究方法…………………………………………………………15
1-5 研究流程…………………………………………………………16
第二章 韌性剪力牆實驗試體介紹
2-1 前言………………………………………………………………17
2-2 改良型配筋方式…………………………………………………19
2-3 試體介紹…………………………………………………………20
2-3-1 純構架試體規劃與相關尺寸…………………………………20
2-3-2 傳統含邊柱剪力牆試體規劃與相關尺寸……………………22
2-3-3 改良型45 度配筋含邊柱剪力牆試體規劃與相關尺寸…… 24
2-3-4 改良型扇型配筋含邊柱剪力牆試體規劃與相關尺寸………29
2-3-5 小結……………………………………………………………31
2-4 試驗加載方式……………………………………………………33
2-5 軸壓力設備之架設………………………………………………35
2-6 試體試驗過程(以LWFD1-45 度配筋為例)…………………… 36
第三章韌性剪力牆之數值分析
3-1 前言………………………………………………………………44
3-2 鋼筋混凝土剪力牆之組成律……………………………………44
3-2-1 鋼筋混凝土構架之組成律……………………………………44
3-2-2 鋼筋混凝土剪力牆之組成律…………………………………47
3-3 鋼筋混凝土牆元素勁度矩陣……………………………………51
3-4 非線性有限元素模擬……………………………………………54
第四章數值分析結果與比較
4-1 試體LF1、MF1-純構架試體分析……………………………… 58
LF1………………………………………………………………58
MF1………………………………………………………………58
4-2 試體LWA0、MWA0-傳統含邊柱剪力牆試體分析……………… 62
LWA0…………………………………………………………… 62
MWA0…………………………………………………………… 62
4-3 試體LWFD1、LWFD2、MWFD1、MWFD2、MWA2改良型45 度配筋含邊柱剪力牆試體分析…………………………………………………. 66
LWFD1……………………………………………………………66
LWFD2………………………………………………………… 66
MWFD1……………………………………………………………67
MWFD2……………………………………………………… 67
MWA2……………………………………………………… 68
4-4 試體LWA1 、MWA1 -扇型配筋含邊柱剪力牆試體分析
LWA1………………………………………………………… 77
MWA1……………………………………………………… 77
4-5 小結…………………………………………………………… 81
第五章結論與建議
5-1 結論…………………………………………………………… 83
5-2 未來之建議………………………………………………………87
參考文獻………………………………………………………… 87
附錄一…………………………………………………………… 92








圖目錄
圖1.1 PINCHING-EFFECT ................ ..................12
圖1.2 含邊柱剪力牆系統與純構架及純剪力牆的消能差異.... 14
圖2.1 各系統原型示意圖................................ 18
圖2.2 剪力牆主應力曲線................................ 19
圖2.3 純構架試體詳細配筋圖............................ 21
圖2.4 傳統含邊柱剪力牆試體詳細配筋圖.................. 23
圖2.5 改良型45 度配筋含邊柱剪力牆試體詳細配筋圖....... 28
圖2.6 改良型扇型配筋含邊柱剪力牆試體詳細配筋圖........ 30
圖2.7 加載裝置........................................ 33
圖2.8 側向加載歷時曲線................................ 34
圖2.9 軸力系統施加圖.................................. 35
圖2.10 試體裂縫之發展順序............................... 42
圖3.1 修正後的混凝土KENT & PARK 曲線.................... 44
圖3.2 反覆載重下鋼筋材料的雙線性應力-應變關係........ 45
圖3.3 混凝土應力-應變關係之加載與卸載路徑............. 46
圖3.4 MANSOUR 與HSU 所提出的混凝土反覆應力-應變關係.....47
圖3.5 MANSOUR 與HSU 所提出的鋼筋反覆應力-應變關係..... 48
圖3.6 鋼筋混凝土元素的座標系統示意圖: ................. 51
圖3.7 柱樑元素與牆元素接合示意圖...................... 54
圖3.8 構架系統有限元素分割示意圖...................... 55
圖3.9 剪力牆系統有限元素分割示意圖.................... 56
圖3.10 有限元素切割演進................................. 56
圖4.1 純構架試體有限元素網格示意圖…………………………….58
圖4.2 純構架試體分析模擬與實驗結果.. …………………………60
圖4.3 純構架試體分析模擬與實驗結果之比較圖………………… 61
圖4.4 傳統含邊柱剪力牆試體有限元素網格示意圖……………… 62
圖4.5 傳統含邊柱剪力牆試體分析模擬與實驗結果……………… 64
圖4.6 傳統含邊柱剪力牆試體分析模擬與實驗結果與比較……… 65
圖4.7 45 度斜向配筋含邊柱剪力牆試體有限元素網格示意圖……68
圖4.8 改良型45度斜向配筋含邊柱剪力牆試體分析模擬與實驗結果…………………………………………………………………… 73
圖4.9 45 度斜向配筋含邊柱剪力牆試體分析模擬與實驗結果之比較..............................……………………………… 76
圖4.10 扇形配筋含邊柱剪力牆試體有限元素網格示意圖…………77
圖4.11 改良型扇形配筋含邊柱剪力牆試體分析模擬與實驗結果…79
圖4.12 扇形配筋含邊柱剪力牆試體分析模擬與實驗結果之比較…80

表目錄
表1.1 純構架與剪力牆比較............................... 13
表1.2 研究分析流程圖................................... 16
表2.1 純構架系統試體參數表............................. 20
表2.2 傳統配筋系統試體參數表........................... 22
表2.3 斜向45 度配筋系統試體參數表...................... 25
表2.4 扇型配筋系統試體參數表........................... 29
表2.5 各系統試體參數說明............................... 32
表2.6 試驗過程反覆載重週次表........................... 39
參考文獻 1. Tekeda, T., Sozen, M. A., and Nielaen, N. N., “Reinforced Concrete Response to Simulated Earthquakes”, Journal of the Structure Division, ASCE, Vol.96, pp.2557-2573, 1970.
2. Roufail, M. S. L. and Meyer, C., “Analytical Modeling of Hysteretic Behavior of RC Frames”, Journal of Structural Engineering, ASCE, Vol.113, No.3, March, pp.429-443, 1987.
3. Otani, S. and Sozen, M. A., “Behavior of Multistory Reinforced Concrete Frames During Earthquakes”, Structural Research Series No.392, Univ. of Illinois, Urbana III, 1972.
4. Yamazaki, J. and Hawkins, N. M., “Shear and Moment Transfer between Reinforced Concrete Flat Plates and Columns”, ST. and ME. Report SM75-2, Depart. Of Civil Engineering. Univ. of Wash. Seattle, Sept. 1975.
5. Chiou, Y. J., J. C. Tzeng, and S. C. Hwang, “Discontinuous Deformation Analysis for Reinforced Concrete Frames Infilled with Masonry Walls,” Structural Engineering and Mechanics, An International Journal, Vol.6, No.2, pp.201-215, 1998.
6. 李威聰,「含牆鋼筋混凝土構架試驗研究」,國立成功大學土木工程研究所碩士論文,2001
7.Barda, F., J.M. Hanson, and W.G. Corley, “Shear Strength of Low-Rise Walls with Boundary Elements,” R.C. Structure in Seismic Zones, ACI, edited by N.M. Hawkins, 1977.
8.Benjamin, Jack R., and Harry A. Williams, “The Behavior of One-Story Reinforced Shear Wall,” Journal of the Structural Division, ASCE, May, pp.1254-1-pp.1254-49, 1957.
9.Chiou, Y. J., J. C. Tzeng, and S. C. Hwang, “Discontinuous Deformation Analysis for Reinforced Concrete Frames Infilled with Masonry Walls,” Structural Engineering and Mechanics, An International Journal, Vol.6, No.2, pp.201-215, 1998.
10. Mo, Y. L., Disc. of “Shear Design and Analysis of Low-Rise Structural Walls, by S. T. Mau and T. T. C. Hsu”, ACI Structural Journal, Vol.84, No.1, January-February, pp.91-92, 1987.
11. 郭雄銘,「鋼筋混凝土低型剪力牆承受反向重覆載重之行為研究」,國立成功大學建築工程研究所碩士論文,1986.
12. 林仕修,「低型剪力牆實驗與理論分析之研究」,國立成功大學土木工程研究所碩士論文,1993。
13. 郭健仁,「構架-剪力牆結構互制」,國立成功大學土木工程研究所碩士論文,1997。
14. Fintel, M., “Shearwall-An Answer for Seismic Resistance”, Concrete International, July, pp.48-53, 1991.

15. Hsu, T. T. C. and Mau, S. T., Concrete Shear in Earthquake, Elsevier Applied Science, New York, 1991.
16. 莫詒隆,「剪力牆-最佳之樓房抗震結構」,結構工程,第七卷,第四期,pp.59-63,民國八十一年十一月。
17. Hsu, T. T., and Mo, Y. L., “Softening of Concrete in Low-Rise Shear Walls”, Journal of the American Concrete Institute, Vol.82, No.6, November-December, pp.883-889, 1985.
18. . Mau, S. T. and Hsu, Thomas T. C., “Shear Design and Analysis of Low-rise Structural Walls,” ACI Journal, Vol. 83, No. 2, 306-315, 1986.
19. Mau, S. T. and Hsu, Thomas T. C., “Shear Behavior of Reinforced Concrete Framed Wall Panels with Vertical Load,” ACI Structural Journal, Vol. 84, No. 2, 228-234, 1987
20. Mo, Y. L., “Analysis and Design of Low-rise Structural Walls under Dynamically Applied Shear Forced,” ACI Journal, Vol. 85, No. 2, pp. 180-189, 1988.
21. Pang, X. B. and Hsu, Thomas T. C., “Behavior of reinforced concrete membrane elements in shear,” ACI Journal, Vol. 92, No. 6, pp. 665-679, 1995.
22. Pang, X. B. and Hsu, Thomas T. C., “Fixed angle softened truss model for reinforced concrete,” ACI Journal, Vol.93, No.2, pp. 197-207, 1996.
23. Vecchio, F. J. and M. P. Collins, “The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear,” ACI Journal, March-April, pp. 219-231, 1986.
24. Vecchio, F. J., “Nonlinear Finite Element Analysis of Reinforced Concrete Membranes,” ACI Structural Journal, Vol. 96, No. 1, pp. 26-35, 1989.
25. Bazant, Z. P., J. Pan, and G. Pijaudier-Cabot, “Softening in Reinforced Concrete Beams and Frames,” Journal of Structural Engineering, ASCE, Vol. 113, No. 12, pp. 2333-2347, 1987.
26. Verghese, T. Z. V., and C. S. Krishhamoorthy, “A Study of Finite Element and Mathematical Programming Models for Inelastic Analysis of Concrete Framed Structures,” Computer and Structures, Vol. 43, No. 6. pp. 1007-1018, 1992.
27. Ke, T. C., “Artificial joint-based on manifold method,” Working Forum on the Manifold Method of Material Analysis, California, U.S. A., Vol. 1, pp. 21-38, 1995.

28..Mansour, M, J. Y. Lee, and Thomas T. C. Hsu, “Cyclic Stress-Strain Curves of Concrete and Steel Bars in Membrane Elements,” Journal of Structural Engineering, ASCE, Vol. 127, No. 12, pp. 1402-1411, 2001.
29..Mansour, M, Behavior of Reinforced Concrete Membrane Elements under Cyclic Shear: Experiments to Theory, Ph. D. Dissertation, Department of Civil and Environmental Engineering, University of Houston, U.S.A., 2001.
30. 羅必達, 「低型鋼筋混凝土剪力牆承受反向重覆載重之剛度變化及耐震診斷研究」,國立成功大學建築工程研究所碩士論文,民國七十七年六月。
31. 陳亦信, 「低型鋼筋混凝土槽縫剪力牆承受反向重覆載重之剛度變化及耐震診斷研究」,國立成功大學建築工程研究所碩士論文,民國七十七年六月。
32. Mckenna, F. and Fenves, G. (2000), The OpenSees Command Premier, PDF file Downloaded from the website, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, September.

33. Kent, D.C. and Park, R. (1971), “Flexural Members with Confined Concrete,” Journal of. The Structural Division, ASCE, Vol. 97, No. 7, pp.1969-1990.
34. Karsan, I. D. and Jirsa, J. O. (1969), “Behavior of Concrete under Compressive Loadings,” Journal of the Structural Division, ASCE, Vol. 95, No. ST12.
35.Hsu, T. T. C., “Concrete stiffness matrices for membrane elements,” Structural Engineering and Mechanics, Vol. 5, No. 5, 1997, pp. 599-608.
36.Zhu, R. R. H. and Hsu, T. T. C., “Poisson Effect of Reinforced Concrete Membrane Elements,” Structural Journal of the American Concrete Institute, Vol. 99, No. 5, Sept.-Oct., 2002, pp. 631-640.
37.Zhu, R. H., Hsu, T. T. C. and Lee, J. Y., “Rational Shear Modulus for Smeared Crack Analysis of Reinforced Concrete,” Structural Journal of the American Concrete Institute, Vol. 98, No. 4, July-Aug. 2001, pp. 443-450.

------------------------------------------------------------------------ 第 4 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911395877
論文名稱(中文) 擠壓管式壓電制動噴墨頭之微液滴噴射行為動力分析研究
論文名稱(英文) Study of Dynamic Droplet Ejection Behavior in a Squeeze Mode Piezoelectric Inkjet Device
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 93
學期 2
出版年 94
研究生(中文) 林建樺
學號 p4692104
學位類別 碩士
語文別 中文
口試日期 2005-07-09
論文頁數 77頁
口試委員 口試委員-賴維祥
口試委員-王覺寬
指導教授-呂宗行
關鍵字(中) 壓電噴頭訊號驅動及影像觀測系統
微液滴噴印技術
擠壓管式壓電致動噴墨頭
關鍵字(英) inkjet printing application technology micro-dro
squeeze mode piezoelectric inkjet
piezoelectric driven and imaging system
學科別分類
中文摘要   本文利用自行發展的驅動觀測系統,以控制訊號輸出的實驗方式,來觀察擠壓管型壓電式噴印頭噴射液滴成型之過程。藉由電腦程式產生不同的脈衝電壓訊號與延遲訊號參數,使用電荷耦合攝影機拍攝噴頭噴孔介面變化以及液滴形成的過程,利用影像擷取系統處理量測研究這些訊號參數對於液滴出口速度、液滴體積,分析討論收縮管型壓電式噴印頭內部壓力傳遞,利用本論文的實驗結果,瞭解其內部壓力波傳遞限制條件,尋找出有效驅動波型以及作動參數條件,達到精確控制收縮管型壓電式噴墨頭的目標。在實驗量測中,可為製作新型噴頭時的參考。
英文摘要   Over the past twenty years, ink-jet printing technology has not only become a dominant player in the low cost color printer and industrial marking markets, it has become accepted as a precision microdispensing technology. With this broader viewof the technologies encompassed by the term ink-jet, applications in electronics, optics, displays, virtual reality, medical diagnostics, and medical procedures have been developed using ink-jet fluid microdispensing as an enabling technology.
  This paper aims to experiment and analyze the ejection behavior of droplets created by a squeeze mode piezoelectric inkjet printing device .The piezoelectric driven printing system has been developed in this study to drive and observe different pulse voltage pattern and delay time .To discuss the effects of operating frequency ,pulse time ,pulse voltage ,pulse type, positive voltage keeping time and pulse voltage magnitude on the volume and velocity of the droplets .Looking for the best droplet form in order to exact control piezoelectric print-head and confirming that it is reliable piezoelectric print-head driven and imaging system.
論文目次 目錄
中文摘要……………………………………………………Ⅰ
英文摘要……………………………………………………Ⅱ
謝誌…………………………………………………………Ⅲ
目錄…………………………………………………………Ⅳ
表目錄………………………………………………………Ⅶ
第一章 導論 1
1-1研究背景 1
1-2文獻回顧 2
1-3微液滴噴液技術應用 6
1-4研究動機 7
第二章 實驗原理 9
2-1噴液技術種類 9
2-1-1連續式噴墨技術 9
2-1-2脈衝式 10
(Ⅰ) 熱氣泡致動式 10
(Ⅱ) 音波致動式 11
(Ⅲ)靜電力驅動式 11
(Ⅳ) 壓電致動式 12
(a) 彎曲型 (bend mode) 12
(b) 推擠型 (push mode) 13
(c) 剪力型 (shear mode) 13
(d) 收縮管型 (squeeze mode) 14
2-1-3壓電式與熱泡式噴頭之比較 14
2-2擠壓式壓電噴頭制動原理 16
2-2-1壓電效應 16
2-2-2壓電材料 17
2-2-3壓電方程式 18
2-2-4擠壓式壓電噴頭作動原理 21
2-2-3擠壓式壓電噴頭波傳導理論 22
2-3噴液現象 25
2-3-1液滴生成 25
2-3-2主液滴分離 25
2-3-3衛星液滴 25
第三章 實驗架設與初步觀察 26
3-1實驗設備 27
3-1-1微液滴影像觀測原理與同步訊號之輸出 27
3-1-2壓電噴墨頭之驅動 28
3-1-3影像處理 29
3-1-4背壓裝置與擠壓管式壓電噴頭組 30
3-1-5工作流體 30
3-2實驗初步觀測 31
3-2-2電壓測試 33
3-2-3正脈衝波寬Tdwell測試 35
3-2-4 工作頻率fA測試 36
第四章 結果與討論 36
第五章 結論 40
參考文獻……………………………………………………80
參考文獻 1. W.L. Buehner, J.D. Hill, T.H. Williams, and J.W. Woods, “Application ofInk Jet Technology to a Word Processing Output Printer”, IBM J.  Res.Develop., Vol.21, No. 1, pp. 2-9, Jan., 1977.

