進階搜尋

 
查詢範圍:「   」
顯示範圍:第筆 論文書目資料
顯示格式:全部欄位
共 5 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0026-0607201112233300
論文名稱(中文) 含氮雜環配位基鎘(Ⅱ)和鋅(Ⅱ)錯化合物的合成,結構與性質之研究
論文名稱(英文) A Study on Synthesis, Structure and Properties of Cadium(Ⅱ) and Znic(Ⅱ) Complexes Containing pyrazole-derived ligand
校院名稱 成功大學
系所名稱(中) 化學系碩博士班
系所名稱(英) Department of Chemistry
學年度 99
學期 2
出版年 100
研究生(中文) 張哲維
學號 l36981292
學位類別 碩士
語文別 中文
口試日期 2011-06-28
論文頁數 103頁
口試委員 指導教授-許拱北
口試委員-李漢文
口試委員-許鏵芬
口試委員-許貫中
關鍵字(中) 有機溶劑
有機雜環化合物
關鍵字(英) organic solvent
organic heterocyclic compound
學科別分類
中文摘要 在有機溶劑中,有機雜環化合物1,4-bis(pyrazole-l-ylmethyl)benzene (bpx) 與Cd(NO3)2、Cd(ClO4)2、CdBr2、Zn(NO3)2和Zn(ClO4)2反應,生成十個錯化合物:
{[Zn(bpx)1.5(CH3CN)](ClO4)2}n (1a)
{[Zn(bpx)2](ClO4)2(PhCN)2}n (1b)
{[Zn(bpx)(Me2CHCN)2(H2O) 2](ClO4)2}n (1c)
{[Cd(bpx)1.5(CH3CN)](ClO4)2}n (2a)
{[Cd(bpx)(CH3CH2CN)2(H2O) 2](ClO4)2}n (2b)
{[Cd(bpx)(Me2CHCN)2(H2O) 2](ClO4)2}n (2c)
[Zn(NO3) 2(bpx)] n (3)
[Cd(NO3) 2(bpx)1.5] n (4a)
[Cd(NO3) 2(bpx)(H2O)] n (4b)
[Cd(bpx)Br 2] n (5)
所有錯合物均藉由元素分析、粉末X-光繞射、固態NMR、UV-VIS與IR光譜鑑定,錯合物均有相當高的固態熱穩定(> 250 ℃)與發藍光,每一個單晶構造也都進一步由X-光單晶繞射數據決定。
英文摘要 In an organic solvent, organic heterocyclic compound, 1,4-bis(pyrazole-l-ylmethyl)benzene (bpx) reacted with Cd(NO3)2, Cd(ClO4)2, CdBr2, Zn(NO3)2 and Zn(ClO4)2 produced ten coordination compounds:
{[Zn(bpx)1.5(CH3CN)](ClO4)2}n (1a)
{[Zn(bpx)2](ClO4)2(PhCN)2}n (1b)
{[Zn(bpx)(Me2CHCN)2(H2O) 2](ClO4)2}n (1c)
{[Cd(bpx)1.5(CH3CN)](ClO4)2}n (2a)
{[Cd(bpx)(CH3CH2CN)2(H2O) 2](ClO4)2}n (2b)
{[Cd(bpx)(Me2CHCN)2(H2O) 2](ClO4)2}n (2c)
[Zn(NO3) 2(bpx)] n (3)
[Cd(NO3) 2(bpx)1.5] n (4a)
[Cd(NO3) 2(bpx)(H2O)] n (4b)
[Cd(bpx)Br 2] n (5)
All compounds were characterized by elemental analyses, solid-state NMR, IR, and UV-VIS spectra. All compounds have good thermal stability (> 250 ℃) and can emit blue light. Each compound was also determined the crystal structure by X-ray single-crystal diffraction data.
論文目次 目錄
摘要 I
Abstract II
致謝 III
縮寫對照表 IV
目錄 V
表目錄 VII
圖目錄 VIII
第一章 序論 1
1-1 引言 1
1-2 晶體工程 (Crystal Engineering) 3
1-3 金屬-有機配位高分子(metal-organic coordination polymer) 5
1-4 配位高分子的應用 7
1-5 Zn(II)和Cd(II)配位高分子錯合物 9
1-6 實驗動機 12
第二章實驗部分 13
2-1實驗與儀器操作 13
2-2實驗藥品 15
2-3 實驗步驟 16
2-3-1 有機配位基的合成1,4-bis(pyrazole-l-ylmethyl)benzene—bpx 16
2-4-2 配位高分子合成 18
2-4-2-1 {[Zn(bpx)1.5(CH3CN)](ClO4)2}n—1a 18
2-3-2-2 {[Zn(bpx)2](ClO4)2(PhCN)2}n—1b 19
2-3-2-3 {[Zn(bpx)( Me2CHCN)2(H2O) 2](ClO4)2}n—1c 19
2-4-2-4 {[Cd(bpx)1.5(CH3CN)](ClO4)2}n—2a 20
2-3-2-5 {[Cd(bpx)(CH3CH2CN)2(H2O) 2](ClO4)2}n—2b 21
2-3-2-6 {[Cd(bpx)( Me2CHCN)2(H2O) 2](ClO4)2}n—2c 22
2-3-2-7 [Zn(NO3) 2(bpx)] n—3 22
2-3-2-8 [Cd(NO3) 2(bpx)1.5] n—4a 23
2-4-2-9 [Cd(NO3) 2(bpx)(H2O)] n—4b 24
第三章結果與討論 26
3-1晶體結構 26
3-1-1{[Zn(bpx)1.5(CH3CN)](ClO4)2}n—1a 26
3-1-2{[Zn(bpx)2](ClO4)2(PhCN)2}n—1b 29
3-1-3 {[Zn(bpx)( Me2CHCN)2(H2O) 2](ClO4)2}n—1c 30
3-1-4{[Cd(bpx)1.5(CH3CN)](ClO4)2}n—2a 33
3-1-5{[Cd(bpx)(CH3CH2CN)2(H2O) 2](ClO4)2}n—2b 34
3-1-6{[Cd(bpx)( Me2CHCN)2(H2O) 2](ClO4)2}n—2c 37
3-1-7 [Zn(NO3) 2(bpx) 2] n—3 39
3-1-8 [Cd(NO3) 2(bpx)1.5] n—4a 41
3-1-9 [Cd(NO3) 2(bpx)(H2O)] n—4b 44
3-1-10 [Cd(bpx)Br 2] n—5 47
3-2陰離子效應 50
3-3溶劑效應 52
3-4螢光(PL) 55
3-5熱重分析(TGA) 56
第四章 結論 58
參考文獻 59
附錄 62
參考文獻 1. Han, S.; Manson, J. L.; Kim, J.; Miller, J. S. Inorg. Chem. 2000, 39,4182.
2. Lloret, F.; Munno, G. D.; Julve, M.; Ruiz, R.; Caneschi, A. Angew. Chem.,Int. Ed. 1998, 37, 135.
3. Heintz, R. A.; Zhao, H.; Ouyang, X.; Cowen, J.; Dunbar, K. R. Inorg.Chem. 1999, 38, 144.
4. Michaut, C.; Ouahab, L.; Kahn, O.; Bousseksou, A. J. Am. Chem. Soc. 1996, 118, 3610.
5. Evans, O. R.; Xiong, R. G.; Wang, G. K.; Lin, W. Angew. Chem. Int. Ed.1999, 38, 536.
6. Lin,W.; Evans, O. R.; Xiong, R. G.; Wang, Z. J. Am. Chem. Soc. 1998,120, 13272.
7. Lin, W.; Wang, Z.; Ma, L. J. Am. Chem. Soc. 1999. 121. 11249.
8. Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402,276.
9. Cui, Y.; Evans, O. R.; Ngo, H. L.; White, P. S.; Lin, W. B. Angew.Chem., Int. Ed. 2002, 41, 1159.
10. Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi,M.;Matzger, A. J.; O’Keeffe, M.; Yaghi, O. M. Nature 2004, 427,523.
11. Evans, O. R.; Wang, Z. Y.; Xiong, R. G.; Foxman, B. M.; Lin, W. B.Inorg. Chem. 1999, 38, 2969-2973.
12. Carlucci, L.; Ciani, G.; Proserpio, D. M.; Porta, F. Angew. Chem. Int.Ed. 2003, 42, 317.
13. Yaghi, O. M.; Li, H. J. Am. Chem. Soc. 1996, 118, 295.
14. Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1990, 112, 1546.
15. Robinson, F.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1995, 112, 2413.
16. Endo, K.; Koike, T.; Sawaki, T.; Masuda, H.; Aoyama, H. J. Am. Chem.Soc. 1997, 119, 4117.
17. Sawaki, T.; Dewa, T.; Aoyama, Y. J. Am. Chem. Soc. 1998, 120, 8539.
18. Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K.Nature 2000, 404, 982.
19. Zaworotko, M. J.; Losier, P. Angew. Chem. Int. Ed. 1996, 35, 2779.
20. Li, H.; Eddaoudi, M.; Groy, T. L.; Yaghi, O. M. J. Am. Chem. Soc. 1998,120, 8571.
21. Kitagawa, S.; Yoshitomi, T.; Kondo, M.; Matsuzaka, H. Angew. Chem.Int. Ed. 1997, 36, 1725.
22. Kondo, M.; Noro, S.; Minakoshi, S.; Seki, K.; Kitagawa, S. Angew. Chem.Int. Ed. 2002, 39, 2081.
23. Kumagai, H.; Oka, Y.; Akita-Tanaka, M.; Inoue, K. Inorganica Chimica Acta, 2002, 332, 176.
24. Kitagawa, S.; Kitaura, R.; Shin-ichiro, R.; Angew. Chem.Int. Ed. 2004,43, 2334.
25.Mazik, M.; Bläser, D.; Boese, R. Chem. Eur. J. 2001, 6, 2865.
26. adokoro, M.; Shiomi, T.; Isobe, K.; Nakasuji, K. Inorg. Chem. 2001, 40, 5467.
27. Prior, T. J.; Rosseinsky, M. J. J. Chem. Soc. Chem. Comm. 2001, 1222.
28. Öhrström, L.; Larsson, K.; Borg, S.; Norberg, S. T. Chem. Eur. J. 2001, 7, 4805.
29. Hasenknopf, B.; Lehn, J. M.; Boumediene, N. J. Am. Chem. Soc. 1997,119, 10956.
30. Hasenknopf, B.; Lehn, J. M.; Boumediene, N.; Leize, E. Angew. Chem. .Int. Ed. 1998, 37, 3.
31. Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W.-S.;Withersby, M. A.; Schro¨der, M. Coord. Chem. ReV. 1999, 183, 117.
32. Li, Y. X.; Li, Y. H.; Zeng, X. R.; Xiong, R. G.; You, X. Z.; Fun, H. K.Inorg. Chem. Commun. 2003, 6, 1144.
33. Shin, Y. W.; Kim, T. H.; Lee, K. Y.; Park, K. M.; Lee, S. S.; Kim, J.Inorg. Chem. Commun. 2004, 7, 374.
34. Su, X. C. ; Shourong Zhu ; Lin, H. K. ; Leng, X. B. ; Chen, Y. T. J. Chem. Soc.Dalton Trans. 2001, 3163.
35. Jung, O. S.; Kim, Y. J. ; Lee, Y. A. ; Park, J. K. ; Chae, H. K. J. Am. Chem. Soc.2000, 122, 9921.
36. Ford, P.C.; Cariati, E.; Bourassa, J. Chem. Rev. 1999, 99, 3625.
37. Hennigar, T. L.; MacQuarrie, D. C.; Losier, P.; Rogers, R. D.;Zaworotko, M. L. Angew. Chem., Int. Ed. 1997, 36, 972.
38. Yaghi, O. M.; Davis, C. E.; Li, G. M.; Li, H. L. J. Am. Chem. Soc.1997, 119, 2861.
39.Withershy, M. A.; Blake, A. J.; Champness, N. R.; Cooke, P. A.;Huhherstey, P.; Li, W. S.; Schro¨der, M. Inorg. Chem. 1999, 38, 2259.
40. Kalyvas, H.; Coucouvanis, D. Inorg. Chem. 2006,45, 8462.
41. Jeon, Y.-M.; Heo, J.;Mirkin, C. A. J. Am. Chem. Soc. 2007, 129, 7480.
42. Li, X. K.; Fan, X. L.; Zeng, Q. D. Int. J. Mol. Sci. 2007, 8, 29.
43. Li, Y. X.; Li, Y. H.; Zeng, X. R.; Xiong, R. G.; You, X. Z.; Fun, H.
K.Inorg. Chem. Commun. 2003, 6, 1144.
44. Shin, Y. W.; Kim, T. H.; Lee, K. Y.; Park, K. M.; Lee, S. S.; Kim, J.Inorg. Chem. Commun. 2004, 7, 374.
45. Ciurtin, D. M.; Pschirer, N. G.; Smith, M. D.; Bunz Uwe, H. F.; Loye, H.C. Z. Chem. Mater. 2001, 9, 2743.
46. Fujita, M.; Yazaki, J.; Ogura, K. J. Am. Chem. Soc. 1990, 112, 5645.
47. Sauvage, J. P. Acc. Chem. Res. 1998, 31, 611.
48. Kim, K. Chem.Soc. ReV. 2002, 31, 96.
49. Carlucci, L.;Ciani, G.; Moret, M.; Proserpio, D. M.; Rizzato, S. Angew. Chem.,Int. Ed. 2000, 39, 1506.
50. Song, H.; Rioux, R.M.; Hoefelmeyer, J. D.; Komor, R.; Niesz, K.; Grass, M.;Yang, P.; Somorjai, G. A. J. Am. Chem. Soc. 2006, 128, 3027.
51. O.R.; Evans, W.B.; Lin, Acc. Chem. Res. 2002,35,511.
52. Tzeng, B. C.; Chen, B. S.; Yeh, H. T.; Lee, G. H.; Peng, S. M. New J.Chem. 2006, 30, 1087.
53. Eitel, E.; Oelkrug, D.; Hiller, W.; Strahle, J. Z. Naturforsch.1980, 35b,1247.
54. Muthu, S.; Yip, J. H. K.; Vittal, J. J. J. Chem. Soc., Dalton Trans. 2002, 4561.
55. Awaleh, M. O.; Badia,A.; Brisse, Cryst. Growth Des. 2006, 6, 2674.
56. Patra, G. K.; Goldberg, I.; De, S.; Datta, D. CrystEngComm. 2007, 9, 828.
57. Pickering, A. L.;Long, D.-L.; Cronin, L. Inorg. Chem. 2004, 43, 4953.
58. McMorran, D. A. Inorg. Chem. 2008, 47,592.
59. Haiyan , H.; David, C.; Fangna, D.; Xiaoliang, Z.; Guoqing, Z.; Huiqing, M.; and Daofeng, S.Cryst. Growth Des.2010, 10 ,895.