2.Sawyer Fuller and Jospher Jacobson,”Ink fabricated Nano Particle  MEMS,”IEEE Microelectromech.Syst.Conf,2000,pp.138-141.

3. R. Elmqvist, “Measuring Instrument of the Recording Type”, U. S. Patent 2566443, 1951

4. R. G. Sweet, “High Frequency Recording with Electrostatically Deflected Ink-Jets”, Rev. Sci. Instrum., vol.36, pp.131-136, 1965

5. W. L. Buehner, J. D. Hill, T. H. Williams, J. W. Woods, “Application of Ink-Jet Technology to A Word Processing Output Printer”, IBM J. Res. Dev., vol.21, pp.2-9, 1977

6. S. L. Zoltan, (Clevite Corp), “Pulse Droplet Ejection System”, U. S. Patent 3683212, 1974

7. E. L. Kyser, S. B. Sears, (Silonic Inc.), “Method and Apparatus for Recording with Writing Fluids and Drop Projection Means Therefore”, U. S. Patent 3946398, 1976

8. J. L. Vaught, F. L. Cloutier, D. K. Donald, J. D. Meyer, C. A. Tacklind, H. H. Taub, (Hewlett-Packard), “Thermal Ink-Jet Printer”, U. S. Patent 4490728, 1979

9. H. C. Lee, “Drop Formation in a Liquid Jet”, IBM J. Res. Develop., pp.364-369, July 1974
10. W. T. Pimbley, “Drop Formation from a Liquid Jet: A Linear One-Dimensional Analysis Considered as a Boundary Value Problem”, IBM J. Res. Develop., pp.148-156, March 1976
11. C. A. Bruce, “Dependence of Ink Jet Dynamics on Fluid Characteristics”, IBM J. Res. Develop., pp.258-270, May 1976
12. J. D. Beasley, “Model for Fluid Ejection and Refill in an Impulse Drive Jet”, Photogr. Sci. Eng., vol.21, pp.78-82, 1977
13. W. T. Pimbley, H. C. Lee, “Satellite Droplet Formation in a Liquid Jet”, IBM J. Res., Develop., pp.21-30, January 1977
14. N. Bugdayci, D. B. Bogy, F. E. Talke, “Axisymmetric Motion of Radially Polarized Piezoelectric Cylinders Used in Ink Jet Printing”, IBM J. Res. Develop., vol.27, no. 2, pp.171-180, March 1983
15. B. D. Bogy, F. E. Talke, “Experimental and Theoretical Study of Wave Propagation Phenomena in Drop-on-Demand Ink Jet Devices”, IBM J. Res. Develop., vol.28, pp.314-321, 1984
16. J. E. Fromm, “Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets”, IBM J. Res. Develop., vol.28, no. 3, pp.322-333, May 1984
17. T. W. Shield, D. B. Bogy, F. E. Talke, “Drop Formation by DOD Ink-Jet Nozzles: A Comparison of Experiment and Numerical Simulation”, IBM J. Res. Develop., vol.31, pp.96-110, 1987
18. F. C. Lee, “PZT Printing Applications, Technologies, New Devices,” Ultrasonic Symposium, pp.693-697, IEEE, 1988
19. W. R. Whel, “The Present State of the Art,” Compeuro ’89-3rd Annual European Computer Conference Hamburg, West Germany, pp.46-52, May, 1989
20. Ping-Hei Chen, Hsin-Yah Peng, Hsin-Yi Liu, S.-L. Chang, T.-I. Wu, Chiang-Ho Cheng, “Pressure Response and Droplet Ejection of a Piezoelectric Inkjet Printhead”, International Journal of Mechanical Sciences, vol.41, pp.235-248, 1999

21. J. A. Katerberg, “Drop charging and deflection using a planar charge  plate”, 4th International Congress on Advances in Non-Impact Printing Technologies, New Orleans, Louisiana, Oct. 30-Nov. 4, 1988

22. C. Bardeau, D. Fressard, P. Atten, and B. Barbet, “Formation pf Isolated  Drops in a Continuous Jet”, IS&T’s Tenth International Congress on Advances in Non-Impact Printing Technologies, New Orleans, Louisiana, Oct. 30-Nov. 4, 1994

23. Randy Fagerquist, “Jet Wave and Droplet Velocities for a Continuous Fluid Jet”, IS&T’s Eleven International Congress on Advances in Non-Impact Printing Technologies, Hilton Head, South Carolina, Oct. 30-Nov. 3, 1995

24..R. Mills, “Ink Jet Printing – Past, Present and Future”, IS&T’s Tenth International Congress on Advances in Non-Impact Printing Technologies, New Orleans, Louisiana, Oct. 30-Nov. 4, 1994

25..E. Webster, “Ink Jet Printing: Its role in Word Processing and Future Printing Markets”, Datek of New England, Newtonville, MA, March 1980

26..M. Zeis, “HP’s 1200C is Designed for Speeed, Low Operating Cost, and Plain Paper Printing”, Color Business Report, Vol3, No. 5, May 1993

27.林郁欣,2003,整合微鉑溫度感測器於熱泡致動器之發展研究,國立成功大學航空太空工程學系碩士論文.

28.D.Huang,and E. S. Kim ,”Micromachined Acoustic-Wave Liquid Ejector ,”IEEE Journal of Microelectromechanical Systems,Vol.10,Issue 3,Sep.,2001

29.X.Zhu, E. Tran, W. Wang, E. S. Kim, and S. Y. Lee,”Micromachined Acoustic-Wave Liquid Ejector, “IEEE Journal of Microelectromechanical Systems,Vol.10,Issue 3,Aug.,1998

30 H. Le, “Progress and Trends in Ink-jet Printing Technology”, Journal of Imaging Science and Technology, Vol.42, No.1, p49~p62, January/February 1998

31 S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A high Resolution, Electrostatically-Driven Commercial Inkjet Head”, The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, p793~p798, Jan. 23-27, 2000

32 S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A Low Power, Small, Electrostatically-Driven Commercial Inkjet Head”, The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, Jan. 25-29, p63~p68, 1998

33.吳鉉忠,2004,壓電式微液滴噴射數學模擬系統之開發與實驗研究,國立成功大學材料科學及工程學系博士論文.

34.C.W.Hansell,”Measuring Instrument of Recording Type,”U.S.Patent 2,512,743,issue6/27/1950

35.單子睿,2003,壓電式噴墨系統之液滴型態控制研究及其數值模擬,國立成功大學材料科學及工程學系碩士論文.

36. MicroFab Technologies, Inc., http://www.microfab.com

------------------------------------------------------------------------ 第 5 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911552160
論文名稱(中文) 轉子-軸承系統之非線性運動 與混沌行為分析
論文名稱(英文) Nonlinear Dynamic Analysis and Chaos of Rotor-Bearing Systems
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 張簡才萬
學號 n1892138
學位類別 博士
語文別 中文
口試日期 2006-06-22
論文頁數 196頁
口試委員 口試委員-楊玉姿
口試委員-光灼華
口試委員-賈明益
召集委員-李偉賢
口試委員-黃文敏
指導教授-陳朝光
口試委員-林見昌
關鍵字(中) 碰摩故障
混沌
偶應力流體
微極流體
紊流流場
Runge-Kutta
多孔性擠壓油膜阻尼
關鍵字(英) chaos
porous squeeze film damper
Runge-Kutta
turbulent flow
couple stress fluid
rub-impact
micropolar fluid
學科別分類
中文摘要 本論文研究的主題為轉子-滑動軸承系統中碰摩故障現象分析、以偶應力流體為潤滑劑之軸承-轉子動態分析、以微極流體為潤滑劑之軸承-轉子動態分析、軸承-轉子系統在紊流流場之動態分析、多孔性擠壓油膜阻尼器支撐之油膜軸承-轉子動態分析,同時皆考慮比較接近實際物理系統的非線性支撐之撓性轉子,並且藉由Runge-Kutta法之數值模擬得到系統基本之動態軌跡,再進一步利用頻譜圖、龐卡來映射圖以及分岔圖分析系統的動態特性,最後再藉由李雅普諾夫指數之運算對系統是否進入混沌運動作更進一步的佐證。
軸承中心與轉子中心在轉子質量偏心的不平衡力與非線性油膜力的作用下產生同步振動、分諧振、準週期振動與混沌振動等複雜性響應。經由不同轉速比下的數值模擬的結果我們也發現了在非線性因素作用下,軸承中心與軸頸中心的動態方程式是互相耦合,在大部分轉速比下,軸承中心與轉子中心運動軌跡呈現不規則混亂運動時。碰摩轉子系統之動態響應不論在長軸承或短軸承的假設下都具有相當豐富的非週期特性。系統運作初期出現低頻的現象,但是隨著碰摩的發展,會出現高頻分量的情形,顯示碰摩越來越嚴重,不論轉子中心或軸承中心的動態軌跡與頻譜圖都呈現相當紊亂與不規則的非週期振動情形。
在偶應力潤滑劑之軸承-轉子動態分析方面,結果顯示隨著 值越大,代表偶應力流體的效應越強,軸承與轉子中心也相對的較穩定而且由分岔圖可看出, 值越大,分岔圖中的週期運動區域越大。在微極流體潤滑劑之軸承-轉子動態分析方面,在不同 下軸承中心與轉子中心的分岔圖, 表示為牛頓流體;而 愈大表示微極流體的的效應愈強。結果顯示隨著 的值愈大,不管軸承或轉子中心的運動軌跡並不會較穩定而是愈紊亂,也印證了雖然預期 的值愈大,負載愈大;但是其摩擦力亦相對增加,導致系統的振動愈來愈不穩定。在紊流潤滑油軸承-轉子動態分析方面,在不同轉速比下,軸承中心或轉子中心顯示相當豐富的動態特性,包括:週期、2T週期、3T週期、準週期與混沌運動等等的振動。在多孔性擠壓油膜阻尼器支撐之油膜軸承-轉子動態分析方面,軸承中心與轉子中心在不同轉速比下顯示週期、2T週期與混沌運動等等的情形。根據分析結果亦得知, 與 值越大,軸承與轉子中心的動態軌跡愈穩定,亦即非線性振動的區域相對減少,故可知多孔性擠壓油膜阻尼器的確有助於改善系統整體的穩定性。


英文摘要 The dynamic analysis of the rotor-bearing system is studied under different cases of rub-impact rotor, couple stress fluid film bearing, micropolar fluid film bearing, turbulent lubrication flow and porous squeeze film damper with couple stress fluid in this paper under nonlinear suspension. The numerical analysis is carried out by using the Runge-Kutta method. Dynamic trajectories, power spectra, Poincaré Map, Bifurcation diagrams and Lyapunov exponent are applied to analyze the dynamic conditions.
An observation of a nonlinearly supported model and the rub-impact between rotor and stator is needed for more precise analysis of rotor- bearing systems. The periodic, quasi-periodic, sub-harmonic and chaotic motion are demonstrated in this study. It is concluded that the trajectory of rotor centre and bearing centre have undesirable vibrations. According to the dynamic analysis of a rotor supported by two couple stress fluid film journal bearings with nonlinear suspension, it is found that periodic, quasi-periodic, sub-harmonic and chaotic motion are demonstrated in this study. The results also confirm that the stability of the system varies with the non-dimensional speed ratios, the non-dimensional unbalance parameters and the dimensionless parameter of . The result of the dynamic analysis of a rotor supported by two micropolar fluid film journal bearings with nonlinear suspension demonstrates that the stability of the system varies with the non-dimensional speed ratios, but doesn’t vary with the non-dimensional parameter N2. The dynamic analysis of a rotor supported by two turbulent model journal bearings with nonlinear suspension has found that the dynamic behaviors of the system include 3T-periodic, jump phenomena and chaotic motions. It is also found that more nonlinear dynamic behaviors occur under turbulent flow assumption than laminar flow model. A dynamic analysis of a flexible rotor supported by two porous squeeze couple stress fluid film journal bearings with nonlinear suspension has found that the stability of the system varies with the non-dimensional speed ratios, the non-dimensional parameter and the permeability .
The modeling results thus obtained by using the method proposed in this paper can be employed to predict the stability of the rotor-bearing system and the undesirable behavior of the rotor and bearing center can be avoided. With the analysis of the dynamic behavior of these operating conditions, the theoretical and practical idea for controlling rotor-bearing systems can be more precise.