60. C. M. Hartshorn, P. J. Steel, Aust. J. Chem., 1995, 48, 1587.

------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910191202
論文名稱(中文) 4-雜環取代雪梨酮衍生物的合成與性質研究
論文名稱(英文) Studies on the Syntheses and Properties of 4-Heterocyclic Substituted Sydnone Derivatives
校院名稱 成功大學
系所名稱(中) 化學系碩博士班
系所名稱(英) Department of Chemistry
學年度 90
學期 2
出版年 91
研究生(中文) 施美秀
學號 l3887103
學位類別 博士
語文別 中文
口試日期 2002-06-15
論文頁數 146頁
口試委員 口試委員-周金興
口試委員-張彥誠
口試委員-何東英
口試委員-郭悅雄
口試委員-劉廣定
指導教授-葉茂榮
口試委員-吳培琳
關鍵字(中) 雪梨酮
雜環化合物
關鍵字(英) heterocyclic compounds
sydnones
學科別分類
中文摘要 許多雪梨酮化合物具有生理活性與藥理作用,雜環化合物如三、四雜環等衍生物亦具有藥理活性;因而3-芳香基-4-雜環基雪梨酮化合物的合成是相當引人興趣的研究。有關此系列的研究,大多數在雪梨酮的第4位置接上一些官能基,做為雜環基的前導體,再加以環化,即可合成可能具有生理或藥理活性的雪梨酮雜環化合物。本文首先採用3-芳香基雪梨酮-4-甲醯氯為起始原料與水合進行親核反應後,再與醛類進行環化反應以合成4-三雜環基雪梨酮。另外又以疊氮化鈉與3-芳香基雪梨酮-4-甲醯氯反應,生成相對應的3-芳香基雪梨酮-4-甲醯疊氮,再與醯氯化物作用,則環化生成安定的4-四雜環基雪梨酮化合物。由於3-芳香基雪梨酮-4-甲醯氯在製備上較為費時、耗力,故本論文力求開拓新的雜環基前導體,基於醛類化合物與活性亞甲基化合物進行 Knoevenagel縮合反應,可獲得含多官能基之衍生物,故本文乃應用此反應於3-芳香基-4-甲醯雪梨酮,並將縮合產物進一步環化以生成4-雜環基雪梨酮。由於雜環取代的查耳酮(chalcones)衍生物具有特殊生理活性,早已被科學家所製備研究,此類α,β-不飽和酮為應用廣泛的合成先導物,可用於合成相對應的、異等衍生物,而其中1H-、4,5-二氫-1H-化合物因具有特殊的抗菌、抗氧化能力,故廣泛地被應用於醫藥及農業,於是許多合成此類雜環化合物的方法因應而生,且為科學家們所熱衷。而雪梨酮衍生物亦具有抗發炎、止痛等生理活性,為了進一步了解兩種雜環的結合效應,故本文著重於雪梨酮環取代的化合物合成,一方面應用Knoevenagel縮合產物為起始原料,一方面則利用3-芳香基-4-甲醯雪梨酮及4-乙醯-3-芳香基雪梨酮合成其他不同類型的α,β-不飽和酮先導物,再將所合成的各種先導物與水合作用,以生成1H-或1H-衍生物,並探討其反應性。最後篩選部份所合成的3-(3-芳香基雪梨酮-4-基)-5-芳香基-4,5-二氫-1H-化合物,進行抗細菌、抗真菌探討,並企盼能尋找具有抗生活性的衍生物。
英文摘要 Many sydnone compounds have been found to have pharmacological and biological activities. On the other hand, various heterocyclic compounds, such as triazoles, tetrazoles etc., are also well known to show special pharmacological activities. Therefore, it should be significant to synthesize 4-heterocyclic sydnones. The most common routes for the synthesis of such compounds are introducing suitable functional groups at the 4-position of sydnones to give the corresponding precursors which then cyclize with other reagents to produce the desired compounds.
In this work, 3-arylsydnone-4-carbohydroximic acid chlorides were used as starting material which reacted with hydrazine hydrate and then cyclized with aldehydes to give 3-aryl-4-triazolyl sydnone derivatives. In addition, 3-arylsydnone -4-carbohydroximic acid chlorides could react with sodium azide to produce the corresponding 3-arylsydnone-4-carbazidoximes. The carbazidoximes then cyclize directly with carboxylic acid chlorides to give tetrazole derivatives.
Because the preparations of 3-arylsydnone-4-carbohydroximic acid chlorides are more time and labor-consuming, it is necessary to develop more convenient precursors for the synthesis of 4-heterocyclic sydnones. Therefore, 3-aryl-4-formyl- sydnones were employed to react with various activated methylene compounds to afford a variety of multifunctional α,β-unsaturated ketones. The reactions of such precursors with different cyclizing reagents were studied and discussed.
Heterocyclic analogues of chalcones have been prepared for biological studies. Theα,β-unsaturated ketones can play as versatile precursors in the syntheses of the corresponding pyrazoline and isoxazoline derivatives. Furthermore, 1H-pyrazoles and 4,5-dihydro-1H-pyrazoles have been found to have diverse applications in medicine and agriculture. In particular, they are known as potent antibiotic and antioxidant agents. Hence, methods capable of generating this type of heterocycles are very attractive. Many sydnone derivatives are also associated with wide variety of physiological activities such as antiinflammatory and analgesic properties. In order to know the combined effect of both pyrazoline and sydnone moieties, this study take up the syntheses of sydnonyl substituted pyrazoles. In order to obtain the desired 3,5-disubstituted-4,5-dihydro-1H-pyrazoles, three type of sydnonyl substituted α,β-unsaturated ketones were synthesized by the following methods: (1) The Claisen-Schmidt condensation of 3-aryl-4-formylsydnones with acetophenone or acetone; (2) The Claisen-Schmidt condensation of 4-acetyl-3-arylsydnones with various aryl aldehydes; (3) The Knoevenagel condensation of 3-aryl-4-formyl- sydnones with various activated methylene compounds. Finally, the 1H-pyrazoline derivatives were synthesized successfully through the reactions of appropriateα,β-unsaturated ketone precursors and hydrazine hydrate. Some selected 1H-pyrazoline products were screened for their antibacterial and antifungal activities.
論文目次 誌謝
論文摘要
第一章 雪梨酮化合物的簡介…………………………… 1
第二章 三及四基雪梨酮衍生物的合成
一、前言……………………………………………12
二、結果與討論…………………………………..16
三、實驗部分………………………………………32
四、參考文獻………………………………………52
第三章 3-芳香基-4-甲醯雪梨酮的Knoevenagel
反應及縮合產物之環化
一、前言…………………………………………….56
二、結果與討論…………………………………….57
三、實驗部分……………………………………….72
四、參考文獻……………………………………….98
第四章 利用α,β-不飽和酮製備3,5-雙取代-4,5- 二氫-1H-衍生物
一、前言…………………………………………..101
二、結果與討論…………………………………..102
三、實驗部分……………………………………..110
四、參考文獻……………………………………..126
第五章 1H-衍生物之抗生活性評估
一、前言…………………………………………..129
二、結果與討論…………………………………..131
三、實驗部分……………………………………..136
四、參考文獻……………………………………..142
結論 ……………………………………………….143
參考文獻 第一章 參考文獻:
1. Stewart, F. H. C. Chem. Rev. 1964, 64, 129.
2. Ohta, M.; Kato, H. Non-Benzenoid Aromatics, I; Academic Press: New York, 1969, pp117-171.
3. 田憲儒, 葉茂榮, 科學發展月刊,1986, 14, 1273.
4. Kuo, C. N.; Wang, S. P.; Yeh, M. Y.; Tien, H. J. J. Chin. Chem. Soc. 1992, 39, 641.
5. Earl, J. C.; Mackney, A. W. J. Chem. Soc. 1935, 899.
6. Baker, W.; Ollis, W. D.; Poole, V. D. J. Chem. Soc. 1949, 307.
7. Nespurek, S.; Hasek, J.; Sorm, M.; Huml, K. J. Mol. Struct. 1986, 136, 261.
8. Nespurek, S.; Hasek, J.; Sorm, M.; Huml, K. J. Mol. Struct. 1982, 82, 95.
9. Fan, J. M.; Ueng, C. H. J. phys. Chem. 1993, 97, 8193.
10. Weintraub, P. M.; Bambury, R. E. Tetrahedron Lett. 1969, 579.
11. Tien, J. M.; Hunsberger, I. M. J. Am.Chem. Soc. 1961, 83, 178.
12. Adams, R.; Johnson, J. R.; Wilcox, C. F. Jr. Laboratory Experimental in Organic Chemistry, 7th Ed., MacMillan Inc. New York, 1982, 314.
13. Tien, H. J.; Yeh, M. Y.; Tien, J. M. J. Chin. Chem. Soc. 1977, 24, 115.
14. Tien, J. M.; Hunsberger, I. M. J. Am.Chem. Soc. 1955, 77, 6604.
15. Unterstenhoter, G.; Wolfrum, G.; Putter, R. British Patent 1959, 823001; Chem. Abstr. 1960, 54, 88546.
16. Putter, R.; Wolfrum, G. German Patent 1959, 124, 1057; Chem. Abstr. 1961, 55, 7436.
17. Hahn, S. J.; Kim, S. H.; Chae, H. J.; Youn, B. H.; Lyu, H. S. Bull. Korean Chem. Soc. 1987, 8, 49.
18. Thoman, C. J.; Voaden, D. J. Org. Syn. 1965, 45, 96.
19. Thoman, C. J.; Voaden, D. J.; Hunsberger, I. M. J. Org. Chem. 1964, 29, 2044.
20. Yeh, M. Y.; Tien, H. J.; Hwang, L, Y.; Chen, M. H. J. Chin. Chem. Soc. 1983, 30, 29.
21. Yeh, M. Y.; Tien, H. J. J. Chin. Chem. Soc. 1986, 33, 83.
22. Tien, H. J.; Ohta, M. Bull. Chem. Soc. Jpn. 1972, 45, 2944.
23. Yeh, M. Y.; Tien, H. J.; Nonaka, T. J. Org. Chem. 1983, 48, 1383.
24. Yashunskii, V. G.; Vasil’eva, V. F.; Sheinker, Y. N. Zh. Obshch. Khim. 1959, 29, 2712; Chem. Abstr. 1959, 54, 10999.
25. Baker, W.; Ollis, W. D.; Poole, V. D. J. Chem. Soc. 1950, 1542.
26. Hashimoto, M.; Ohta, M. Nippon Kagaku Zasshi, 1957, 78, 181.; Chem. Abstr. 1957, 54, 511.
27. Kier, L. B.; Dhawn, D.; Fregly, M. J. Pharm. Sci. 1964, 53, 677.
28. Greco, C. V.; Pesce, M.; Franco, J. M. J. Heterocycl. Chem. 1966, 3, 391
29. Suciu, N.; Mihai, G. H.; Elian, M.; Streoscu, E. Tetrahedron, 1965, 21, 1869.
30. Puranik, G. S.; Sushitzky, H.J. Chem. Soc., 1967, 1006.
31. Yeh, M. Y.; Tien, H. J. Hua. Hsueh, 1977, 104.
32. Tien, H. J.; Nonaka, T.; Sekine, T. Chem. Lett. 1979, 283.
33. Tien, H. J.; Yeh, M. Y.; Hwang, C. Y. J. Chin. Chem. Soc. 1985, 32, 461.
34. Huisgen, R.; Gottardt, H.; Grashey, R. Angew. Chem. 1962, 74, 30.; Angew. Chem. Intern. Ed. Engl. 1962, 1, 49.
35. Tien, H. J.; Yeh, M. Y.; Wu, C, H.; Chen, H. T. J. Chin. Chem. Soc. 1984, 31, 191.
36. Yeh, M. Y.; Nonaka, T.; Goto, T.; Hsu, M. C.; Fuchigami, T.; Tien, H. J. Bull. Chem. Soc. Jpn. 1983, 56, 3535.
37. Fuchigami, T.; Yeh, M. Y.; Goto, T.; Nonaka, T.; Tien, H. J. Bull. Chem. Soc. Jpn. 1984, 57, 116.
38. Fuchigami, T.; Goto, T.; Yeh, M. Y.; Nonaka, T.; Tien, H. J. Bull. Chem. Soc. Jpn. 1984, 57, 1362.
39. Tikare, R. K.; Upadhya, K. G.; Badami, B. V,; Puranik, G. S. Indian J. Chem. Sect. B, 1984, 23B, 798.
40. Yeh, M. Y.; Tien, H. J.; Fuchigami, T.; Nonaka, T. J. Chin. Chem. Soc. 1986, 33, 61.
41. Yeh, M. Y.; Pan, I. H.; Chuang, C. P.; Tien, H. J. J. Chin. Chem. Soc. 1988, 35, 443.
42. Yeh, M. Y.; Chu, W. C. J. Chin. Chem. Soc. 1988, 35, 451.
43. Yeh, M. Y.; Chan, F. F.; Tien, H. J.; Fuchigami, T.; Nonaka, T. J. Chin. Chem. Soc. 1989, 36, 143.
44. Shih. M. H.; Yeh, M. Y. J. Chin. Chem. Soc. 1990, 37, 71.
45. Shih. M. H.; Yeh, M. Y. J. Chin. Chem. Soc. 1992, 39, 163.
46. Greco, C. V.; Tobias, J.; Kier, L. B. J. Heterocycl. Chem. 1967, 4, 160.
47. Kier, L. B.; Roche, E. B. J. Pharm. Soc. 1967, 56, 149.
48. Greco, C. V.; Nyberg, W. H.; Cheng, C. C. J. Med. Pharm. Chem. 1962, 5, 861.
49. Saito, Y.; Kamitani, T. Japan Patent 1970, 7021710; Chem. Abstr. 1970, 73, 87926k.
50. Masuda, K.; Okutani, T. Japan Patent 1970, 7020903; Chem. Abstr. 1970, 74, 87928n.
51. Imashiro, Y.; Masuda, K. Japan Patent 1969, 6932411; Chem. Abstr. 1970, 72, 111482q.
52. Mashkovaskii, M. D.; Yashunskii, V. G.; Al’tshuler, Fr. R. 1970, 1, 589, 783.; Chem. Abstr. 1971, 74, 13131w.
53. Dambal, D. B.; Pattanashetti, P. P.; Tikare, R. K.; Badami, B. V.; Puranik, G. S. Indian J. Chem. 1984, 23B, 186.
54. Satyanarayana, K.; Rao, M. N. A. J. Pharm. Sci. 1995, 84, 2, 263.