論文目次 中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
圖目錄 X
符號說明 XVIII

第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3

第二章 研究非線性動態與混沌的研究方法 13
2-1 龐卡萊截面法 14
2-2 相空間重構 21
2-3 奇異吸子 23
2-4 李雅普諾夫指數 26
第三章 轉子-滑動軸承系統中碰摩故障現象分析 35
3-1 導論 35
3-2 非線性油膜力 36
3-2-1 雷諾方程式的建立 36
3-2-2半油膜短軸承內壓力分佈 43
3-2-3長軸承內壓力分佈 45
3-3 碰摩力分析 46
3-4 非線性支撐之碰摩轉子-油膜軸承系統
的建立 47
3-4-1運動方程式 47
3-4-2運動方程式無因次化 50
3-5數值模擬與討論 51
第四章 以偶應力流體為潤滑劑的轉子-軸承動態分析70
4-1 導論 70
4-2非線性偶應力潤滑劑油膜力 71
4-3 具非線性支撐之轉子-滑動軸承系統的建立 76
4-3-1 運動方程式 76
4-3-2 運動方程式無因次化 78
4-4 數值模擬與討論 79
第五章 以微極流體為潤滑劑的轉子-軸承動態分析 101
5-1導論 101
5-2微極流體潤滑劑之修正之雷諾方程式與油
膜力計算 103
5-3非線性支撐之轉子-滑動軸承系統的建立
106
5-3-1運動方程式 106
5-3-2運動方程式無因次化 108
5-4數值模擬與討論 109
第六章 油膜軸承-轉子系統在紊流流場下之動態分析
128
6-1 導論 128
6-2 紊流潤滑之修正之雷諾方程式與油膜力
計算 129
6-3 非線性支撐之轉子-滑動軸承系統的建
立 131
6-3-1 運動方程式 131
6-3-2 運動方程式無因次化 134
6-4 數值模擬與討論 135
第七章多孔性擠壓油膜阻尼支撐之轉子-軸承動態分析
149
7-1 導論 .149
7-2 修正之雷諾方程式與油膜力計算 151
7-3 具非線性支撐之轉子-軸承系統的建立
154
7-3-1 運動方程式 154
7-3-2 運動方程式無因次化 156
7-4 數值模擬與討論 157
第八章 結論與建議 176
8-1 結論 176
8-2未來研究方向與建議 179
參考文獻 182
自述 194
歷年發表著作
參考文獻 Abdallah, A. E. and Lotfi, H. G., “An inverse solution for finite journal bearings lubricated with couple stress fluids,” Tribology International, 2001, 34, 107-118.
Adiletta, G., Guido, A. R., and Rossi, C., “Chaotic motions of a rigid rotor in short journal bearings,”Nonlinear Dynamics, 1996, 10, 251-269.
Adiletta, G., Guido, A. R., and Rossi, C., “Nonlinear dynamics of a rigid unbalanced rotor in short bearings. Part І: Theoretical Analysis.,”Nonlinear Dynamics, 1997, 14, 57-87.
Adiletta, G., Guido, A. R., and Rossi, C., “Nonlinear dynamics of a rigid unbalanced rotor in short bearings. Part Ⅱ: Experimental Analysis.,”Nonlinear Dynamics, 1997, 14, 157-189.
Arnold, V. I., Ordinary Differential Equations, 1973, New York, Springer-Verlag.
Arnold, V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, 1983, New York, Springer-Verlag.
Bently, D. E., “Forced Subrotative Speed Dynamic Action of Rotating Machinery,” ASME Paper, 1974, No. 74-Pet-16.
Bently, D. E., Zimmer, S., and Palmatier, G. E., “Interpreting vibration information from totating machinery.“ 1986, 2, 14-23.
Birkhoff, G. D., “On the Periodic Motion of Dynamical Systems,” Acta Mathematica, 1927, 50, 359-365. (Reprinted in MacKay and Meiss,(1987))
Brown, R. D., “Chaos in the Unbalance Response of Journal Bear- ings,”Nonlinear Dynamics, 1994, 5, 421-432.
Capone, G., Russo, M., and Russo, R., “Dynamic characteristics and stability of a journal bearing in a non-laminar lubrication regime,” Tribology International, 1987, 20, 255-260.
Childs, D. W.,“Fractional Frequency Rotor Motion Due to Non- symmetric Clearance Effects,”ASME Journal of Engineering for Power, 1982, 533-541.
Chu, F., and Zhang, Z., “Bifurcation and chaos in rub-impact jeffcott rotor system,” Journal of Sound and Vibration, 1998, 210(1), 1-18.
Chua, L.O. Desoer, C.A. Kuh, E.S. “Linear and Nonlinear Circuits,” McGraw - Hill International Edition 1987.
Constantinescu, V. N., “Analysis of bearings operating in turbulent regime,” Journal of Basic Engineering, 1962, 139-151.
Cusano, C., “Lubrication of porous journal bearings,” Transactions of ASME, Journal of Lubrication Technology, 1972, 94(1), 69-73.
Das, N. C., “Elastohydrodynamic lubrication theory of line contacts: couple stress fluid model,” STLE Tribology Transactions, 1997, 40(2), 353-359.
Das, N. C. “A study of optimum load-bearing capacity for slider bearings lubricated with couple stress fluids in magnetic field,” Tribology International, 1998, 31(7), 393-400.
Das, S., Guha, S. K., and Chattopadhyah, A. K., “On the steady-state performance of misaligned hydrodynamic journal bearings lubricated with micropolar fluids,” Tribology International, 2002, 35, 201-210.
Das, S., Guha, S. K., and Chattopadhyah, A. K., “Linear stability of hydrodynamic journal bearings under micropolar lubrication,” Tribology Intertional, 2005, 38, 500-507.
Donald, E., and Bently, C. H., “Dynamics stiffness in whirl and whip,” 1998, 19(1), 4-9.
Ehrich, F. F., “High Order Subharmonic Response of High Speed Rotor in Bearing Clearance,”ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 1988, January, 9-16.
Ehrich, F. F., “Some Observations of Chaotic Vibration Phenomena in High-Speed Rotordynamics,”ASME Journal of Vibration and Acoustics, 1991, 113, 50-57.
Elrod, H. G., and Ng, C. W., “A theory for turbulent films and its application to bearings,” Journal of Lubrication Technology, 1967, 86, 346-362.
Elsharkawy, A. A., and Guedouar L. H., “An inverse solution for finite journal bearings lubricated with couple stress fluids,” Tribology International, 2001, 34, 107-118.
Elsharkawy, A. A., and Guedouar, L. H., “Hydrodynamic lubrication of porous journal bearings using a modified Brinkman-extended Darcy model,” Tribology International, 2001, 34, 767-777.
Eringen, C., “Theory of micropolar fluids,” Journal of Mathematical Mechanics, 1966, 16(1), 1-18.
Eringen, A. C., “Theory of thermomicro fluids,” Journal of Mathematical Analysis and Application, 1972, 38(9), 480-490.
Foiles, W. C., and Bently, D. E., “Balancing with phase only (single-phase and multiphase)”. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 1988, 110, 151-157.
Goldman, M. P., and Muszynaska, A., “Chaotic behavior of rotor/stator systems with rubs,“ ASME Journal of Engineering for Gas Turbine and Power, 1994, 116(3), 692-701.
Gupta, R. S., and Kapur, V. K., “Centrifugal effects in hydrodynamic porous thrust bearing,” Journal of Lubrication Technology, 1979, 101, 381-385.
Gupta, R. S., and Sharma, L. G., “Analysis of couple stress lubricant in hydrostaticd thrust bearings,” WEAR, 1988, 48, 257-269.
Hashimoto, H., Wada, S., and Nojima, K., “Performance characteristics of worn journal bearings in both laminar and turbulent regimes, Part I: steady state characteristics,” ASLE Transactions, 1986, 29(4) 565-571.
Hashimoto, H., Wada, S., and Nojima, K., “Performance characteristics of worn journal bearings in both laminar and turbulent regimes, Part II: dynamic characteristics,” ASLE Transactions, 1986, 29(4) 572-577.
Holmes, R., “The vibration of a rigid shaft on short sleeve bearings,”Journal of Mechanical Engineering Science, 1960, 2, 337-341.
Holmes, R., “Non-linear performance of turbine bearings,”Journal of Mechanical Engineering Science 1970, 12, 377-380.
Holmes, A. G., Ettles, C. M., and Mayes, I. W., “Aperiodic behavior of a rigid shaft in short journal bearings,”International Journal for Numerical Method in Engineering, 1978, 12, 695-702.
Holmes, P. J. and Marsden, J. E., “Melnikov’s method and Arnold diffusion for perturbations of integrable Hamiltonian systems,”Journal of Mathematical Physics, 1982, 23(4), 669-675.
Holmes, P. J., “Nonlinear Oscillations, Dynamical Systems and Bifur- cations of Vector Fields”, 1983, New York, Springer-Verlag.
Hsu, C. H., Lin, J. R., and Chiang, H. L., “Combined effects of couple stresses and surface roughness on the lubrication of short journal bearings,” Industrial Lubrication and Tribology, 2003, 55(5), 233-243.
Hirs, G. G., “A bulk-flow theory for turbulence in lubricants films,” Journal of Lubrication Technology, 1973, 95, 137-146.
John, S, “Operating problems with high speed turbomachinery, cause and correction” Sawer’s Turbomachinery Publications, Norwalk, CT.
Kaneko, S., Hashimoto, Y., and Hiroki, I., “Analysis of oil-film pressure distribution in porous journal bearing under hydrodynamic lubrication conditions using an improved boundary conditions,” Transactions ASME Journal of Tribology, 1997, 119, 171-178.
Khonsari, M. M., and Brewe, D. E., “On the performance of finite journal bearing lubricated with micropolar fluid,” Tribology Transactions, 1989, 32(2), 155-160.
Kolmogorov, A.N., “The general theory of dynamical systems and classical mechanics,” Bulletin of the American Mathematics, 1954, 315-333.
Kumar, A., and Mishra, S. S., “Stability of a rigid rotor in turbulent hydrodynamic worn journal bearings,” WEAR, 1996, 193, 25-30.
Lahmar, M., “Elastohydrodynamic analysis of double-layered journal bearings lubricated with couple-stress fluids,” Proceedings Institution of Mechanical Engineering, Part J: J. Engineering Tribology, 2005, 219, 145-171.
Lahmar, M., Haddad, A., and Nicolas, D., “An optimized short bearing theory for nonlinear dynamic analysis of turbulent journal bearings,” European Journal of Mechanics- A/Solids, 2000, 19, 151-177.
Lahmar, M. E., “Analysis of double-layered journal bearings lubricated with couple-stress fluids,” Proceedings Institution Mechanical Engineering, Part J: Journal of Engineering Tribology, 2005, 219, 145-171.
Lin, T. R., “Hydrodynamic lubrication of journal bearings including micropolar lubricants and three-dimensional irregularities,” WEAR, 1996, 192 ,21-28.
Lin, T. R., “The effects of three-dimensional irregularities on the performance characteristics of turbulent journal bearing,” WEAR, 1996, 196, 126-132.
Lin, J. R., “Squeeze film characteristics of long partial journal bearings lubricated with couple stress fluids,” Tribology International, 1997, 30(1), 53-58.
Lin, J. R., “Static and dynamic behaviour of pure squeeze films in couple stress fluid-lubricated short journal bearings,” Proceedings Institution of Mechanical Engineering, 1997, 62(1), 175-184.
Lin, J. R., “Static and dynamic characteristics of externally pressurized circular step thrust bearings lubricated with couple stress fluids,” Tribology International, 1999, 32, 207-216.
Lin, J. R., “Linear stability analysis of rotor-bearing system: couple stress fluid model,” Computers and Structures, 2001, 79, 801-809.
Lorenz, E. N., “Deterministic Non-periodic Flow,”Journal of Atmospheric Science, 1963, 20, 130-141.
May, R. M., “Simple Mathematical with Very Complicated Dynamics,”Nature, 1976, 261, 459-467.
Morgan, V. T., and Cameron, A. “Mechanism of lubrication in porous metal bearings,” In: Proceedings of the Conference on Lubrication and Wear, London. Institution of Mechanical Engineers, 1957, 151-157.
Moser, S. "Kritik der traditionellen Technikphilosophie." In H. Lenk and S. Moser, eds., Techne Technik Technologie: Philosophische Perspektiven , Pullach, 1973, 11 - 81.
Murti, P. R. K., “Hydrodynamic lubrication of long porous bearings,” WEAR, 1971, 18, 449-460.
Murti, P. R. K., “Effect of slip flow in narrow porous bearings,” Transactions ASME, Journal of Lubrication Technology, 1973, 95, 69-73.
Muszynska, A., “Partial Lateral Rotor to Stator Rubs,”IMechE, 1984, Paper No. C281/84.
Muszynaska, A., and Goldman, M. P., “A new tool in shaft crack detection,” IMechE, 1992, Paper c430/090.
Naduvinamani, N. B., and Hiremath, P. S., and Gurubasavaraj, G., “Squeeze film lubrication of a short porous journal bearing with couple stress fluids,” Tribology Intertional, 2001, 34, 739-747.
Ocvirk, F., "Short Bearing Approximation for Full Journal Bearings," NACA TN 2,1952, 0808.
Oliver, D. R., “Load enhancement effects due to polymer thickening in a short model journal bearings,” Journal of Non-Newtonian Fluid Mechanics, 1988, 30, 185-196.
Pakash, J., and Vij, S. K., “Analysis of narrow porous journal bearing using Beavers-Joseph criterion of velocity slip,” Transaction ASME, Journal of Applied Mechanics, 1974, 96(2), 348-353.
Prakash, J., and Sinha, P., “Lubrication theory for micropolar fluids and its application to a journal bearing,” International Journal of Engineering Science,1975, 13, 217-232.
Ramanaiah, G., “Slider bearings lubricated by fluids with couple stress,” WEAR, 1979, 52, 27-36.
Shehawey, E. F. E., and Mekheimer, K. S., “Couple-stresses in peristaltic transport of fluids,” Journal of Physics D: Applied Physics, 1994, 27, 1163-1170.
Shukla, J. B., “Generalized Reynolds equation for micro-polar lubricants and its application to optimum one-dimensional slider bearings: effects of solid-particle additives in solution,” Journal of Mechanical Engineering Science,1975, 17, 280-284.
Smale, S., “Dynamical systems and the topological conjugacy problem for diffeomorphisms,” Proceedings of the International Congress of Mathematicians, 1963, 490-496.
Smale, S., “A survey of some recent development in differential topology,” Bulletin of the American Mathematical Society. 1963, 69, 131-146.
Stokes, V. K., “Couple-stresses in fluids,” The physics of Fluids, 1966, 9, 1709-1715.
Spikes, H. A., “The behaviour of lubricants in contacts: current understanding and future possibilities,” Proceeding Institution Mechanical Engineering, Part J: J. Engineering Tribology, 1994, 28, 3-15.
Stokes, V. K., “Couple-stresses in fluids,” The physical Fluids, 1996, 9, 1709-1715.
Trumpler, R.J., Weaver H.F., Statistical Astronomy (Dover Publicaions, Inc., New York).
Ueda, Y., “Randomly Transitional Phenomena in the System Governed by Duffing’s Equation,”Journal of Statistical Physics, 1979, 20, 181-196.
Wang, X. L., and Zhu, K. Q., “A study of the lubricating effectiveness of micropolar fluids in a dynamically loaded journal bearing (T1516),” Tribology Intertional, 2004, 37, 481-490.
Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A., “Deter- mining Lyapunov Exponents From a Time Series,”Physica D, 1985, 16, 285-317.
Yuet, J. J., Goldman, P., and Bently, D. E., “A Muzynska Rotor/seal experimental and analytical study on full annular rub,” ASME Journal of Engineering for Gas Turbine and Power, 2002, 124, 340-350.
Zaheeruddin, K. I. M., “Micropolar fluid lubrication of one-dimensional journal bearings,” WEAR, 1978, 50, 211-220.
李振平、羅躍綱、姚紅良、聞邦樁,「考慮油膜力的彈性轉子系統碰摩故障研究」,東北大學學報,2002,Vol.23(10),980-983。
姚賀騰,「轉子-油膜軸承系統之混沌行為分析與控制」,博士論文,2000。


------------------------------------------------------------------------ 第 6 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200914180424
論文名稱(中文) 以擠壓鑄造法製作氧化鋁/鋁合金複合材料之性質及破壞行為的研究
論文名稱(英文) The Characterization and Fracture Behaviors of Al2O3 / aluminum alloy Composites Manufactured by Squeeze Casting
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 96
學期 2
出版年 97
研究生(中文) 周尚南
學號 n5888125
學位類別 博士
語文別 中文
口試日期 2008-06-19
論文頁數 150頁
口試委員 口試委員-黃啟祥
指導教授-黃肇瑞
口試委員-駱榮富
口試委員-李丁福
口試委員-楊智超
口試委員-郭瑞昭
召集委員-段維新
關鍵字(中) 殘留應力
破壞韌性
擠壓鑄造法
陶瓷/金屬複合材料
接觸面積
關鍵字(英) ceramic/metal composite
residual stress
fracture toughness
squeeze casting
interface contact area
學科別分類
中文摘要 氧化鋁陶瓷材料具有相當優良的物理、化學和機械性質,是目前最廣泛被使用的陶瓷材料之一。除了陶瓷粉體容易取得及成本較低的優點外,氧化鋁的高強度、熱穩定性及低熱傳導性近年來也適用於高溫結構體及基板的應用。但氧化鋁陶瓷仍和一般常見的陶瓷相同,擁有低延展性、低韌性的缺點,為改善此情形,其可利用更高的燒結溫度及施以加壓燒結,得到緻密之燒結體,或添加金屬相製作成氧化鋁基的陶瓷/金屬複合材料,預期以添加韌化相之方式,大幅度提升其破壞韌性值。
本研究是以純氧化鋁粉末中混入不同體積配比的石蠟為起始粉末,壓製成生胚後於大氣氣氛中脫脂、燒結成多孔且連通的氧化鋁預形體,再以擠壓鑄造法,將鋁合金熔液以外加機械壓擠入氧化鋁預形體中,製成不同氧化鋁/鋁合金體積比例之複合材料。試片經裁切、研磨及拋光後,測量其物理性質及機械性質,並研究添加不同體積配比的第二相,對其物理性質及機械性質的影響,再將試片做適度的加工,以光學顯微鏡及電子顯微鏡觀察其微結構與破壞表面,探討複合材料之破壞機構。
經實驗分析後得知,以擠壓鑄造法製作氧化鋁/鋁合金複合材料,經電性及影像分析結果可得知,本研究可製作出陶瓷及金屬兩相均勻分佈且相互連通之複合材料。氧化鋁/鋁合金複合材料之機械性質分析中,硬度值隨金屬相體積百分比的增加而降低,其四點彎曲強度值隨金屬相體積百分比的增加而先增加後降低,而破壞韌性值隨金屬相體積百分比的增加而增加,其中氧化鋁/A356鋁合金複合材料為本研究中最佳物理及機械性質之複合材料,進而以物理性質及微結構觀察的方式探討其性質較佳之原因。
研究中發現氧化鋁/ A356鋁合金複合材料之物理性質及機械性質的關連性,並由前人之研究中觀察到的同樣現象,可推測殘留應力之形成是由於複合材料由製程高溫降低至室溫時,高熱膨脹係數之鋁合金相包圍擠壓氧化鋁陶瓷相所致,因此殘留應力應產生於陶瓷及金屬相的介面處。研究後續以有限元素法模擬分析複合材料中,金屬及陶瓷兩相間因熱膨脹係數的差異而產生之殘留應力;且以高角度X-ray繞射分析法,分析複合材料中存在的殘留應力實驗值,並比較理論值及實驗值的差異之處。之後分析陶瓷/金屬兩相間的接觸面積,研究結果發現,兩相間接觸面積的多寡將會影響複合材料中殘留應力的大小。由此可解釋以有限元素法模擬分析,及高角度X-ray繞射分析法研究複合材料中,所得到不同殘留應力數值的原因。最後討論殘留應力的存在,對於氧化鋁/ A356鋁合金複合材料之微結構及機械性質的影響,並綜合討論複合材料中,強化及韌化機制的存在及影響。
英文摘要 Aluminum oxide (Al2O3) is a hard refractory ceramic, which has been investigated for high temperature structural and substrate applications because of its good strength and low thermal expansion coefficient. Nevertheless, like other monolithic ceramics, Al2O3 is apt to suffer from low ductility and low fracture toughness. Therefore, metals (e.g. aluminum, cobalt, and niobium) or alloys are added to ceramics to improve their toughness.
This study aims at investigating the physical, mechanical properties and fracture behaviors, and internal residual stresses in metal reinforced ceramic matrix composites (CMCs). A356, 6061 and 1050 aluminum alloys were infiltrated into the aluminum oxide (Al2O3) preforms in order to fabricate Al2O3/A356, Al2O3/6061 and Al2O3/1050 composites, respectively, with different volumes of aluminum alloy content using the pressure infiltration technique of squeeze casting. The contents of aluminum alloy in the composites were 10 to 40 percent by volume. For all different Al alloy composites, the hardness decreased dramatically, the four-points bending strength increased, the fracture toughness increased, and the resistivity decreased dramatically with increasing Al alloy content in the composites, respectively. From SEM microstructural analysis and TEM bright field images, the porous ratio and the relative density of the composites were the most important factors that affected the physical and mechanical properties, and there are four different toughening mechanisms affected the toughness of the composites, i.e. metal phase increased, crack bridging, crack deflection, and crack branching in the composites.