55. Satyanarayana, K.; Rao, M. N. A. Eur. J. Med. Chem. 1995, 30, 641.
56. Kavali, J. R.; Badami, B. V. IL Farmaco, 2000, 55, 406.

第二章 參考文獻:
1. Stewart, F. H. C. Chem. Rev. 1964, 64, 129.
2. Ohta, M.; Kato, H. Non-Benzenoid Aromatics, I ; Academic Press: New York, 1969; pp 117-171.
3. Greco, C. V.; Tobias, J.; Kier, L. B. J. Heterocycl. Chem. 1967, 4, 160.
4. Kier, L. B.; Roche, E. B. J. Pharm. Sci. 1967, 56, 149.
5. Greco, C. V.; Nyberg, W. H.; Cheng, C. C. J. Med. Pharm. Chem. 1962, 5, 861.
6. Imashiro, Y.; Masuda, K. Japan Patent 1969, 6932411; Chem. Abstr. 1970, 72, 111482q.
7. Saito, Y.; Kamitani, T. Japan Patent 1970, 7021710; Chem. Abstr. 1970, 73, 87926k.
8. Masuda, K.; Okutani, T. Japan Patent 1970, 7020903; Chem. Abstr. 1970, 74,
87928n.
9. Satyanarayana, K.; Rao, M. N. A. J. Pharm. Sci. 1995, 84, 2, 263.
10. Kawanishi, H.; Morimoto, H.; Nakano, T.; Miyajima, T.; Oda, K.; Takeda, K.; Yano, S.; Hirano, N.; Tsujihara, K.; Heterocycles, 1998, 49, 169.
11. Tasaka, A.; Kitazaki, T.; Tsuchimori, N.; Matsushita, Y.; Hayashi, R.; Okonogi, K.; Itoh, K. Chem. Pharm. Bull. 1997, 45, 321.
12. Sung, K.; Lee, A. R. J. Heterocycl. Chem. 1992, 29, 1101.
13. Meyer, W. E.; Haug, M.; Tomcufcik, A. S.; Chan, P. S. J. Med. Chem. 1989, 32, 593.
14. Press, J. B.; Chan, P. S.; Haug, M. F.; Marsico, J. W.; Tauber, J.; Tomcufcik, A. S. Wright, W. B. J. Med. Chem. 1986, 29, 816.
15. Wright, W. B.; Chan, P. S.; Haug, M. F.; Lucas, J.; Marsico, J. W.; Press, J. B.; Tauber, J.; Tomcufcik, A. S. J. Med. Chem. 1986, 29, 523.
16. Micetich, R. G.; Hall, T. W.; Ishida, N.; Maiti, S. N.; Nakai, A.; Ogawa, K.; Spevak, P.; Tanaka, M.; Yamabe, S.; Yamazaki, T. J. Med. Chem. 1987, 30, 1469.
17. Juby, P. F.; Hudyma, T. W.; Brown, M. J. Med. Chem. 1968, 11, 111.
18. Mashtanov, S. M. Nauka Bor’be Urozhai, 1970, 32; Chem. Abstr. 1971, 74,
139862d.
19. Herbst, R. M.; Roberts, C. W.; Givens, H. T. F.; Harvill, E. K. J. Org. Chem. 1952, 17, 262.
20. Bond, A.; Lodge, D.; Hicks, C. A.; Ward. M. A.; O’ Neill, M. J. Eur. J. Pharmacol. 1999, 380, 91.
21. Nagamatsu, T.; Hayashi, K.; Oka, T.; Suzuki, Y. Eur. J. Pharmacol. 1999, 374, 93.
22. O’Brien, P. M.; Sliskovic, D. R.; Picard, J. A.; Lee, H. T.; Purchase, C. F.; Roth, B. D.; White, A. D.; Anderson, M.; Mueller, S. B.; Bocan, T.; Bousley, R.; Hamelehle, K. L.; Homan, R.; Lee, P.; Krause, B. R.; Reindel, J. F.; Stanfield, R. L.; Turluck, D. J. Med. Chem. 1996, 39, 2354.
23. Harfenist, M.; Heuser, D. J.; Joyner, C. T.; Batchelor, J. F.; White, H. L. J. Med. Chem. 1996, 39, 1857.
24. O’ Brien, P. M.; Sliskovic, D. R.; Bernabei, A.; Hurley, T.; Anderson, M. K.; Bousley, R. F.; Krause, B. R.; Stanfield, R. L. Bioorg. Med. Chem. Lett. 1995, 5, 295.
25. O’Brien, P. M.; Sliskovic, D. R.; Anderson, M. K.; Bousley, R. F.; Krause, B. R.; Stanfield, R. L. Bioorg. Med. Chem. Lett. 1995, 5, 289.
26. Yeh, M. Y.; Tien, H. J.; Fuchigami, T.; Nonaka, T. J. Chin. Chem. Soc. 1986, 33, 61.
27. Yeh, M. Y.; Nonaka, T.; Goto, T.; Hsu, M. C.; Fuchigami, T.; Tien, H. J. Bull. Chem. Soc. Japan, 1983, 56, 3535.
28. Chu, W. C.; Chan, F. F.; Yeh, M. Y. Hua-Hzueh 1988, 46, 181.
29. Yeh, M. Y.; Chu, W. C. J. Chin. Chem. Soc. 1988, 35, 451.
30. Yeh, M. Y.; Pan, I. H.; Chuang, C. P.; Tien, H. J. J. Chin. Chem. Soc. 1988, 35, 443.
31. Shih, M. H.; Yeh, M. Y. J. Chin. Chem. Soc. 1990, 37, 71.
32. Shih, M. H.; Yeh, M. Y. J. Chin. Chem. Soc. 1992, 39, 163.
33. Shih, M. H.; Her, K. H.; Yeh, M. Y. J. Chin. Chem. Soc. 2001, 48, 1143.
34.Yeh, M. Y.; Chan, F. F.; Tien, H. J.; Fuchigami, T.; Nonaka, T. J. Chin. Chem. Soc. 1989, 36, 143.
35. Yeh, M. Y.; Tien, H. J.; Fuchigami, T.; Nonaka, T. J. Chin. Chem. Soc. 1986, 33, 61.
36. Journet, M.; Cai, D.; Kowal, J. J.; Larsen, R. D. Tetrahedron Lett. 2001, 42, 9117.
37. José, M. C.; Mercedes, R. F. Tetrahedron Lett. 2000, 41, 381.
38. Bulger, P. G.; Cottrell, I. F.; Cowden, C. J.; Davies, A. J.; Dolling, U. H. Tetrahedron Lett. 2000, 41, 1297.
39. Tozkoparan, B.; Gökhan, N.; Aktay, G.; Yesilada, E.; Ertan, M. Eur. J. Med. Chem. 2000, 35, 743.
40. Demirayak, S.; Benkli, K.; Güven, K. Eur. J. Med. Chem. 2000, 35, 1037.
41. Sarvá, M. C.; Romeo, G.; Guerrera, F.; Siracusa, M.; Salerno, L.; Russo, F.; Cagnotto, A.; Goegan, M.; Mennini, T. Bioorg. Med. Chem. 2002, 10, 313.