Values of coefficients of thermal expansion (CTEs) were found to vary significantly with temperature, indicating an influence of the flow characteristics of the metal. Comparisons are made with well known methods for predicting CTEs values of metal/ceramic composites. The overall strain was found to increase with temperature and scaled proportionally with the metal content of the composite. Comparisons were also made with non-infiltrated porous ceramic preforms and a pure metallic sample. The uniform heating and cooling curves for the composite samples were found to exhibit hysterisis. The residual stress analysis and failure simulation were performed based on thermomechanics and the finite element method (FEM). This analysis is often utilized for the analysis of stress distribution or deformation of a structure. High angle X-ray and CTEs mismatch equation analysis were utilized to analyze the residual stresses at the ceramic / metal interface of the Al2O3/A356 composites. The relationship between residual stresses and the contact area of the ceramic / metal interface are also discussed.
論文目次 中文摘要 I
英文摘要 III
致謝 V
總目錄 XI
表目錄 XVII
圖目錄 XVIII

第一章 緒論 1
1.1 前言 1
1.2 研究目的及動機 2

第二章 理論基礎 3
2.1 發展陶瓷/金屬複合材料之緣由 3
2.2 陶瓷/金屬複合材料之製程 9
2.3 擠壓鑄造技術 10
2.4 複合材料中第二相影響機械性質之因素 12
2.4.1 熱作用力的影響 12
2.4.2 晶粒大小的影響 13
2.4.3 Zener relation 14
2.4.4 孔隙率的影響 14
2.4.5 金屬顆粒連通性的影響 15
2.5 陶瓷/金屬複合材料的韌化機制 16
2.5.1 裂縫架橋韌化 21
2.5.2 裂縫轉折韌化 28
2.5.3 熱作用力所造成的殘留應力影響 29
2.6 陶瓷/金屬複合材料的破壞模式 30
2.6.1 陶瓷/金屬的介面破壞模式 31
2.7 破壞韌性的測量 31
2.8 材料之表面殘留應力測量原理 34
2.8.1 壓痕法 34
2.8.2 高角度X光繞射法 35
2.8.3 超音波分析法 39
2.8.4 有限元素分析法 44

第三章 實驗步驟 48
3.1 原始粉末規格及粉體製備 48
3.2 胚體製備 48
3.2.1 多孔隙預形體之製作 48
3.2.2 多孔預形體滲透鋁合金製程 53
3.3 複合材料之微觀組織分析 57
3.3.1 XRD之相分析 57
3.3.2 掃瞄式電子顯微鏡(SEM)觀察 57
3.3.3 電子微探儀(EPMA)試樣之製作及觀察 57
3.3.4 穿透式電子顯微鏡(TEM)觀察 58
3.4 複合材料物理性質量測 58
3.4.1 密度測定 58
3.4.2 電性分析 59
3.4.3 楊氏係數之測定 60
3.4.4 熱膨脹係數分析 60
3.4.5 孔隙大小分佈量測 61
3.5 複合材料機械性質測試 61
3.5.1 維氏硬度測定 61
3.5.2 四點彎曲強度測定 61
3.5.3 破裂韌性測定 62
3.6 表面殘留應力量測 64
3.6.1 壓痕法 64
3.6.2 超音波分析法 64
3.6.3 高角度X光繞射法 65
3.6.4 有限元素分析法 65
3.7 複合材料均勻性分析 65
3.8 陶瓷/金屬接觸面積分析 65

第四章 氧化鋁/鋁合金複合材料性質之研究 70
4.1 複合材料製程之選擇 70
4.2 相分析 73
4.3 物理性質分析 78
4.3.1 密度分析 78
4.3.2 電阻率分析 78
4.4 顯微結構分析 80
4.5 機械性質分析 88
4.5.1 硬度分析 88
4.5.2 彎曲強度分析 91
4.5.3 破壞韌性分析 97
4.5.4 韌化機制分析 101

第五章 複合材料殘留應力之量測及影響 105
5.1 氧化鋁/A356鋁合金複合材料性質概述 105
5.2 複合材料內含有殘留應力之原因及證據 109
5.3 複合材料之物理性質分析 116
5.4 高角度X-Ray繞射法分析殘留應力 120
5.5 有限元素法模擬分析殘留應力 121
5.5.1 殘留應力計算 121
5.5.2 殘留應力模擬 125
5.6 陶瓷/金屬接觸面積分析 128
5.7 複合材料顯微結構分析 130
5.8 陶瓷/金屬複合材料之強化機制 134
5.8.1 應變強化 134
5.8.2 複合材料強化 135
5.9 殘留應力影響氧化鋁/ A356鋁合金複合材料之韌化機制 135

第六章 結論 137
參考文獻 140
個人研究成果 147
作者簡歷 150
參考文獻 [1] Toy, C. and Scott, W. D., “Ceramic-metal composite produced by melt infiltration”, J. Am. Ceram. Soc., 73, [1], 1990, pp. 97-101.
[2] Flinn, B. D., Ruhle, M. and Evans, A. G., “Toughening in composites of reinforced with Al”, Acta Metall., 37, [11], 1989, pp. 3001-3006.
[3] Halverson, D. C., Pyzik, A. J., Aksay, I. A. and Snowden, W. E., “Processing of boron carbide/aluminum composites”, J. Am. Ceram. Soc., 72, [5], 1988, pp. 775-780.
[4] Sigl, L. S. and Fischmeister, H. F., “On the fracture toughness of cemented carbides”, Acta Metall., 36, [4], 1988, pp. 887-897.
[5] Shaw, L. and Abbaschian, R., “Toughening MoSi2 with niobium metal-effects of morphology of ductile reinforcement”, J. Mater. Sci., 30, 1995, pp. 849-854.
[6] A. G. Evans, “The New Generation of High Toughness Ceramics”, in Ceramic Microstructures ’86, J. A. Pask and A. G. Evans Ed. Plenum Press, 1987, pp. 775.
[7] R. W. Rice, “Ceramic Matrix Composite Toughening Mechanisms : An Update”, Ceram. Eng. Sci. Proc., 6, [7-8], 1985, pp.589.
[8] R. W. Steinbrech “Toughening Mechanism for Ceramic Materials”, J. Eur. Ceram. Soc., 10, 1992, pp. 131.
[9] J. Selsing, “Internal stress in ceramics”, J. Am. Ceram. Soc., 44, [8], 1961, pp. 419.
[10] A. Alonso, A. Pamies, J. Narciso, C. Garcia-Cordovilla and E. Louis, “Evaluation of the wettability of liquid aluminum with ceramic particulates (SiC, TiC, Al2O3) by means of pressure infiltration” Metall. Trans. A, 24A, 1993, pp. 1423-1432.
[11] Evans AG, Naslain R editors., “High-temperature ceramic-matrix composites II: manufacturing and materials development”, Ceramic Transaction 58, 1995.
[12] L. H. Van Vlack, “Element of Materials Science and Engineering”, Addison - Wesley Publishing Company, 6th Ed.
[13] 汪建民, “精密陶瓷替性及檢測分析” 第十一章, 工研院工材所, 1988年。
[14] 段維新,“以金屬韌化陶瓷材料之研究及發展” ,粉末冶金會刊,第18卷第1期,1993年。
[15] D. K. Creber, S. D. Poste, M. K. Aghajanian and T. D. Alaar, “AlN Composites Growth by Nitridation of Al-Alloys”, Ceram. Eng. Sci. Proc., 9, 1988, pp. 975.
[16] B. Budiansjky, J. C. Amazigo and A. G. Evans, “Small- Scale Crack Bridging and the Fracture Toughness of Particulate-Reinforced Ceramics”, J. Mech. Phys. Solids, 36, 1988, pp. 167.
[17] M. K. Aghajanian, N. H. Mac-Millan, C. K. Kennedy, S. J. Luszcz and R. Roy, “Properties and Microstructures of Lanxide Al2O3 - Al Ceramic Composite Materials”, J. Mater. Sci., 24, 1989, pp. 658.
[18] M. S. Newkirk, A. W. Urquhart, H. R. Zwicker and E. Breval, “Formation of Lanxide Ceramic Composite Materials”, J. Mater. Res., 1, [1], 1986, pp. 81.
[19] R. Smith and J. Westlake, “Retention reproducibility of basic drugs in high-performance liquid chromatography on a silica column with a methanol-high-pH buffer eluent Changes in selectivity with the age of the stationary phase”, J. Chromatography A, 592, [1-2], 21 Feb., 1992, pp. 85-92.
[20] Shy-Wen Lai, D. D. L. Chung, “Fabrication of Particle Aluminum-Matrix Composites by Liquid Metal Infiltration”, J. Mater. Sci., 29, 1994, pp. 3128-3150.
[21] P. K. Rohtagi, D. Nath, S. S. Singh, and B. N. Keshavaram, “Factors affecting the damping capacity of cast aluminium-matrix composites”, J. Mater. Sci., 29, 1994, pp. 5975-5984.

[22] A .-B. Ma, H. Gan, T. Imura, Y. Nishida, J. Q. Jiang, M. Takagi, “Wear Properties of Aluminum Alloy Reinforced by short Alumina Fibers with Gradient Distribution” Mater. Trans., 38, [9], 1997, pp. 812–816.
[23] 陳俊沐,“擠壓鑄造製程簡介及在其複合材料方面的應用” , 工業材料, 85期,1994年, pp.111-119。
[24] 傅兆章, “擠壓鑄造法回顧與展望” , 鑄工期刊, 33期,1982 年,pp. 22-28。
[25] 黃啟祥、林江財,陶瓷技術手冊 (下),經濟部技術處,1994年。
[26] 陳志榮,納米碳化鉻/及鉬/氧化鋁基複合材料之製程與分析,國立台灣大學材料科學及工程學研究所,2000年。
[27] P. F. Becher, “Micro-structural design of Toughened Ceramics”, J. Am. Ceram. Soc., 74 [2], 1991, pp. 255.
[28] 狩野 武,粉粒體輸送裝置,日刊工業新聞社,1976年。
[29] W. H. Rice, “Microstructure dependence of Mechanical behavior”, Academic Press, N. Y., 1977, pp. 257.
[30] W. H. Tuan, J. M. Wu, “Effect of microstructure on the hardness and fracture toughness of YBa2Cu2O7−x /Ag Composites ”, J. Mater. Sci., 28, 1993, pp. 1415.
[31] W. H. Tuan and R. J. Brook, “The toughening of alumina with nickel inclusions”, Journal of the European Ceramic Society, 6, [1], 1990, pp. 31-37.
[32] W. H. Tuan and R. J. Brook, “Processing of alumina/nickel composites”, Journal of the European Ceramic Society, 10, [2], 1992, pp. 95-100.
[33] T. J. Davies, H. G. Emblem, A. Harabi, C. S. Nwobodo, A. A. Oqwu, and V. Tsantzlaou, “Characterisation and properties of alumina-chrome refratories”, Br. Ceram. Trans, 91, 1992, pp. 71-76.
[34] A. Harabi and T. J. Davies, “Mechanical properties of sintered alumina-chromia refractories”, Br. Ceram. Trans, 94, [2], 1995, pp. 79-84.
[35] R. W. Rice, “Toughening in Ceramics Particulate and Whisker Composites”, Ceram. Eng. Sci. Proc., 11, [7-8], 1990, pp. 667-694.
[36] K. T. Faber and A. G. Evans, “Crack Deflection Process-I. Theory”, Acta Metall., 31, [4], 1983, pp. 565-576.
[37] G. C. Wei and P. F. Becher, “Improvement in Mechanical in SiC by the Addition of TiC Particulate”, J. Am. Ceram. Soc., 67, [8], 1984, pp. 571-591.
[38] K. M. Shu, C. T. Fu, and J. M. Liu, “Electrodicharge-Machining of Al2O3/Cr3C2 Composites”, J. Mater. Sci. Letter, 13, [13-18], 1994, pp. 1146-1148.
[39] R. C. Bradt, “Cr2O3 solid solution hardening of Al2O3”, J. Am. Ceram. Soc., 50, [31], 1967, pp. 54-55.
[40] B. B. Chate, W. C. Smith, C. H. Kim, D. P. H. Hasselman and G. E. Kane, “Effect of Chromia Alloying on Machining Performance of Alumina Ceramic Cutting Tools”, Ceramic Bulletin, 54, [2], 1975, pp. 210-215.
[41] P. K. Rajagopalan, T. S. Krishnan, and D. K. Bose, “Development of Carbothermy for the Preparation of Hepta Chromium Carbide”, Journal of Alloys and Compounds, 297, [1-2], 2000, pp. L1-L4.
[42] K. T. Faber, A. G. Evans, “Crack deflection Process-II, Theory”, Acta. Metall., 31, [4], 1983, pp. 577-584.
[43] L. S. Sigl, P. A. Matage, B. J. Dalgleish, R. M. Mcmekking, A. G. Evans, “On the Toughness of Brittle materials reinforced with a Ductile phase”, Acta. Metall., 36, [4], 1988, pp. 945-953.
[44] B. D. Flinn, M. Ruhle, A. G. Evans, “Toughness in Composites of Al2O3 Reinforced with Al”, Acta. Metall., 37, [11], 1989, pp. 3001.
[45] W. H. Tuan and R. J. Brook, “Reactive Sintering of Al2O3 / Ni Composites”, Proc. Brit. Ceram. Soc., No.10, 1992, pp. 95.
[46] F. Erdogan, P. F. Joseph, “Toughening of ceramics through crack bridging by ductile Particle”, J. Am. Ceram. Soc., 72, [2], 1989, pp. 262.
[47] M. F. Ashby, F. J. Blunt, M. Bannister, “Flow characteristics of highly Constrained Metal wire”, Acta. Metall., 37, [7], 1989, pp. 1847.
[48] H. E. Deve, A. G. Evans, G. R. Odeette, R. Mehrabian, M. L. Emilian, R. J. Heckt, “Ductile Reinforcement Toughening of γ-TiAl effect of Debonding and Ductility”, Acta. Metall., 38, 1990, pp. 1491.
[49] Davidge, R. W. and Green, T. J., “The Strength of Two - Phase Ceramic / Glass Materials”, J. Mater. Sci., 3, 1968, pp. 629.
[50] Chermant, J. L. and Osterstock, F., “Fracture Toughness and Fracture of WC-Co Composites”, J. of Mater. Sci., 11, 1976, pp. 1939-1951.
[51] M. Slesar, J. Dusza, and L. Parilak, “Micro-mechanics of Fracture in WC-Co Hard-metals ”, Inst. Phys. Conf. Ser., 75, 1986, pp. 657.
[52] D.B. Marshall and B.R. Lawn, “An Indentation Technique for Measuring Stresses in Tempered Glass Surfaces”, J. Am. Ceram. Soc., 60, 1977, pp. 86-87.
[53] B.R. Lawn and E.R. Jr. Fuller, “Measurement of Thin-Layer Surface Stresses by Indentation Fracture”, J. Mater. Sci., 19, 1984, pp. 4061-4067.
[54] M. F. Gruninger, B.R.Lawn, E.N. Farabaugh and J.B. Jr. Wachtman, “Measurement of Residual Stresses in Coating on Brittle Substrates by Indentation”, J. Am. Ceram. Soc., 70, 1987, pp. 344-348.
[55] B.D. Cullity, “Elements of X-ray Diffraction”, 2nd ed., Ch. 16, Reading, MA, Addison-Wesley, 1978.

[56] I.C. Noyan and J.B. Cohen, “Residual Stress, Measurement by Diffraction and Interpretation”, Springer-Verlag, NY (1987).
[57] 吳翼貽,“以X光照繞射量測殘留應力”,科儀新知,13 [6],1992年,pp.23-34。
[58] 黃炳淮,“以X光照繞射量測殘留應力”,科儀新知,22 [2],1992年,pp.23-30。
[59] J.B. Cohen, H. Dolle, M.R. James, “Stress Analysis from Powder Diffraction Patterns”, NBS Special Publication 567, Gaithersburg, Maryland, 1980, pp. 453-477.
[60] 吳政忠、施光亮、莊東漢, “超音波量測SAE4130鋼板之焊接殘留應力”,檢測科技,14 [5] ,1996年,pp.264。
[61] Y. Iwashimizu and K. Kubomura, “Stress-induced rotation of polarization directions of elastic waves in slightly anisotropic materials”, International Journal of Solids and Structures, 9, [1] , 1973, pp. 99-114.
[62] Kohji Toda, “A technique for measuring strain in layered structure media”, Sensors and Actuators A: Physical, 43, [1-3], 1994, pp. 213-216.
[63] Yi-Wang Bao, Chien-Cheng Liu, Jow-Lay Huang, “Effects of residual stresses on strength and toughness of particle-reinforced TiN/Si3N4 composite: Theoretical investigation and FEM simulation”, Materials Science and Engineering A 434, 2006, pp. 250-258.
[64] C.L. Xu, “Mechanics of Elasticity”, Education Press of China, Beijing, 1978, pp. 188-190.
[65] S. N. Chou, H. H. Lu, D. F. Lii, J. L. Huang, “Investigation of residual stress effects in an alloy reinforced ceramic/metal composite”, Journal of Alloys and Compounds, In Press, accepted 18 February 2008, available online 8 April 2008.
[66] S. N. Chou, H. H. Lu, D. F. Lii, J. L. Huang, “Processing and Physical Properties of Al2O3 / Aluminum Alloy Composites”, Ceramics International, In Press, accepted 2nd September 2007, available online 25 September 2007.
[67] S. N. Chou, J. L. Huang, D. F. Lii, H. H. Lu, “The mechanical properties of Al2O3/aluminum alloy A356 composite manufactured by squeeze casting”, Journal of Alloys and Compounds, 419, 2006, pp. 98-102.
[68] W. H. Tuan, M. C. Lin and H. H. Wu, “Preparation of Al2O3/Ni composites by pressureless sintering in H2”, Ceramics International, 21, [4], 1995, pp. 221-225.
[69] S. N. Chou, J. L. Huang, D. F. Lii, H. H. Lu, “The mechanical properties and microstructure of Al2O3/aluminum alloy composites fabricated by squeeze casting”, Journal of Alloys and Compounds, 436, 2007, pp. 124-130.
[70] Shuangjie Chu and Renjie Wu, “The structure and bending properties of squeeze-cast composites of A356 aluminium alloy reinforced with alumina particles”, Composites Science and Technology, 59, [1], 1999, pp. 157-162.
[71] E. Le Pen and D. Baptiste, “Prediction of the fatigue-damaged behaviour of Al/Al2O3 composites by a micro–macro approach”, Composites Science and Technology, 61, [1], 2001, pp. 2317-2326.
[72] Zheng LIU and Tao TU, “Solidified structure and solute segregation in Al2O3/A356-La alloy composites”, Rare Metals, 25, [3], 2006, pp. 231-236.
[73] K.K. Tojek and D.J. Green, “Effect of Residual Stress on the Strength Distribution of Brittle Materials”, J. Am. Ceram. Soc., 72, 1989, pp. 1885-1890.
[74] Ching-An Jeng, Jow-Lay Huang, Show-Yueh Lee, Bing-Hwait Hwang, “Erosion damage and surface residual stress of Cr3C2/Al2O3 composite”, Materials Chemistry and Physics, 78, 2002, pp. 278–287.
[75] A. Borbely, H. Biermann, O. Hartmann, “FE investigation of the effect of particle distribution on the uniaxial stress–strain behaviour of particulate reinforced metal-matrix composites”, Mater. Sci. Eng. A 313, [1-2], 2001, pp. 34-35.
[76] 劉國雄、林樹均、李勝雄、鄭晃忠、葉鈞蔚, “工程材料科學” 第九章 材料之強化,全華科技圖書,1991年,pp. 433-486。

------------------------------------------------------------------------ 第 7 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200914245154
論文名稱(中文) 微結構對蜂巢材料平面外挫曲與壓碎行為之影響
論文名稱(英文) Effect of morphology on the out-of-plane buckling and crushing behavior of honeycombs
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 96
學期 2
出版年 97
研究生(中文) 林鼎鈞
學號 n6695436
學位類別 碩士
語文別 中文
口試日期 2008-06-13
論文頁數 156頁
口試委員 指導教授-黃忠信
口試委員-楊美怡
口試委員-張瑞宏
口試委員-黃錦煌
口試委員-林育芸
關鍵字(中) 挫曲
平面外
擠壓
蜂巢
關鍵字(英) buckling
honeycomb
crushing
out-of-plane
學科別分類
中文摘要 本研究藉由有限元素數值分析方式,採用實體元素建立最小重複單元體之三維有限元素數值分析模型,改變微構件之曲度與變剖面,探討微構件對蜂巢材料平面外彈性挫曲行為與動態擠壓吸能行為之影響。平面外挫曲分析依施力方向,分為軸向與剪力挫曲行為,利用數值分析求得平面外彈性挫曲強度,結合平板力學之挫曲方程式,反推不同受力作用下之挫曲常數,使用線性回歸方法描述各相對密度具曲度及變剖面蜂巢材料之挫曲常數,尋獲一具最佳微結構之蜂巢材料。

此外,藉由動態分析之數值方法,改變微構件與應變速率,觀察各階段應力與應變曲線之力學行為,瞭解微結構參數 與 值,對於蜂巢材料平面外擠壓之破壞行為,將尋找具最佳微構件之蜂巢材料,提昇蜂巢心材吸能抗震之功效。
英文摘要 In the study, a three-dimensional representative volume element model with multi-cell honeycomb structure and appropriate periodic boundary conditions was proposed to numerically calculate the out-of-plane mechanical properties of regular hexagonal honeycombs. Then, the effects of microstructural imperfections of solid distribution in cell edges and curved cell edges on the out-of-plane elastic buckling, dynamic crushing and energy absorption of regular hexagonal honeycombs are evaluated. Two types of out-of-plane elastic buckling are considered here: compression buckling and shear buckling. The out-of-plane elastic buckling strengths of regular hexagonal honeycombs with plateau borders and curved cell edges are calculated from a series of finite element analyses. Finite element numerical results indicate that the out-of-plane compressive buckling and shear buckling strengths of regular hexagonal honeycombs are affected significantly by the solid distribution in cell edges and the curvature of cell edges. Furthermore, the corresponding elastic buckling constants for regular hexagonal honeycombs with plateau borders and curved cell edges are determined from the finite element numerical results and the theoretical expression derived from the theory of plate. Consequently, regular hexagonal honeycombs with an optimal microstructure to have a higher elastic buckling strength are obtained. In addition, the stress-strain curves of regular hexagonal honeycombs with various microstructures subjected to different strain rates are numerically obtained and compared to each other. Again, the effects of plateau borders and curved cell edges on the out-of-plane crushing strengths of regular hexagonal honeycombs are discussed.
論文目次 摘要……………………………………………………………………………I
Abstract……………………………………………………………………….II
致謝....……………………………………………………………………….III
目錄………………………………………………………………………….IV
表目錄……………………………………………………………………….VI
圖目錄……………………………………………………………………….IX
第一章 緒論 1
1.1 研究動機與目的 1
1.2 本文組織與內容 2
第二章 相關理論與文獻回顧 4
2.1細胞型材料 4
2.2蜂巢材料之幾何定義 5
2.2.1具單缺陷蜂巢材料之幾何定義 5
2.2.2具雙缺陷蜂巢材料之幾何定義 7
2.3 蜂巢材料平面外彈性挫曲強度 9
2.3.1 平面外軸向挫曲強度 9
2.3.2平面外彈性挫曲剪應力 13
2.4 動態擠壓吸能分析 14
第三章 蜂巢材料平面外彈性挫曲行為 37
3.1 有限元素法模型 37
3.2 規則六角形蜂巢材料平面外彈性挫曲行為 39
3.2.1 平面外軸向挫曲行為 40
3.2.2 平面外彈性剪力挫曲行為 42
3.3 微構件對蜂巢材料平面外彈性挫曲行為之影響 45
3.3.1 具雙缺陷蜂巢材料之平面外挫曲壓應力 45
3.3.2 具雙缺陷蜂巢材料之平面外挫曲剪應力 50
第四章 蜂巢材料動態擠壓行為 113
4.1 有限元素法幾何模型 113
4.2 規則六角形蜂巢材料受擠壓吸能行為 114
4.2.1 相對密度對擠壓行為之影響 114
4.2.2 應變速率影響 117
4.3 微結構對蜂巢材料擠壓吸能之影響 120
第五章 結論 151
參考文獻 [1] Chuang C.H. Mechanical property of honeycombs with Plateau borders, Ph. D. dissertation, Department of Civil Engineering, National Cheng Jung University, Tainan, Taiwan, 2002

[2] Yang M.Y. Mechanical behavior of honeycomb with dual imperfection under multiaxial Loads, Ph. D. dissertation, Department of Civil Engineering, National Cheng Jung University, Tainan, Taiwan, 2007

[3] M.Yamashita, M.Gotoh. Impact behavior of honeycomb structures withvarious cell specifications – numerical simulation and experiment. Int J Impact Eng 2005;32:618-630

[4] Timoshenko SP, Gere JM. Theory of Elastic Stability. McGraw-Hill, 1961.

[5] Gibson, L.J. and Ashby, M. F. Cellular solid: structure and properties, 2nded. Cambridge UK: Cambridge University Press;1997

[6] Liang S. and Chen H.L, Investigation on the square cell honeycomb structures under axial loading. Composite structure 2006; 72: 446-454

[7] Wang YJ. Elastic collapse of honeycombs under out-of-plane pressure. Int J Mech Sci;1991; 33: 637-44.

[8] Ugural A. C.. Stresses in plates and shells 2nd ed. Boston : WCB/McGraw Hill, 1999

[9] Côté F. , Deshpande V.S. , Fleck N.A., Evans A.G.. The out of plane compression behavior of metallic honeycombs, Material Sci and Eng 2004; 380:272-280

[10] Yamaki N. Elastic stability of circular cylindrical shells, Tohoku University, Sendai Japan

[11] Wilde R., Zawodny P., Magnucki K. Critical state of an axially compressed cylindrical panel with three edges simply supported and one edge free, Thin-Walled Structures 2007; 45:955-959

[12] Bazant Z, Cedolin L.Stability of structure. New York, Oxford: Oxford University Press;1991

[13] Navin Jaunky, Norman F. Knight Jr. An assessment of shell theories for buckling of circular cylindrical laminated composite panels loaded in axial compression, Int J Solids and Struct 1999; 36:3799-3820

[14] Simitses G.J. Buckling of moderately thick laminated cylindrical shell: a review, Composites Part B 27B, 1996; 581-587

[15] Zhang J., Ashby M.F. The out-of-plane properties of honeycombs, Int J Mech Sci; 1991; 34,475-489
[16] Warren C. Young, Richard G. Budynas. Roark’s Formulas for Stress and Strain, 7th ed.

[17] Pan SD, Wu LZ, Sun YG, Zhou ZG, Qu JL. Longitudinal shear strength and failure process of honeycomb cores. Comp Struct 2006; 72: 42-6.

[18] Mulalo Doyoyo, Dirk Mohr. Microstructrural response of aluminum honeycomb to combined out-of-plane loading, Mech Materials 2003; 865-876

[19] Mulalo Doyoyo, Dirk Mohr. Experimental investigation on the plasiticity of hexagonal aluminum honeycomb under multiaxail loading, J Applied Mech; 2004; 71, 375

[20] Dirk Mohr and Mulalo Doyoyo, Deformation-induced folding systems in thin-walled monolithic hexagonal metallic honeycomb, Int J Solids and Structure; 2004; 41, 3353-3377

[21] Gere J. M.. Mechanics of Material. Fifth edition

[22] Alexander J.M. An Approximate Analysis of the Collapse of Thin Cylindrical Shell Uner Axial Loading. Quarterly Journal of Mech and Applied Math, ⅩⅢ, 10-15

[23] Werzbicki, T. Crushing Analsis of Metal Honeycombs. Inter J of Impact Eng 1983; 1: 157-174
[24] Levent Aktay, Alastair F. Johnson, Bernd-H. Kröplin. Numerical modeling of honeycomb core crush behavior. Eng Fracture Mech;2008 ;75,2616-2630

[25] Vinoj Meshash Aaron Jeyasingh. Analytical modeling of metallic honeycomb for energy absorption and validation with FEM. M.S., Wichita State University, USA, 2001

[26] Ruan D., Lu G., Wang B., Yu T.X.. In-plane dynamic crushing of honeycombs—a finite element study. Int J Impact Eng 2003;28: 161-182.

[27] Zhijun Zheng, Jilin Yu, Jianrong. Dynamic crushing of 2D cellular structures: A finite element study. Int J Impact Eng 2005; 32: 650- 664.

[28] Jörg Hobe, Wilfried Becker. A refined analysis the effective elasticity tensor for general cellular sandwich cores: Int J of Solids and structures 2001; 38: 3689-3717

------------------------------------------------------------------------ 第 8 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200914371791
論文名稱(中文) 彩色濾光片彩色層鍍膜製程品質提升之研究
論文名稱(英文) Study on Quality Enhancement for the Colored Layer Coating Procedure of Color Filter
校院名稱 成功大學
系所名稱(中) 工程科學系專班
系所名稱(英) Department of Engineering Science (on the job class)
學年度 96
學期 2
出版年 97
研究生(中文) 謝宗勳
學號 N9794130
學位類別 碩士
語文別 中文
口試日期 2008-07-29
論文頁數 76頁
口試委員 指導教授-趙隆山
口試委員-周榮華
口試委員-黃登淵
關鍵字(中) 鍍膜
穿透率及擠壓式塗佈法
彩色濾光片
色度
關鍵字(英) Slit Die Coating
Color Filter
Coater
Colorimetric
Transmittance
學科別分類
中文摘要 隨著顯示器市場推陳出新,如面板大型化、低價化、廣視角(Multi-domain Vertical Alignment)、廣色域(Wild Color Gamut)、高對比、高穿透度、高色彩飽和度等條件以滿足消費者市場需求,其中彩色濾光片(Color Filter)為液晶顯示器呈現色彩之關鍵材料,因此彩色濾光片色度(Colorimetric)要求條件亦相形嚴峻。在彩色濾光片製造方法中,顏料分散法之光微影製程因具備高信賴性、高解析度、及耐高溫特性,廣為業界採用,但是面板大型化與低價策略影響下,彩色濾光片更被要求降低成本,於是減化製程步驟、低材料成本、高直通率成為彩色濾光片重要議題之一。
本文之研究將旋轉塗佈轉換成擠壓式塗佈(Slit Die Coating)方式可提高光阻利用率至90%以上,並將鉻黑色矩陣(Cr Black Matrix)轉換成樹脂黑色矩陣(Resin Black Matrix)可減化鍍鉻製程、降低材料成本與減少重金屬所造成環境污染。另一重要議題為色彩飽和度與對比度,由於紅、藍、綠三原色膜厚高,色再現性(Color Reproduction)將會提升,但其穿透率是降低的,所以色度(膜厚)與穿透率(對比度)相互衝突的特性,需要由光阻特性之改變取得高色度與高對比度之平衡,上述兩點之重要議題為本實驗主軸及探討之主題。
英文摘要 As TFT-LCD products bring forth the new through the old, the market demands become more and more critical, such as large-size panel, low price, multi-domain vertical alignment, wild color gamut, high contrast, high transmittance, high saturation of color, etc. In a LCD, the color filter is the key part for color appearance and hence the colorimetric requirement becomes rigorous. Among the fabricating methods of color filter, the photolithographic process of pigment dispersion method possesses high reliability, high contrast and high temperature endurance, which is generally used by the TFT-LCD company. However, under the influences of large size panel and low price policy, it is asked to cut the cost of color filter. Accordingly, the simplification of fabrication procedure, the decrease of material cost and the high throughput become the important topics.
In this study, the slit die coating is used instead of slit-spindle coating for the coating process and the performance of the new scheme is evaluated. The utilization ratio of photo resistance can be improved and the ratio after improvement is more than 90%. Since the material of black matrix can be changed from chromium to resin, this could reduce the chromium coating process, material cost and heavy metal pollution. The other important topics are the saturation of color and the contrast ratio. Since the film thicknesses of the three primary colors (red, blue and green) increase with the new method, the color reproduction will be improved; however, the transmittance will decrease. The conflict between colorimetric (thickness) and transmittance (contrast ratio) must be balanced by changing the photo-resistance characteristic. Hence the exploration of the two key points, thickness and transmittance, described above is the primary purpose of this work.
論文目次 摘要..........................................................................................................I
Abstract....................................................................................................II
誌謝.........................................................................................................IV
目錄..........................................................................................................V
表目錄.....................................................................................................Ⅳ
圖目錄......................................................................................................Ⅴ

第一章 緒論.............................................................................................1
1-1 前言....................................................................................................1
1-2文獻回顧.............................................................................................2
1-3 研究動機............................................................................................4
1-4 論文架構............................................................................................5

第二章 彩色濾光片製程與色度量測模式.............................................6
2-1 彩色濾光片製程方法........................................................................6
2-1-1 黑色矩陣(BM:Black Matrix)製程品質要求.............................6
2-1-2 彩色層(Red、Green、Blue)製程品質要求................................8
2-1-3 曝光、顯影製程品質要求..........................................................9
2-2 CIE色彩理論...................................................................................10
2-2-1可見光與色彩..............................................................................11
2-2-2色度三刺激值..............................................................................11
2-2-3加法混色......................................................................................13
2-3實驗模式與控制因子......................................................................15

第三章實驗設備與方法.........................................................................17
3-1實驗設備..........................................................................................17
3-2現行所採用之各種規範..................................................................18
3-3 實驗設計參數.................................................................................18
3-3-1實驗模式Case A...........................................................................20
3-3-2實驗模式Case B...........................................................................21
3-3-3實驗模式Case C...........................................................................22

第四章 結果與討論.................................................................................24
4-1擠壓式塗佈(Slit Die Coater)與色度膜厚之變化.............................24
4-2曝光量(Exposure)與膜厚之關係.....................................................26
4-3後烤(Post-oven)與膜厚色度之關係................................................27
4-4拋光(Polish)與膜厚色度之關係......................................................28


第五章結論與未來展望.........................................................................30
參考文獻.................................................................................................32
附錄1表色系與用語...............................................................................36
附錄2塗佈平坦度與彩色濾光片之膜厚斷面圖...................................38
表1.1彩色濾光片產品特性要求............................................................39
表1.2彩色濾光片(RGB)設計規格.....................................................40
表2.1色彩的分類.....................................................................................41
表2.2可見光波長.....................................................................................42
表2-3實驗設計參數因子.........................................................................43
表3.1現有之色度規範.............................................................................44
表3.2彩色濾光片(RGB)設計規格.....................................................45