42. Shih, M. H.; Lu, L. H.; Yeh, M. Y.; J. Chin. Chem. Soc. ,2001, 48, 883.
43. Filichev, V. V.; Jasko, M. V.; Malin, A. A.; et al. Tetrahedron Lett. 2002, 43, 1901.
44. Popsavin, M.; Torovic, L.; Spaic, S.; Stankov, S.; Kapor, A.; Tomic, Z.; Popsavin, V. Tetrahedron, 2002, 58, 569.
45. Dabbagh, H. A.; Lwowski, W. J. Org. Chem. 2000, 65, 7284.
46. Gyoung, Y. S.; Shim, J. G.; Yamamoto, Y. Tetrahedron Lett. 2000, 41, 4193.
47. Carpenter, W. R. J. Org. Chem. 1962, 27, 2085.
48. Plenkiewicz, J. Tetrahedron Lett., 1975, 341.
49. Plenkiewicz, J. Tetrahedron, 1978, 34, 2961.
50. Eloy, F. J. Org. Chem. 1961, 26, 952.
51. Reynolds. G. A.; VanAllan, J. A.; Tinker, J. F. J. Org. Chem., 1959, 24, 1205.
52. Boyer, J. H.; Miller, E. J. Jr. J. Am. Chem. Soc. 1959, 81, 4671.
53. Temple, C. Jr.; Kussner, C. L.; Montgomery, J. A. J. Org. Chem., 1966, 31, 2210.
54. Grundmann, C.; Frommeld, H. D. J. Org. Chem., 1966, 31, 157.

第三章 參考文獻:
1. Cativiela, C.; Diazdevillegas, M. D.; Galvez, J. A. Synth. Commun. 1990, 20, 3145.
2. Tietze, L. F. J. Heterocycl. Chem. 1990, 27, 47.
3. Thomas, A. F.; Rey, F. Synth. Commun. 1991, 21, 327.
4. Nakano, Y.; Niki, S.; Kinouchi, S.; Miyamae, H.; Igarashi, M. Bull. Chem. Soc. Japan. 1992, 65, 2934.
5. Zajac, W. W.; Walters, T. R.; Buzby, J.; Gagnon, J.; Labroli, M. Synth. Commun. 1994, 24, 427.
6. Fuchs, K.; Paquette, L. A. J. Org. Chem. 1994, 59, 528.
7. Khan, R. H.; Mathur, R. K.; Ghosh, A. C. Synth. Commun. 1996, 26, 683.
8. Vanelle, P.; Meuche, J.; Maldonado, J.; Crozet, M. P.; Delmas, F.; Timon-David, P. Eur. J. Med. Chem. 2000, 35, 157.
9. Boumendjel, A.; Nuzillard, J. M.; Massiot, G. Tetrahedron Lett. 1999, 40, 9033.
10. Zhang, Y.; Hokari, H.; Wada, T.; Shang, Y.; Marder, S. R.; Sasabe, H. Tetrahedron Lett. 1997, 38, 8721.
11. Tamiaki, H.; Kouraba, M. Tetrahedron 1997, 53, 10677.
12. Reddy, T. I.; Varma, R. S. Tetrahedron Lett. 1997, 38, 1721.
13. Yeh, M. Y.; Tien, H. J.; Huang, L. Y.; Chen, M. H. J. Chin. Chem. Soc. 1983, 30, 29.
14. Tien, H. J.; Yeh, M. Y.; Wu, C. H.; Chen, H. T.; J. Chin. Chem. Soc. 1984, 31, 191.
15. Tien, H. J.; Yeh, M. Y.; Huang, C. Y.; J. Chin. Chem. Soc. 1985, 32, 461.
16. Yeh, M. Y.; Tien, H. J.; Fuchigami, T.; Nonaka, T. J. Chin. Chem. Soc. 1986, 33, 83.
17. Yeh, M. Y.; Chan, F. F.; Tien, H. J.; Fuchigami, T.; Nonaka, T. J. Chin. Chem. Soc. 1989, 36, 143.
18. Yeh, M. Y.; Pan, I. H.; Chuang, C. P.; Tien, H. J. J. Chin. Chem. Soc. 1988, 35, 443.
19. Yeh, M. Y.; Chu, W. C. J. Chin. Chem. Soc. 1988, 35, 451.
20. Shih, M. H.; Yeh, M. Y. J. Chin. Chem. Soc. 1990, 37, 71.
21. Shih, M. H.; Yeh, M. Y. J. Chin. Chem. Soc. 1992, 39, 163.
22. Shih, M. H.; Lu, L. H.; Yeh, M. Y. J. Chin. Chem. Soc. 2001, 48, 883.
23. Shih, M. H.; Her, K. H.; Yeh, M. Y. J. Chin. Chem. Soc. 2001, 48, 1143.
24. Stewart, F. H. C. Chem. Rev. 1964, 64, 129.
25. Ohta, M.; Kato, H. Non-Benzenoid Aromatics, I ; Academic Press: New York, 1969; pp 117-171.
26. Greco, C. V.; Tobias, J.; Kier, L. B. J. Heterocycl. Chem. 1967, 4, 160.
27. Kier, L. B.; Roche, E. B. J. Pharm. Sci. 1967, 56, 149.
28. Greco, C. V.; Nyberg, W. H.; Cheng, C. C. J. Med. Pharm. Chem. 1962, 5, 861.
29. Imashiro, Y.; Masuda, K. Japan Patent 1969, 6932411; Chem. Abstr. 1970, 72, 111482q.
30. Saito, Y.; Kamitani, T. Japan Patent 1970, 7021710; Chem. Abstr. 1970, 73, 87926k.
31. Masuda, K.; Okutani, T. Japan Patent 1970, 7020903; Chem. Abstr. 1970, 74, 87928n.
32. Satyanarayana, K.; Rao, M. N. A. J. Pharm. Sci. 1995, 84, 2, 263.
33. Tökés, A. L.; Janzsó, G. Synth. Commun. 1989, 19, 3159.
34. Gao, C.; Hay, A. S. Synth. Commun. 1995, 25, 1877.
35. Cho, H.; Ueda, M.; Ohnaka, Y.; Hayashimatsu, M. Heterocycles, 1984, 22, 1959.
36. Kambe, S.; Saito, K.; Kishi, H. Synthesis, 1979, 287.
37. García Navíc, J. L.; Lorente, A.; Soto, J. L. Heterocycles, 1982, 19, 305.

第四章 參考文獻:
1. Sachchar, S. P.; Singh, A. K. J. Indian Chem. Soc. 1985, 142.
2. Dambal, D. B.; Pattanashetti, P. P.; Tikare, R. K.; Badami, B. V.; Puranik, G. S. Indian J. Chem. 1984, 23B, 186.
3. Cremlyn, R. J.; Swinbourne, F. J.; Mookerjee, E. Indian J. Chem. 1986, 25B, 562.
4. Kulkarni, S. E.; Mane, R. A.; Ingle, D. B. Indian J. Chem. 1986, 25B, 452.
5. Gawande, N. G.; Shingare, M. S. Indian J. Chem. 1987, 26B, 351.
6. Thakare, V. G.; Wadodkar, K. N. Indian J. Chem. 1986, 25B, 610.
7. Srivastava, R. P.; Neelima; Bhaduri, A. P. Indian J. Chem. 1987, 26B, 418.
8. Tökés, A. L.; Janzsó, G. Synth. Commun. 1989, 19(18), 3159.
9. EL-Khawass, S. M.; Farghaly, A. M.; Chaaban, I.; Fahmy, S. M. J. Chin. Chem. Soc. 1990, 37, 605.
10. Gao, C.; Hay, A. S. Synth. Commun. 1995, 25(12), 1877.
11. Satyanarayana, K.; Rao, M. N. A. J. Pharm. Sci. 1995, 84, 263.
12. Satyanarayana, K.; Rao, M. N. A. Eur. J. Med. Chem. 1995, 30, 641.
13. Vishnu Vardhan Reddy, K.; Sampath Rao, P.; Ashok, D. Synth. Commun. 1998, 29, 2365.
14. Pinto, D. C. G. A.; Silva, A. M. S.; Cavaleiro, J. A. S. Tetrahedron, 1999, 55, 10187.
15. Müller, E.; Kálai, T.; Jekö, J.; Hideg, K. Synthesis, 2000, 10, 1415.
16. DeShong, P.; Soli, E. D.; Slough, G. A.; Sidler, D. R.; Elango, V.; Rybczynski, P. J.; Vosejpka, L. J. S.; Lessen, T. A.; Le, T. X.; Anderson, G. B.; von Philipsborn, W.; Vöhler, M.; Rentsch, D.; Zerbe, O. J. Organomet. Chem. 2000, 593, 49.