表4.1各光阻用量.....................................................................................46
表4.2紅綠藍色溼膜之膜厚.....................................................................46
表4.3濕膜色度及穿透率.........................................................................47
表4.4紅綠藍色乾膜之膜厚.....................................................................48
表4.5乾膜色度及穿透率.........................................................................49
表4.6紅色拋光前後之穿透率.................................................................50
表4.7綠色拋光前後之穿透率.................................................................50
表4.8藍色拋光前後之穿透率.................................................................51
表4.9拋光後之膜厚.................................................................................51
圖1.1 液晶顯示器中三原色....................................................................52
圖1.2 CIE 1931色彩空間.........................................................................52
圖1.3 NTSC、CRT、LCD之色域比較....................................................53
圖1.4塗佈方法與光阻用量之比較(資料來源 TOK)..............................53
圖2.1彩色濾光片結構.............................................................................54
圖2.2 CIE 1931 Yxy色度圖.....................................................................54
圖2.3可見光波長.....................................................................................55
圖2.4色彩匹配實驗方法.........................................................................55
圖2.5彩色濾光片 紅、綠、藍製程色度量測........................................56
圖3.1實驗量測點.....................................................................................57
圖3.2狹縫式塗佈機構造.........................................................................58
圖3.3分光光譜儀.....................................................................................59
圖3.4畫素尺寸..........................................................................................60
圖3.5人眼之可見光範圍..........................................................................60
圖3.6曝光步驟..........................................................................................61
圖3.7拋光機台示意圖..............................................................................61
圖4.1濕膜色度與NTSC.............................................................................62
圖4.2濕膜色度與NTSC.............................................................................62
圖4.3濕膜色度(Red) .................................................................................63
圖4.4濕膜色度(Green) ..............................................................................63
圖4.5濕膜色度(Blue) ................................................................................64
圖4.6膜厚與露光量...................................................................................64
圖4.7烘烤後色度.......................................................................................65
圖4.8烘烤後色度......................................................................................65

圖4.9 OVEN烘烤後色度(Red) ..................................................................66
圖4.10 OVEN烘烤後色度(Green) .............................................................66
圖4.11 OVEN烘烤後色度(Blue) ................................................................67
圖4.12全尺寸方式量測點..........................................................................68
圖4.13乾膜色度與穿透(Red) ....................................................................69
圖4.14乾膜膜厚與穿透(Red) ....................................................................69
圖4.15乾膜色度與穿透(Green) .................................................................70
圖4.16乾膜膜厚與穿透(Green) .................................................................70
圖4.17乾膜色度與穿透(Blue) ....................................................................71
圖4.18乾膜膜厚與穿透(Blue) ....................................................................71
圖4.19紅色拋光前後穿透率之影響...........................................................72
圖4.20紅色拋光前後色度之影響...............................................................72
圖4.21綠色拋光前後穿透率之影響...........................................................73
圖4.22綠色拋光前後色度之影響...............................................................73
圖4.23藍色拋光前後穿透率之影響...........................................................74
圖4.24藍色拋光前後色度之影響...............................................................74
圖4.25拋光前後穿透率之影響...................................................................75
圖4.26拋光後之色度...................................................................................75
圖4.27拋光後之色度...................................................................................76
參考文獻 1. 紀國鐘、鄭晃忠 液晶顯示器技術手冊 經濟部技術處發行
九十三年十一月四版 pp171。
2. Hideki Matsumura,Masayuki Ishikawa,Kenichiro Kida,
Koyu Maenka,Tadaaki Kuno,Koh-hei Nitta,Minoru
Terano and Shigehira Minami. Development of Micro-
Assembling Technology for Fabrication of Large Size
Liquid Crystal Displays. Japanese Journal of
Application Physics Vol.45,No.5B 2006 pp.4413-4418。
3. Takanori Kudo,Yuki Nanjo,Yuko Yamagichi,Hidemasa
Yamaguchi,Wen-Bing Kang and Georg Pawlowski.
Fabrication Process of Color Filter Using Pigment
Photoresists. Jpn. J.Appl.Phys. Vol.37 1998
pp.3594-3603。
4. 鍾俐娟 全球平面顯示器材料市場與產業發展動向
工業材料 246期 96年6月 pp.200-206
5. 王信淳 以MRP II觀念為基礎發展彩色濾光片製造業中資材計畫
方法之研究 中央大學企管所碩士論文(2007)。
6. Taik-Min Lee,Yong-Jung Choi,Su-Yong Nam,Choon-Woo
You,Dae-Yup Na,Hyeon-Cheol Choi,Dong-Youn Shin,
Kwang-Young Kim,Kwang-II Jung. Color Filter
Patterned by Screen Printing. Thin Solid Films 2008。
7. M.Katayama. TFT-LCD Technology. Thin Solid Films
Vol.341 1999 pp. 140-147。
8. 顏怡文 薄膜電晶體液晶顯示器(TFT-LCD)簡介與未來發展技術
趨勢 化工第52卷第2期(2005)。
9. Fu-Jen KO and Han-Ping David Shieh. High-efficient
micro-optical color filter for liquid-crystal
projection system application. APPLIED OPTICS Vol.39
No.7 1 March 2000。
10.Massimo Poncino,Member,IEEE,and Enrico Macii,
Fellow,IEEE. Low Energy RGB Color Approximation for
Digital LCD Interfaces. IEEE Transactions on
Consumer Electronics Vol.52 No.3 August 2006。
11.Rastislav Lukac,Konstantinos N. Plataniotis.
Universal demosaicking for imaging pipelines with an
RGB color filter array. Pattern Recognition 38(2005)
pp.2208-2212。
12.溫俊祥、鄭文桐、鄭淑惠、范智誠、林德嘉 LCD彩色濾光片與顏
料分散法技術 工業材料124期 86年4月 pp.122-135
13.顧鴻壽 光電液晶平面顯示器技術基礎及應用(2004)
新文京開發出版股份有限公司 P287~289。
14.Ram W. Sabnis. Color Filter Technology for liquid
crystal displays. Displays 20(1999) pp.119-129。
15.Simon Grbec,Marko Tkalcic,Janez Diaci. The influence
of inertial loading on color gamut properties of a
TFT-LCD display. Displays Vol.29 2008 pp.18-24。
16.大田登著 陳鴻興、陳君彥編譯 基礎色彩再現工程
全華出版社2006年2月再版 pp2-2~2-6。
17.陳中豪、蔣培瑜 光源色度測量原理 工業材料208期 93年4月
pp.108-118
18.顏單青 次世代液晶顯示器用彩色濾光片元件之平坦化製程技術
開發與擬真度評價指標系統 清華大學動力機械工程學系博士
論文 九十五年元月。
19.顏單青 新世代彩色濾光片製程技術發展現況與分析 化工第51卷
第1期 2004 pp.9-28
20.顏單青 彩色濾光片介紹 化工第51卷第1期(2004)pp.29-49。
21.李孟錴、許明德 彩色濾光片生產製程對色度的影響 工業材料
197期 92年5月 pp.124-128
22.Tan-Ching YEN and Pei-Lum TSO. An Effective
Fabrication Method for Producing Color Filters of
Liquid Crystal Displays. Japanese Journal of Applied
Physics Vol. 43, No. 7A, 2004, pp. 4229–4233.
23.嚴楚材、鄺東元、顧鴻壽、方昭訓 彩色濾光片塗佈技術簡介
真空科技十八卷二期。
24.李孟錴、許明德 彩色濾光片生產製程對色度的影響 工業材料
197期 92年5月pp124-128
25.林松香等 高遮光係數黑色矩陣 工業材料 183期91年3月
pp161-164
26.溫俊祥,鄭文桐,鄭淑惠,范智誠,林德嘉 LCD彩色濾光片與顏
色分散法技術 工業材料 124期 86年4月 pp.122-136
27.駱文欽、許明德 第五代以上彩色濾光片技術發展趨勢 電子與
材料 第十七期pp.55-62
28.紀國鐘、鄭晃忠 液晶顯示器技術手冊 經濟部技術處發行
九十三年十月四版P171~P188
29.陳君彥 液晶監視器的彩色技術 工研院光電所
30.顏單青 彩色濾光片介紹 化工第51卷第1期(2004)
31.陳中豪,蔣培瑜 光源色度測量原理 工業材料 208期 93年4月
pp.108-118

------------------------------------------------------------------------ 第 9 筆 ---------------------------------------------------------------------
系統識別號 U0026-2006201113335700
論文名稱(中文) 開迴路無閥幫浦系統之實驗研究
論文名稱(英文) Experimental Study of an Open-Loop Valveless Pumping System
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 洪孟漢
學號 N16984256
學位類別 碩士
語文別 中文
口試日期 2011-06-02
論文頁數 75頁
口試委員 口試委員-溫志湧
指導教授-楊天祥
口試委員-王冠閔
關鍵字(中) 開迴路無閥幫浦系統
無閥流體驅動系統
Liebau效應
擠壓致動器衝擊效應
關鍵字(英) valveless pumping
open-loop system
Liebau effect
actuator impact effect
學科別分類
中文摘要 無閥幫浦近年來被廣泛應用於微系統與生醫系統上,其主要原因是無閥幫浦內部沒有閥門動件,如此一來可以減少零件損壞時造成之維修困難,同時也可以避免破壞系統內部流體成分。從歷史文獻來看,無閥幫浦系統在擠壓過程中,擠壓致動器與受壓容器之間的交互作用對於系統輸送流體效率的影響是鮮少被拿出來討論的,因此在本文中我們將釐清此現象對無閥幫浦帶來的影響。
本研究我們利用兩條長度不同的硬管,分別從擠壓幫浦兩側連接至兩個開放式壓克力水槽,以構成-開迴路的無閥幫浦系統。在本文中我們討論到門檻頻率(亦即公稱工作週期在預壓系統中,可使系統與擠壓致動器分離之最低擠壓頻率)對於開迴路無閥幫浦性能的影響,並藉此引導出擠壓致動器的衝擊效應在擠壓過程中扮演的重要角色。實驗過程中我們也記錄了擠壓致動器與受壓容器的位移變化,並歸納與分析兩者之間的交互作用對於無閥幫浦系統在流體輸送效率上面有何關聯。除此之外,我們也變更擠壓進程與受壓容器剛性等實驗參數,以釐清這些參數對於系統驅動流體效果的影響,這對於我們日後在無閥幫浦系統的設計上將有所貢獻。
英文摘要 In recent years, valveless pumps have widely been used in various engineering and biomedical systems. Since there are no moving valves inside a valveless pump system, we could maintain the system with more ease, and avoid contaminating the working fluid in the system.
In this work, we use two rigid tubes with different lengths to connect an actuator with two open style acrylic water reservoirs, which constitute our experimental system. Then, we demonstrate that the threshold frequency(the lowest driving frequency of the actuator beyond which the pliant part of a precompressed system having a nominal duty cycle of unity would separate from the actuator) plays an important role in the open-loop valveless pumping system. Moreover, we discuss in thesis the influence of actuator impact on the performance of the open-loop valveless pumping system. For that purpose, we recorded the displacements of the actuator and the pliant part of the system in the experiments, and then analyzed how the interactions between the actuator and the pliant part of the system influence working fluid transport. In addition, we also vary the stroke of the actuator and the rigidity of pliant part of the system in the experiments, so as to investigate the effects of such parameters on the system performance.
論文目次 摘要 ..................................................... I
英文摘要 ................................................. II
致謝 ................................................... III
目錄 .................................................... IV
表目錄 .................................................. VI
圖目錄 ................................................. VII
符號說明 ................................................ XII

第一章 緒論 .............................................. 1
1.1 研究背景 ............................................ 1
1.2 文獻回顧 ............................................ 3
1.3 無閥幫浦系統相關應用 ................................ 13
1.3.1 散熱系統 ........................................ 13
1.3.2 心臟體外反搏治療 ................................. 14
1.3.3 心室輔助裝置 .................................... 16
1.4 研究目的 ........................................... 17
1.5 本文架構 ........................................... 18
第二章 實驗系統架構 ..................................... 19
2.1 實驗系統架設 ....................................... 19
2.2 擠壓致動器設計 ..................................... 19
2.3 量測儀器 ........................................... 22
2.3.1 高速攝影機 ...................................... 22
2.3.2 流量計 ......................................... 24
2.3.3 位移感測器 ...................................... 26
2.3.4 馬達、馬達控制器、訊號擷取卡和電源供應器 ............ 28
第三章 實驗流程與參數 .................................... 31
3.1 實驗流程 ........................................... 31
3.2 實驗參數 ........................................... 33
第四章 實驗結果與討論 .................................... 36
4.1 預壓系統 ........................................... 37
4.1.1 門檻頻率 ........................................ 37
4.1.2 液面高度差 ...................................... 42
4.1.3 碰撞型態 ........................................ 46
4.2 無預壓系統 ......................................... 49
4.2.1 液面高度差 ...................................... 49
4.2.2 碰撞型態 ........................................ 52
4.3 碰撞速度 ........................................... 56
4.4 擠壓進程與伸縮囊剛性 ................................ 59
4.5 擠壓幫浦之驅動流體性能 .............................. 64
第五章 結論與未來工作 .................................... 68
5.1 結論 .............................................. 68
5.2 未來工作 ........................................... 70
參考文獻 ................................................. 72
參考文獻 [1] 吳咨亨. 無閥門壓電微幫浦與微混合器之整合設計. 應用力學硏究所 (國立臺灣大學, 台北,台灣, 2005)
[2] Weber, E. H., De pulsu, resorptione, auditu et tactu. Annotationes Anatomicae et Physiologicae Lipsiae, 1834.
[3] Donders, F. C., Physiologie des Menschen Leipzig, 1856
[4] Liebau, G., ¨Uber ein ventilloses Pumpprinzip, Naturwiss 41:327, 1954.
[5] Liebau, G., Arterielle Pulsation und venöse Repulsation, Z Gesamte Exp Med 123:71–90,1954.
[6] Liebau, G., Die Strömungsprinzipien des Herzens, Z Kreislaufforsch 44:677–684, 1955.
[7] Liebau, G., Aus welchem Grunde bleibt die Blutförderung durch das Herz bei valvulӓrem Versagen erhalten?, Z Kreislaufforsch 45:481–488, 1956.
[8] Mahrenholtz, O., Ein Beitrag zum F¨orderprinzip periodisch arbeitender, ventilloser Pumpen, Forsch Ing-Wes 29:47–56, 73–81, 1963.
[9] Bredow, H. J., Untersuchung eines ventillosen pumpprinzips, Fortschr-Ber 6:7:1, 1968.
[10] Bredow, H. J., Untersuchungen über ein vom menschlichen Kreislauf abgeleitetes, ventilloses Strömungsprinzip, Verh Dtsch Ges Kreislaufforsch 34:296, 1968.
[11] Takagi, S., Saijo, T., Study of a piston pump without valves (1st report, on a pipe-capacity-system with a T-junction), Bull JSME 26:1366–1372, 1983
[12] Takagi, S., Takahashi, K., Study of a piston pump without valves (2nd report, pumping effect and resonance in a pipe-capacity-system with a T-junction),Bull JSME 28:831–836, 1985.
[13] Moser, M., Huang, J. W., Schwarz GS, Kenner T, Noordergraaf A, Impedance defined flow:Generalisation of William Harvey’s concept of the circulation — 370 years later, Int JCardiovasc Med Sci 1:205–211, 1998.
[14] Ottesen, J. T., Valveless pumping in a fluid-filled closed elastic tube-system: onedimensional theory with experimental validation, J Math Biol 46:309-332, 2003.
[15] Hickerson, A. I., Rinderknecht, D., Gharib, M., Experimental study of the behavior of a valveless impedance pump, Exp Fluids 38:534–540, 2005.
[16] Hickerson, A. I., An experimental analysis of the characteristic behaviors of an impedance pump , Dissertation (Ph.D.), California Institute of Technology , 2005.
[17] Hickerson, A. I., Gharib, M., On the resonance of a pliant tube as a mechanism for valveless pumping, J Fluid Mech 555:141–148, 2006.
[18] Avrahami, I., Gharib, M., Computational studies of resonance wave pumping in compliant tubes, J Fluid Mech 608:139–160, 2008.
[19] Wen, C. Y., Chang, H. T., Design and Characterization of Valveless Impedance Pumps, J Mech 25(4):345–354, 2009.
[20] 林政偉,開迴路無閥幫浦之理論分析,國立成功大學機械所碩士論文,2009。
[21] Yang, T. S., Wang, C. C., Effects of actuator impact on the nonlinear dynamics of a valveless pumping system, Journal of mechanics in Medicine and Biology,DOI:10.1142/S0219519410003800,1-33,2010
[22] 王齊中,致動器衝擊對無閥幫浦系統非線性動態響應之影響,國立成功大學機械所博士論文,2011。
[23] Wang, C. C., Yang, T. S., Dynamical responses of a valveless fluid loop excited by the impact of a compression actuator, accepted to be published in J CSME,2010
[24] 王文憲,閉迴路無閥流體驅動系統,國立成功大學機械所碩士論文,2011。
[25] Manopoulos, C. G., Tsangaris, S., Modelling of the blood flow circulation in the human foetus by the end of the third week of gestation, Cardiovasc Eng 5:29–35, 2005.
[26] Mӓnner, J., Thrane, L., Noroz,i K., Yelbuz, T. M., In vivo imaging of the cyclic changes in crosssectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: A contribution to the understanding of the ontogenesis of cardiac pumping function, Dev Dynam 238:3273–3284, 2009.
[27] Mӓnner, J., How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube , Dev Dynam 239:1035–1046, 2010.
[28] Loumes, L., Multilayer impedance pump: a bio-inspired valveless pump with medical applications, Dissertation (Ph.D.), California Institute of Technology , 2007.
[29] Loumes, L., Avrahami, I., Gharib, M., Resonance pumping in a multilayer impedance pump,Phys Fluids 20:023103, 2008.
[30] Forster, F.K., Bardell, R.L., Afromowitz, M.A., Sharma, N.R. and Blanchard, A. Design,fabrication and testing of fixed-valve micro-pumps. pp. 39-44 (ASME, New York, NY,USA, San Francisco, CA, USA, 1995).
[31] Olsson, A., Enoksson, P., Stemme, G., Stemme, E. Micromachined flat-walled valveless diffuser pumps. Journal of Microelectromechanical Systems, 1997, 6(2),161-166.
[32] 楊政穎, 林俊達 , 李雨. A valve-less micro-pump based on asymmetric obstacles.第七屆奈米工程暨微系統技術研討會論文集台北,台灣,2003.
[33] Izzo, I., Accoto, D., Menciassi, A., Schmitt, L., Dario, P. Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves. Sensors and Actuators, A: Physical, 2007, 133(1), 128-140.
[34] http://www.youtube.com/watch?v=1xjyJp77FP8
[35] http://www.eecp.com.tw/index.html
[36] http://www.vasomedical.com/
[37] http://www.mitiheart.com/index.html
[38] http://en.wikipedia.org/wiki/Ventricular_assist_device

------------------------------------------------------------------------ 第 10 筆 ---------------------------------------------------------------------
系統識別號 U0026-2007201022015000
論文名稱(中文) 微/奈米機電系統的能量耗散機制探討
論文名稱(英文) A Study of Energy Dissipation Mechanisms in MEMS / NEMS
校院名稱 成功大學
系所名稱(中) 奈米科技暨微系統工程研究所
系所名稱(英) Institute of Nanotechnology and Microsystems Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 李文榮
學號 q2697106
學位類別 碩士
語文別 中文
口試日期 2010-06-28
論文頁數 116頁
口試委員 指導教授-李旺龍
口試委員-高文顯
口試委員-姚創文
口試委員-洪飛義
口試委員-洪廷甫
關鍵字(中) 能量損耗
擠壓膜阻尼
熱彈性阻尼
稀薄氣體效應
調節係數效應
品質因數
關鍵字(英) Energy dissipation
Squeeze film damping (SFD)
Thermoelastic damping (TED)
Effects of gas rarefaction
Effects of accommodation coefficient
Quality factor
學科別分類
中文摘要 能量耗散在微機電系統(Micro Electromechanicsystem : MEMS)及奈米機電系統(Nano Electromechanicsystem : NEMS)是一件相當嚴重的問題,過大的能量耗散會造成系統的效率低落及其性能(Performance)的不彰,因此,本研究將針對由雙邊固定樑所構成共振器(Resonator)做能量耗散機制的探討。共振器在射頻微機電系統(RF MEMS)是常見的元件之一,對於共振器來說,追求高頻、高品質因數(Quality factor)是非常重要的,將從外阻尼及內阻尼開始探討,外阻尼為擠壓膜阻尼(Squeeze Film Damping : SFD),內阻尼為熱彈性阻尼(Thermoelastic Damping : TED),此為兩種常見也相當重要的能量耗散機制。
一般在探討系統的總能量耗散機制時,都是先計算個別的能量耗散機制,再利用總品質因數的計算方式(1.2)所求得。但是,這是在各能量耗散相互不影響的情況下才會成立,但是,從有關SFD的研究(Bao and Yang 2007)中知道,SFD會影響系統的共振頻率,而從TED的研究中(Zener 1938)知道,TED會受到頻率的影響而變化,所以要是不考慮SFD與TED相互會影響的情況下,利用總品質因數的計算方式(1.2)來計算SFD與TED的總品質因數是有疑慮的,因此本研究將會特別探討SFD與TED耦合(SFD+TED)時的能量耗散機制,試圖分析在SFD與TED相互影響極為顯著時,總品質因數的計算方式(1.2)是否適用。
會對SFD與TED造成影響的物理參數有元件尺寸、環境壓力、擠壓膜厚度等,振動的模態也會影響SFD與TED。在環境壓力較低及擠壓膜厚度極小的情形下,會造成稀薄氣體效應的產生,此時SFD與TED的值會相當的接近,兩者間的變化,對於總能量耗散的影響是相當顯著的,故有探討的必要性。而在稀薄氣體效應之下,調節係數對於MEMS / NEMS的能量耗散影響的問題還鮮少被討論,本研究認為調節係數將對MEMS / NEMS會有相當程度的影響,將特別討論。因此,本研究將分為四個部分來探討,分別為:
一. 尺寸效應。
二. 高模態效應。
三. 稀薄氣體效應。
四. 調節係數效應。
本研究將採用數值分析的方法來探討以上四個主題,將從以上四個部分的數值解析結果,討論各效應對於SFD、TED、SFD+TED的影響,提出幾點的建議能使MEMS / NEMS能擁有高的品質因數。並討論SFD與TED的相互影響性,將嘗試找出在何種情況下,是必須特別注意SFD及TED是不可分開討論的。
英文摘要 Mechanism of energy dissipation is an important issue in MEMS / NEMS. The energy loss is so much that the efficiency is low and the performance is bad. Therefore, we discussed the mechanisms of energy dissipation for the resonator that is formed by a beam that two ends are fixed. The resonator is one of parts of RF MEMS. Both of the high operating frequency and the high quality factor are important parameters for resonator. For quality factor respect, there are two kinds of mechanisms - extrinsic damping and intrinsic damping in the MEMS / NEMS. The extrinsic damping is squeeze film damping (SFD) and the intrinsic damping is thermoelastic damping (TED). It is easy to be found and important in MEMS / NEMS.
In general, the total quality is calculated by (1.2) to estimate the total energy dissipation in the system. It is valid when the ways of energy dissipation did not interact. However, we believe that could be disobeyed when the SFD and the TED existed simultaneously in the system. Because we know the SFD lead the resonant frequency to be changed from the research about SFD(Bao and Yang 2007), and know the TED will be affected by resonant frequency(Zener 1938). This is a kind of interaction between the SFD and the TED so we doubt the validity of formula. We research the interaction between the SFD and the TED, and try to find out where are invalid for the formula (1.2).
There are many parameters that can affect both of the SFD and the TED -- dimension of object, ambient pressure, thickness of gas film, and resonant mode for example. The gas rarefaction is occurred when the ambient pressure is in the condition of vacuum or the thickness of gas film is smaller than the mean path of free molecular. The value of SFD closes to the value of TED when the gas is attenuated, so the interactive effect is significant for the total quality factor. It would be discussed in this research. Few studies about the effects of accommodation coefficient for the quality factor in MEMS / NEMS. Therefore, we study these subjects in four parts.
1. Effects of dimension.
2. Effects of higher resonant mode.
3. Effects of gas rarefaction.
4. Effects of accommodation coefficient.
We applied numerical analysis in this research. First, we studied the SFD and the TED individually and recommended some advices how to get the high quality factor. Second, we discussed the interactive effects for quality factor when both of the SFD and the TED exist simultaneously in the system.
論文目次 摘要.......................................I
Abstract...............................III
誌謝...............................V
表目錄...............................IX
圖目錄.................................X
符號表...............................XIII
第一章 緒論..........................1
1.1擠壓膜阻尼(Squeeze Film Damping : SFD).........4
1.1.1SFD的特性.........5
1.1.2SFD的研究現況.........7
1.2熱彈性阻尼(Thermoelastic Damping : TED).........12
1.2.1TED的特性.........14
1.2.2TED的研究現況.........15
1.3數值分析(Numerical Analysis).........20
1.3.1數值分析的研究現況......... 21
1.4研究動機與本文架構.........27
1.4.1研究動機.........27
1.4.2本文架構.........28
第二章 統御方程式.........29
2.1固體的統御方程式.........29
2.1.1樑的橫向振動方程式(Transverse Vibration Equation of a Beam).........30
2.1.2邊界條件.........31
2.1.3樑的共振頻率.........32
2.2外阻尼的統御方程式.........35
2.2.1雷諾方程式(Reynolds Equation).........35
2.2.2稀薄氣體效應(Effects of Gas Rarefaction).........40
2.2.3分子氣體潤滑方程式(Molecular Gas Lubrication Equation : MGL).........42
2.2.4調節係數效應(Effect of Accommodation Coefficients).........47
2.2.5修正型分子氣體薄膜潤滑方程式(Modified Molecular Gas Film Lubrication Equation: MMGL).........48
2.2.6外阻尼的邊界條件......... 49
2.3內阻尼的統御方程式.........50
2.3.1熱彈性的應力與應變關係.........50
2.3.2熱擴散方程式(Heat Diffusion Equation).........52
2.3.3熱源項(Heat Source).........54
2.3.4內阻尼的邊界條件.........55
2.4耦合關係.........56
2.4.1SFD.........56
2.4.2TED.........57
2.4.3SFD+TED.........58
第三章 數值分析與討論.........60
3.1元件幾何與參數值設定.........60
3.2品質因數計算方式.........62
3.3尺寸效應.........63
3.3.1改變長度.........64
3.3.2改變寬度.........68
3.3.3改變厚度.........72
3.3.4改變整體尺寸.........75
3.4高模態效應.........78
3.5稀薄氣體效應.........80
3.5.1改變壓力.........81
3.5.2改變擠壓膜厚度.........83
3.6調節係數效應.........85
3.6.1改變擠壓膜厚度.........88
3.7數值分析結果整理.........92
3.7.1尺寸效應......... 92
3.7.2高模態效應.........92
3.7.3稀薄氣體效應 .........93
3.7.4調節係數效應 .........93
第四章 結論.........94
參考文獻.........95
附錄......... 100
附件 A. 微分型式的連續方程(Differential Form of Continuity Equation)........100
附件 B. 運動方程式(Equation of Motion)........102
附件 C. 納維爾-史托克方程式(Navier-Stokes Equation).......104
附件 D. 壓力流率比的係數表.........106
附件 E. 含擠壓膜的樑之製程與結果.........108
參考文獻 R. Abdolvand, G. K. Ho, A. Erbil, and F.Ayazi, “Thermoelastic damping in trench-refilled polysilicon resonators,” in Dig. 12th Int. Conf. Solid-State Sensors, Actuators, and Microsystems (Transducers’03), Boston, MA, pp. 324–327, Jun. 8–12 2003.
R. Abdolvand, H. Johari , G. K. Ho, A. Erbil and F. Ayazi, “Quality factor in trench-refilled polysilicon beam resonators,” J. Microelectromech. Syst., Vol. 15, pp. 471–478, 2006.
A. Burgdorfe, “The influence of the molecular mean path on the performance of hydrodynamic gas lubricated bearings,” ASME J. Basic Eng., Vol. 81, pp. 94-100, 1959.
J. J. Blech, “On isothermal squeeze films,” ASME Journal of Lubrication Technology, Vol. 105, pp. 615–620, 1983.
F. R. Blom, S. Bouwstra, M. Elwenspoek and J. H. Fluitman, “Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry,” J Vac Sci Technol, Vol. B10, pp. 19–26, 1992.
J.E. Bishop and V.K. Kinra, "Thermoelastic damping of a laminated beam in flexure and extension," Journal of Reinforced Plastics and Composites, Vol. 12, No. 2, pp. 210-226, 1993.
J. E. Bishop and V. K. Kinra, “Analysis of elastothermodynamic damping in partical-reinforced metal-matrix composites,” METALLURGICAL AND MATERIAL TRANSCATIONS A, Vol. 26A, pp. 2773-2783, 1995.
J. E. Bishop and V. K. Kinra, “Elastothermodynamic damping in laminated composites,” Int. J. Solids Struct., Vol. 34, No. 9, pp. 1075–1092, 1997.
M. Bao, H. Yang, H. Yin and Y. Sun, “Energy transfer model for squeeze-film air damping in low vacuum,” Journal of Micromechanics and Microengineering, Vol.12, pp.341–346, 2002.
M. H. Bao, H. Yang, “Squeeze film air damping in MEMS,” Sensors and Actuators A, Vol. 136, pp. 3-27, 2007.
R. G. Christian , “The theory of oscillating-vane vacuum gauges,” Vacuum, Vol.16, pp.175–178, 1966.
C. C. Cheng and W. Fang, “Tuning the quality factor of bulk micromachined structures using the squeeze film damping,” Microsystem Technologies, Vol. 11, pp. 104-110, 2005.
R.N. Candler, A. Duwel, M. Varghese, S.A. Chandorkar, M.A. Hopcroft, W. T. Park, B. Kim; G. Yama, A. Partridge, M. Lutz. and T. W. Kenny, “ Impact of geometry on thermoelastic dissipation in micromechanical resonant beams,” Journal of Microelectromechanical Systems, Vol. 15, No. 4, pp. 927-934, 2006.
S. A. Chandorkar, R. N. Candler, A. Duwel, R. Melamud, M. Agarwal, K. E. Goodson, T. W. Kenny, “Multimode thermoelastic dissipation,” Journal of Applied Physics, 105, 043505 1-13, 2009.
R. B. Darling, C. Hivick, and J. Xu, “Compact analytical modeling of squeeze film damping with arbitrary venting conditions using a Green’s function approach,” Sensors and Actuators A, Vol.70, pp.32-41, 1998.
A. Duwel, R. N. Candler, T. W. Kenny, and M. Varghese, “Engineering MEMS resonators with low thermoelastic damping,” J. Microelectromech. Syst., vol. 15, no. 6, pp. 1437–1445, 2006.
S. Fukui and R. Kaneko, “Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: First report-derivation of a generalized lubrication equation including thermal creep Flow,” ASME Journal of Tribology, Vol. 110, pp. 253-262, 1988.
W. S. Griffin, H. H. Richardson and S. Yamanami, “A study of squeeze film damping,” ASME Journal of Basic Engineering, Vol. 88, pp.451–456, 1966.
Y. T. Hsia and G. A. Domoto, “An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra low clearance,” ASME J. Lubrication Technol., Vol. 105, pp. 120–130, 1983.
B. H. Houston, D. M. Photiadis, M. H. Marcus, J. A. Bucaro, X. Liu and J. F. Vignola, "Thermoelastic loss in microscale oscillators," Applied Physical Letters, Vol. 80, No. 7, pp.1300-1302, Feb. 18, 2002.
V. K. Kinra and K. B. Milligan, “A second law analysis of thermoelastic damping,” Journal of Applied mechanics, Vol. 61, pp. 71-76, 1994.
W. E. Langlois, “Isothermal squeeze films,” Q. Appl. Math., 20, pp.131–150, 1962.
R. Lifshitz, and M. L. Roukes, “Thermoelastic damping in micro- and nanomechanical systems,” Phys. Rev. B, Vol. 61, No. 8, pp. 5600–9, 2000
W. L. Li, “A database for interpolation of Poiseuille Flow rate for arbitrary Knudsen number lubrication problems,” Journal of the Chinese Institute of Engineers, Vol.26, No.4, pp.455-466, 2003.
R. E. Mihailovich and N. C. MacDonald, “Dissipation measurements of vacuum operated single-crystal silicon microresonators,” Sensors and Actuators A, Vol. 50, pp. 199–207, 1995.
W. E. Newell, “Miniaturization of tuning forks,” Science, Vol. 161. no. 3848, pp. 1320-1326, 1968.
A. H. Nayfeh and M. I. Younis, “Modeling and simulations of thermoelastic damping in microplates,” J. Micromech. Microeng. Vol. 14, pp. 1711–1717 , 2004.
V. Ostasevicius, R. Dauksevicius, R. Gaidys, A. Palevicius, “Numerical analysis of fluid-structure interaction effects on vibrations of cantilever microstructure,” Journal of sound and vibration, pp:660-673, 2007.
S. Pourkamali, A. Hashimura, R. Abdolvand, G. K. Ho, A. Erbil, and F. Ayazi, "High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100 nm transduction gaps," IEEE/ASME J. MEMS, Vol. 12, No. 4, pp. 487-496, Aug. 2003.
A. K. Pandey and R. Pratap, “Effect of flexural modes on squeeze film damping in MEMS cantilever resonators,” IOP Journal of Micromechanics and Microengineering, 17, pp. 2475-2484, 2007.
S. Prabhakar and S. Vengallatore, “Thermoelastic damping in bilayered micromechanical beam resonators,” J.Micromech Microeng, Vol.17, pp.532-538, 2007.
S. Prabhakar and S. Vengallatore, “Theory of thermoelastic damping in micromechanical resonators with two-dimensional heat conduction,” J. MicroJ. Microelectromech. Syst., Vol. 17, No.2, pp.494-502, 2008.
T. V. Roszhart, “The effect of thermoelastic internal friction on the Q of micromachined silicon resonators,” IEEE Solid-State Sensor and Actuator Workshop, pp. 13-16, 1990.
J. B. Starr, “Squeeze-Film Damping in Solid-State Accelerometers,” Solid-State Sensor and Actuator Workshop, 1990. 4th Techmical Digest., IEEE, pp.44-47, 1990.
H. Seidel, H. Riedel, R. Kolbeck, G. Muck, W. Kupke, and M. KoMiger, “Capacitive silicon accelerometer with highly symmetrical design,” Sensors and Actuators A, pp 312-315, 1990.
S. K. Srivastava, B. K. Mishra, S. C. Jain, “Dynamic effects in elastothermodynamic damping of metal-matrix composites with spherical reinforcement,” Transacations of the ASME , Vol.121, pp.476-481, 1999.
Y. Sun, D. Fang, A. K. Soh, “Thermoelastic damping in micro-beam resonators,” International Journal of Solid and Structures, 43, pp.3213-3229, 2006.
W. Thomson, “ On the dynamical theory of heat”, Transactions of the Royal Socity of Edindurgh, 20, pp. 261-283, 1851.
H. Tang, Y. B. Yi, M. A. Matin, “Predictive modeling of thermoelastic energy dissipation in tunable MEMS mirrors,” J. Micro/Nanolith. MEMS MOEMS, Vol. 7(2), 023004 , Apr. Jun. 2008.
T. Veijola, H. Kuisma and J. Lahdenpera, “Model for gas film damping in a silicon accelerator,” Transduces 97, pp. 1097-1100, June 1997.
S. Vengallatore, “Analysis of thermoelastic damping in laminated composite micromechanical beam resonators,” J. Micromech. Microeng. Vol. 15, pp. 2398–2404, 2005.
J. F. Vignola, J. A. Judge, E. Lawrence, J. Jarzynski and Houston B, “Analytic and laser vibrometry study of squeeze film damping of MEMS cantilevers,” Proc. SPIE (7th Int. Conf. on Vibration Measurements by Laser Techniques: Advances and Applications), Vol. 6345, pp. 63451C 1–8, 2006.
S. S. Verbridge, R. Ilic, H. G. Craighead, and J. M. Parpia, “Size and frequency dependent gas damping of nanomechanical resonators,” Appl. Phys. Lett., 93, 013101, 2008.
S. J. Wong, C. H. J. Fox and McWilliam, “Thermoelastic damping of the in-plane vibration of thin silicon rings ,” J. Sound Vib., Vol. 293, pp. 266–85, 2006.
K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. S. D., and Rugar, “Quality factors in micron- and submicron-thick cantilevers,” Journal of Microelectromechanical Systems, Vol. 9, No. 1, pp. 117–25, 2000.
Y. B. Yi. “Geometric effects on thermoelastic damping in MEMS resonators,” Journal of Sound and Vibration, Vol. 309, pp.588–599, 2008.
Y. B. Yi and M. A. Matin, , “Eigenvalue solution of thermoelastic damping in beam resonators using the finite element method,” ASME Journal of Vibration and Acoustics, Vol. 129, pp.478-483, 2007
C. Zener, “Internal friction in solids I: Theory of internal friction in reeds, ” Phys. Rev., Vol. 52, No. 3, pp. 230–235 r, 1937.
C. Zener, “Internal friction in solids II: General theory of thermoelastic internal friction,” Phys. Rev., Vol. 53, No. 1, pp. 90–99, 1938.
C. Zener, “Internal friction in solids III: Experimental demonstration of thermpelastic internal friction,” Phys. Rev., Vol. 53, No. 1, pp. 100–101, 1938.
C. Zhang, G. Xu and Q. Jiang, “Characterization of the squeeze film damping effect on the quality factor of a microbeam resonator,” J. Micromech. Microeng. Vol. 14, pp. 1302-1306, 2004.
W. Zhang, Wenhua Zhang, K.L. Turner, “Nonlinear Dynamics of Micro Impact Oscillators in High Frequency MEMS Switch Application,” Transducers 2005, Coex, Seoul Korea, June 5-9, 2005.