17. Holla, B. S.; Akberali, P. M.; Shivananda, M. K. IL Farmaco, 2000, 55, 256.
18. Ali, M. M.; Doshi, A. G.; Raghuwanshi, P. B. Synth. Commun. 2000, 30, 3241.
19. Pathak, V. N.; Pathak, R.; Gupta, R.; Oza, C. K. Synth. commun. 1997, 27, 1811.
20. Haunert, F.; Bolli, M. H.; Hinzen, B.; Ley, S. V. J. Chem. Soc. Perkin Trans. I. 1998, 15, 2235.
21. Bauer, U.; Egner, B. J.; Nilsson, I.; Berghult, M. Tetrahedron Lett. 2000, 41, 2713.
22. Kavali, J. R.; Badami, B. V. IL Farmaco, 2000, 55, 406.
23. Turnbull, K.; Sun, C.; Krein, D. M. Tetrahedron Lett. 1998, 39, 1509.
24. Turnbull, K.; Krein, D. M. Synthesis. 1996, 1183.
25. Marx, J. A.; Turnbull, K. Tetrahedron Lett. 1993, 34, 239.
26. Gelvin, C. R.; Turnbull, K. Helv.Chim. Acta. 1992, 75, 1931.
27. Burson, Ⅲ, W. C.; Jones, D. R.; Turnbull, K.; Preston, P. N. Synthesis. 1991, 745.
28. Turnbull, K.; Blackburn, T. L.; Esterline, D. T. J. Heterocycl. Chem. 1990, 27, 1259.
29. Fokas, D.; Ryan, W. J.; Casebier, D. S.; Coffen, D. L. Tetrahedron Lett. 1998, 39, 2235.
30. Powers, D. G.; Casebier, D. S.; Fokas, D.; Ryan, W. J. Troth, J. R.; Coffen, D. L. Tetrahedron, 1998, 54, 4085.
31. Yeh, M. Y.; Tien, H. J.; Huang, L. Y.; Chen, M. H. J. Chin. Chem. Soc. 1986, 30, 29.
32. Yeh, M. Y.; Tien, H. J.; Nonaka, T. J. Org. Chem. 1983, 48, 1382.
33. Chu, W. C.; Chan, F. F.; Yeh, M. Y. Hua-Hzueh 1988, 46, 181.
34. Yeh, M. Y.; Chu, W. C. J. Chin. Chem. Soc. 1988, 35, 451.
35. Yeh, M. Y.; Pan, I. H.; Chuang, C. P.; Tien, H. J. J. Chin. Chem. Soc. 1988, 35, 443.
36. Shih, M. H.; Yeh, M. Y. J. Chin. Chem. Soc. 1990, 37, 71.
37. Shih, M. H.; Yeh, M. Y. J. Chin. Chem. Soc. 1992, 39, 163.
38. Shih, M. H.; Her, K. H.; Yeh, M. Y. J. Chin. Chem. Soc. 2001, 48, 1143.

第五章 參考文獻:
1. Sachchar, S. P.; Singh, A. K. J. Indian Chem. Soc. 1985, 142.
2. Dambal, D. B.; Pattanashetti, P. P.; Tikare, R. K.; Badami, B. V.; Puranik, G. S. Indian J. Chem. 1984, 23B, 186.
3. Cremlyn, R. J.; Swinbourne, F. J.; Mookerjee, E. Indian J. Chem. 1986, 25B, 562.
4. Kulkarni, S. E.; Mane, R. A.; Ingle, D. B. Indian J. Chem. 1986, 25B, 452.
5. Gawande, N. G.; Shingare, M. S. Indian J. Chem. 1987, 26B, 351.
6. Holla, B. S.; Akberali, P. M.; Shivananda, M. K. IL Farmaco, 2000, 55, 256.
7. Satyanarayana, K.; Rao, M. N. A. J. Pharm. Sci. 1995, 84, 263.
8. Satyanarayana, K.; Rao, M. N. A. Eur. J. Med. Chem. 1995, 30, 641.
9. Gao, C.; Hay, A. S. Synth. Commun. 1995, 25(12), 1877.
10. Vishnu Vardhan Reddy, K.; Sampath Rao, P.; Ashok, D. Synth. Commun. 1998, 29, 2365.
11. Pinto, D. C. G. A.; Silva, A. M. S.; Cavaleiro, J. A. S. Tetrahedron, 1999, 55, 10187.
12. Ali, M. M.; Doshi, A. G.; Raghuwanshi, P. B. Synth. Commun. 2000, 30, 3241
13. Kavali, J. R.; Badami, B. V. IL Farmaco, 2000, 55, 406.

------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910452740
論文名稱(中文) α-氯醯基芳香肼與啶類化合物 之環化反應及產物之光電性質之研究
論文名稱(英文) Studies on the light-Emitting property of the cyclization products from α-Chloroformylarylhydrazine with pyridines derivatives
校院名稱 成功大學
系所名稱(中) 化學系專班
系所名稱(英)
學年度 91
學期 2
出版年 92
研究生(中文) 江國振
學號 l3790118
學位類別 碩士
語文別 中文
口試日期 2003-07-31
論文頁數 80頁
口試委員 指導教授-葉茂榮
口試委員-吳培琳
口試委員-黃福永
關鍵字(中) 發光二極體
氯醯基芳香肼
多雜環
螢光性質
關鍵字(英) 1,3,4-oxadiazole
1,2,4- triazdo
Polyheterocyclic
carbazole
light-emitting material
學科別分類
中文摘要 有機發光二極體材料近年來為一非常重要的電激發光材料,在相
關文獻報導中,具1,3,4-oxadiazole 與carbazole 環衍生物,具有良好傳
輸電子及阻擋洞子傳輸的功能,且其相關的衍生物也常被運用於發藍
光的電激發光材料中。
本論文研究之目的,乃先合成出具藍色發光團之1,3,4—oxadiazole 或
carbazole環之pyridine 類化合物,再利用實驗室所開發出獨特的α-
氯醯基芳香hydrazine 氯化氫與pyridine 類化合物反應,合成出具
1,3,4-oxadiazole 環, carbazole 環及1,2,4- triazdo 環三種發光基團的
多雜環化合物,並將此所得之產物進行螢光性質(UV,PL)之測試,探
討取代基的改變對其光電性質的影響。
希望藉由光電性質的探討,拓展α-氯醯基芳香hydrazine 氯
化氫在合成小分子有機電激發光材料上的應用。希望藉由光電性質的探討,拓展α-氯醯基芳香肼 氯化氫在合成小分子有機電激發光材料上的應用。
英文摘要 Organic compounds, which can be used to make organiclight-emitting diodes, have recently become an interesting and important material. Research in looking for potential target compounds has been studied intensively. Compounds derived from 1,3,4-oxadiazoles and carbazoles had been reported having good electron-transporting and hole-transporting properties andhad been applied as blue light-emitting material.