------------------------------------------------------------------------ 第 11 筆 ---------------------------------------------------------------------
系統識別號 U0026-2508201011590600
論文名稱(中文) 擠壓管型壓電噴墨頭設計與微液滴噴射之研究
論文名稱(英文) Studies of the Design and Droplet Ejection in a Squeeze Mode Piezoelectric Inkjet Printhead
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 98
學期 2
出版年 99
研究生(中文) 郭哲瑋
學號 p4696145
學位類別 碩士
語文別 中文
口試日期 2010-06-30
論文頁數 96頁
口試委員 口試委員-王覺寬
口試委員-賴維祥
指導教授-呂宗行
關鍵字(中) 擠壓管式壓電噴墨頭
噴墨頭製作技術
壓電噴墨訊號驅動
關鍵字(英) Squeeze Mode Piezoelectric Inkjet Printhead
Piezoelectric Driven System
學科別分類
中文摘要 摘要
題目:擠壓管型壓電噴墨頭設計與微液滴噴射之研究
研究生:郭哲瑋
指導教授:呂宗行 博士
關鍵字:擠壓管式壓電噴墨頭、噴墨頭製作技術、壓電噴墨訊號驅動

為了能深入了解擠壓管式壓電噴墨頭(Squeeze Mode Piezoelectric Inkjet Printhead)特性與設計的問題,自行製作擠壓式壓電噴墨頭,採用單一環狀將壓電管與毛細玻璃管接合。實驗上透過自行發展的驅動觀測系統以控制訊號輸出產生脈衝電壓訊號與延遲訊號,配合都普勒雷射振盪儀(Microscopic Laser Doppler Vibrometer)量測壓電管振幅,來達到分析擠壓管式壓電噴墨頭的尺寸與結構上的設計。研究中對於單一環狀接合的壓電噴墨頭,由各式測試結果證實亦存在著波傳導現象。電壓作為改變操作參數時,當電壓提高,所產生液滴噴發型態依序為,單一液滴噴發、不規則噴發、多液滴噴發。適當調整電壓能得到所需的噴發型態。於最佳擊發時間施加正脈衝電壓訊號,能得到以最低電壓使液滴擊發且所得到液滴擊發速度最大。壓電噴墨頭結構產生最大共振效果同時也是最佳擊發時間點。擠壓管式壓電噴墨頭之壓電材料長度尺寸較長的共振效果較好,此結果對於選擇壓電管尺寸有相當的幫助
英文摘要 This study intended to understand the characteristics and designing issues of squeeze mode piezoelectric inkjet printhead. Squeeze mode piezoelectric inkjet printheads have been fabricated by using the piezoelectric PZT tube and glass capillary with contraction nozzle at one end. To study the inkjet printhead performance, a stroboscopic imaging systems was developed to image the droplet ejection process under various driving signals. Microscopic Laser Doppler Vibrometer (MLDV) measurement was used to measure the amplitude of piezoelectric inkjet printhead with different driving voltages and dwelling times. The experimental results confirmed the existence of the pressure wave propagation phenomena inside the squeeze mode piezoelectric inkjet printhead. A optimal pulse signal waveform was found. When the voltage of the optimal pulse signal waveform, the droplet ejection process would change from single droplet ejection to irregular and multiple droplet ejection. The optimal waveform of driving signal is related to the resonance the fluid-structure system. As PZT tube with longer length size and larger diameter, the driving force is stronger. This result will help in selecting the dimensions of piezoelectric tube.
論文目次 目錄
中文摘要
Abstract
致謝
目錄 I
表目錄 IV
圖目錄 V
符號說明 IX
第一章 導論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 噴墨列印應用於微機電系統製造技術 6
1-4 研究動機與目的 7
第二章 實驗原理 9
2-1 噴墨列印技術種類 9
2-1-a 連續式噴墨列印技術 9
2-1-b 供需式噴墨列印技術 10
2-2 壓電式與熱泡式噴墨頭比較 14
2-3 壓電式噴墨頭致動原理 16
2-3-1 壓電效應 16
2-3-2 壓電材料 17
2-3-3壓電方程式 18
2-4噴液現象 22
2-4-1液滴生成 22
2-4-2主液滴分離 22
2-4-3衛星液滴 23
2-5 擠壓管式壓電噴墨頭作動原理 23
2-6 擠壓管式壓電噴墨頭波傳導理論 24
第三章 實驗架設與初步觀察 27
3-1 實驗儀器架設 27
3-2 實驗設備 28
3-2-1 自製式擠壓管型壓電噴墨列印頭 28
3-2-2 壓電噴墨頭驅動系統 29
3-2-3 影像擷取及儲存系統 30
3-2-4 三維平台與光學平台系統 32
3-2-5 工作流體 32
3-3實驗初步觀測 32
3-3-1正脈衝波寬Tdwell測試 33
3-2-2 工作頻率F測試 34
第四章 結果與討論 35
4-1 擠壓管式壓電噴墨頭管內壓力波傳遞 35
4-2 壓力波傳遞與液體擊發現象 37
4-3-1 液滴噴發型態判定 38
4-3-2 壓力波能量損失 38
4-4 正脈衝波寬(Tdwell)對液體擊發速度與電壓關係 39
4-5 壓電管振幅對噴墨之影響 40
4-5-1 壓電管振幅與長度之關係 40
4-5-2 壓電管振幅與頻率的關係 41
4-5-3 壓電管振幅與Tdwell的關係 41
第五章 結論 43
參考文獻 44

參考文獻 參考文獻
1. L. Rayleigh, “On the Instability of Jets.”, Proc. London Math Soc., Vol.10, No.4, 1878.
2. R. G. Sweet, “High Frequency Recording with Electrostatically Deflected Ink-Jets.”, Rev. Sci. Instrum., Vol.36, pp.131-136, 1965.
3. R. Elmqvist, “Measuring Instrument of the Recording Type.”, U. S. Patent 2566443, 1951.

4. W. L. Buehner, J. D. Hill, T. H. Williams, J. W. Woods, “Application of Ink-Jet Technology to A Word Processing Output Printer.”, IBM J. Res. Dev., Vol.21, pp.2-9, 1977.

5. S. L. Zoltan, (Clevite Corp), “Pulse Droplet Ejection System.”, U. S. Patent 3683212, 1974.

6. E. L. Kyser, S. B. Sears, (Silonic Inc.), “Method and Apparatus for Recording with Writing Fluids and Drop Projection Means Therefore.”, U. S. Patent 3946398, 1976.

7. J. L. Vaught, F. L. Cloutier, D. K. Donald, J. D. Meyer, C. A. Tacklind, H. H. Taub, (Hewlett-Packard), “Thermal Ink-Jet Printer.”, U. S. Patent 4490728, 1979.

8. Whel WR. “Ink-Jet-Printing: the Present State of the Art.”, CompEuro '89-3rd Annual European Computer Conf.,. Hamburg, West Ger., 8-12 May 1989.
9. Allen, R. R., Meyer, J. D., Knight, W. R., “Thermodynamics and Hydrodynamics of Thermal Ink Jet.”, Hewlett-Packard Journal, May, pp. 21-27, 1985.

10. A. Asai, T. Hara and I. Endo, “One-Dimensional Model of Bubble Growth and Liquid Flow in Bubble Jet Printers.", Jpn. J. Appl. Phys., Vol. 26, pp. 1794-1801,1987.

11. A. Asai, “Three-Dimensional Calculation of Bubble Growth and Drop Ejection in a Bubble Jet Printer.”, ASME J. Fluids Eng., Vol.114, pp.638-641, 1992.
12. W. C. Chen, P. H. Chen and S. H. Chang, “Development of Droplet String Injected by Thermal Bubble Printhead.”, Proceeding of 14th Mechanical Engineering Conference, .R.O.C., pp.70-77, 1997.
13. F. G. Tseng, C. J. Kim, and C. M. Ho, “A Microinjector Free of Satellite Drops and Characterization of the Ejected Droplets.”, Micro-Electro-Mechanical Systems(MEMS), DSC-/Vol. 66, 1998 ASME IMECE, pp. 89-95,. November, 1998.
14. L. Rayleigh, “On the Instability of Jets.”, Proc. London Math Soc., Vol.10, No.4, 1878.
15. H. C. Lee, “Drop Formation in a Liquid Jet.”, IBM J. Res. Develop., pp.364-369, July 1974.
16. W. T. Pimbley, “Drop Formation from a Liquid Jet: A Linear One-Dimensional Analysis Considered as a Boundary Value Problem.”, IBM J. Res. Develop., pp.148-156, March 1976.
17. J. D. Beasley, “Model for Fluid Ejection and Refill in an Impulse Drive Jet.”, Photogr. Sci. Eng,Vol. 21, pp. 78-82, 1977.
18. J. E. Fromm, “Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets.”, IBM Journal of Research and Development, Vol. 28, pp. 323-333, 1984.
19. B. D. Bogy, F. E. Talke, “Experimental and Theoretical Study of Wave Propagation Phenomena in Drop-on-Demand Ink Jet Devices.”, IBM J. Res. Develop., Vol.28, pp.314-321, 1984.
20. T. W. Shield, D. B. Bogy, F. E. Talke, “Drop Formation by DOD Ink-Jet Nozzles: A Comparison of Experiment and Numerical Simulation.”, IBM J. Res. Develop.,Vol.31, pp.96-110, 1987.
21. F. C. Lee, “PZT Printing Applications, Technologies, New Devices.”,Ultrasonic Symposium, IEEE, pp.693-697, 1988.

22. W. R. Whel, “The Present State of the Art.”, Compeuro ’89-3rd Annual European Computer Conference Hamburg, West Germany, pp.46-52, May, 1989.
23. 單子睿,“壓電式噴墨系統之液滴型態控制研究及其數值模擬.”,國立成功大學 材料科學及工程學系所 碩士論文,2003。
24. 郭永吉,“壓電式噴墨系統之液滴噴射行為模擬.",國立東華大學 材料科學與工程研究所 碩士論文,2003。
25. 陳政宏、吳鉉忠、黃文星,“微噴墨技術應用之模擬及實驗驗證.”,CAE Molding Confernce,2005。
26. J. A. Katerberg, “Drop Charging and Deflection Using a Linear Charge Plate.”, 4th International Congress on Advances in Non-Impact Printing Technologies, New Orleans, Louisiana, Oct. 30-Nov. 4, 1988.
27. C. Bardeau, D. Fressard, P. Atten, and B. Barbet, “Formation pf Isolated  Drops in a Continuous Jet.”, IS&T’s Tenth International Congress on Advances in Non-Impact Printing Technologies, New Orleans, Louisiana, Oct. 30-Nov. 4, 1994.
28. Randy Fagerquist, “Jet Wave and Droplet Velocities for a Continuous Fluid Jet.”, IS&T’s Eleven International Congress on Advances in Non-Impact Printing Technologies, Hilton Head, South Carolina, Oct. 30-Nov. 3, 1995.
29. R. Mills, “Ink Jet Printing – Past, Present and Future.”, IS&T’s Tenth International Congress on Advances in Non-Impact Printing Technologies, New Orleans, Louisiana, Oct. 30-Nov. 4, 1994.
30. E. Webster, “Ink Jet Printing: Its role in Word Processing and Future Printing Markets.”, Datek of New England, Newtonville, MA, March 1980.
31. M. Zeis, “HP’s 1200C is Designed for Speeed, Low Operating Cost, and Plain Paper Printing.”, Color Business Report, Vol3, No. 5, May 1993.
32. 林郁欣,整合微鉑溫度感測器於熱泡致動器之發展研究,國立成功大學航空太空工程學系碩士論文,2003。
33. 吳鉉忠,壓電式微液滴噴射數學模擬系統之開發與實驗研究,國立成功大學材料科學及工程學系博士論文,2004。
34. C. W. Hansell,”Measuring Instrument of Recording Type.”,U.S.Patent 2,512,743,Issue6/27/1950.
35. D. Huang and E. S. Kim ,”Micromachined Acoustic-Wave Liquid Ejector .”,IEEE Journal of Microelectromechanical Systems,Vol.10,Issue 3,Sep.,2001.
36. X. Zhu, E. Tran, W. Wang, E. S. Kim, and S. Y. Lee,”Micromachined Acoustic-Wave Liquid Ejector, “IEEE Journal of Microelectromechanical Systems,Vol.10,Issue 3,Aug.,1998.
37. S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A high Resolution, Electrostatically-Driven Commercial Inkjet Head.”, The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, pp.793-798, Jan. 23-27, 2000.
38. S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A Low Power, Small, Electrostatically-Driven Commercial Inkjet Head.”, The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, pp.63-68, Jan. 25-29, 1998.
39. Warren P. Mason, Bell Telephone Laboratories, Murray Hill, New Jersey 07974, and Columbia University, New York, New York 10027 “Piezoelectricity, its history and applications.”, The Journal of the Acoustical Society of America, Dec. Volume 70, pp.1561-1566, 1981.
40. Piezoelectricity, http://en.wikipedia.org/wiki/Piezoelectricity
41. 吳朗, “電子陶瓷壓電”,全欣資訊圖書股份有限公司, 1995。
42. 許蘇文, “高頻基板用低介電材料-PPO樹脂之合成”,國立成功大學 化學工程研究所 碩士論文, 2004。
43. 周卓明, “壓電力學(Piezoelectricity Mechanics)”,全華科技圖書股份有限公司,2003。

 


如您有疑問,請聯絡圖書館
聯絡電話:(06)2757575#65773
聯絡E-mail:etds@email.ncku.edu.tw