The aims in this study are to synthesis potential blue light-emitting compounds and characterize the light-emitting properties. Polyheterocyclic compounds containing the moiety of 1,3,4-oxadiazole,carbazole, or 1,2,4-triazdo are our target compounds. The synthetic method for synthesizing these target compounds was reacting pyridines, which have both carbazole and 1,2,4-triazdo rings attached, with -chloroformylaryl-
hydrazine hychochloride. And the synthesized compounds were tested to study the effects of the various substituted groups on the electroluminescent properties.
The UV-visible and fluorescence studies indicated that derivatives of polyheterocyclic compounds containing the moieties of 1,3,4-oxadiazole and 1,2,4-triazdo (compounds 47) or the moieties 1,3,4-oxadiazole,carbazole and 1,2,4-triazdo (compounds
53) showed having the property of emitting green light. Compound such as the type 45, 46, and 52 containing only either
1,3,4-oxadiazole,carbazole and 1,2,4-triazdo moiety showed having the property of emitting blue light. In this study we have shown that by starting from -chloroformylaryl- hydrazine hychochloride
polyheterocyclic compounds, it is possible to synthesize potential target compounds with which to make OLED device.
論文目次 第一章a-氯醯基芳香hydrazine 氯化氫之簡介
一. 簡介......................1
二. 雪梨酮化合物的一般合成法............2
三. 雪梨酮化合物第4 位置碳原子之親電性取代反應...4
四. a-氯醯基芳香hydrazine 氯化氫之反應簡介.....5
五. 研究動機及目的.................12
第二章a-氯醯基芳香hydrazine 氯化氫與4-(1,3,4- oxadiazole
)pyridine之環反應
一. 簡介......................14
二. 結果與討論...................15
三. 實驗部分
2-3-1 實驗儀器..................22
2-3-2 實驗藥品..................22
2-3-3 原料製備..................24
2-3-4 實驗步驟..................29

第三章a-氯醯基芳香hydrazine 氯化氫與1,3,4-oxadiazole-
carbazole pyridine之環反應
一. 簡介......................36
二. 結果與討論...................38
三. 實驗部分
3-3-1 實驗儀器.................43
3-3-2 實驗藥品.................43
3-3-3 原料製備.................44
3-3-4 實驗步驟.................48
第四章光電性質的探討
一. 發光二極體簡介...............50
二. 光學性質之測試................52
1. 實驗儀器與裝置..............52
2. UV-Vis 及PL 螢光測試...........52
3. 電化學性質之測試..............63
第五章結論.....................75
參考文獻........................77
參考文獻 1. Earl, J. C. and Mackney, A. W. J. Chem. Soc., 1935, 899.
2. Simpson, J. C. E. J. Chem. Soc., 1946, 94.
3. Baker, W. and Ollis, W. D. Quart. Rew., 1957, 11, 15.
4. Baker, W.; Ollis, W. D. and Poole, V. D. J. Chem. Soc., 1955, 910.
5. Earl. J. C.; Leake, E.W. and LeFevre, R. J. W. Nature, 1947, 160, 366.
6. Baker, W.; Ollis, W. D.; Poole, V. D.Barltrop, J. A.; Hill, R. A. W. and
Sutton, L. E. Nature, 1947, 160, 366.
7. Hill, R. A. W. and Sutton, L. E. J. Chim. Phys., 1949, 46, 244.
8. Hill, R. A. W. and Sutton, L. E. J. Chem. Soc., 1949, 746.
9. Hill, R. A. W. and Sutton, L. E. J. Chem. Soc., 1953, 1482.
10. Barod’Ko, Yu. G. and Syrkin, Ya. K. Dokl. Akad. Nauk. SSSR., 1960, 134,
1127.; C. A. 1961, 55, 12039.
11. Earl. J. C.; Leake, E.W. and LeFevre, R. J. W. J. Chem. Soc., 1948, 2269.
12. Stewart, F. H. C. Chem. Rew., 1964, 64, 129.
13. Ohta, M. and Kato, H. Nippon Kagaku Zasshi, 1965, 86, 661.
14. Ohta, M. and Kato, H., “ Non-benzenoid Aromatics, I”, (Edited by Suyder,
J. P.), 117, Academic Press, New York, London (1969).
15. Earl. J. C.; LeFevre, R. J. W. and Wilson, I. R. J. Chem. Soc., 1949, 5103.
16. Greco, C. V.; Tobias, J. and Kier, L. B. J. Heterocyclic Chem., 1967, 4,
160.
17. Metz, F. I.; Servoss, W. C. and Welsh, F. E. J. Phys. Chem., 1962, 66,
2446.
18. Lees, W. A. and Buraway, A. Tetrahedron, 1963, 19, 619.
19. Zuman, P. and Voaden, D. J. Tetrahedron, 1961, 16, 130.
20. Stewart, F. H. J. Chem. Soc. 1963, 2009.
21. Matsunage, Y. Bull. Chem. Soc. Japan, 1957, 30, 227.
22. Eley, D. D.; Parfitt, G. D.; Perry, M. J. and Taysum, G. H. Trans Faraday
Soc., 1953, 49, 79.
23. Daerike, H. V. and Druey, J. Helv. Chim. Acta, 1962, 45, 2426.
24. Setwart, F. H. C. Chem. Ind. (Londan), 1963, 1926.
25. Lawson, K. D.; Brey, Jr.W. S. and Kier, L. B. J. Am. Chem. Soc., 1964, 86,
463.
26. Kier, L. B. and Roche, E. B. J. Pharm. Sci., 1966, 55, 807.
27. Kier, L. B. Tetrahedron Lett., 1967, 123.
28. Roche, E. B. and Kier, L. B. Tetrahedron, 1968, 24, 1673.
29. Orgel, L. E.; Cottrell, T. L;. Dick, W. and Sutton, L. E. Trans Faraday
Soc., 1951, 47, 223.
30. Wen, C. M. and Tien, H. J. J. Chin. Chem. Soc., 1975, 22, 255.
31. Schmiat, G. M. J. Bull. Res. Council Israel, 1951, 1, 123.; C. A. 1952,
46, 2871.
32. Barnighausen, H.; Jellinek, F. and Vos, A. Proc. Chem. Soc., 1961, 120.
33. Barnighausen, H.; Jellinek, F.; Munnik, J. and Vos, A. Acta, Cryst., 1963, 16, 471.; C. A. 1964, 60, 8215.
34. Thiessen, W. E. and Hope, H. J. Am. Chem. Soc., 1967, 89, 5977.
35. Adams, R.; Johnson, J. R. and Wilcox, C. F. J. “ Laboratory Experimental
in Organic Chemistry” 6th ed., MacMillan Inc. New York 1970, 314.
36. Baker, W.; Ollis, W. D. and Poole, V. D. J. Chem. Soc. 1949, 307.
37. Tien, H. J.; Yeh, M. Y. and Tien, J. M. J. Chin. Chem. Soc. 1977, 24, 115.
38. Tien, J. M. and Hunsberger, I. M. J. Am. Chem. Soc. 1955, 77, 6604.
39. Thoman, C. J. and Voaden, D. J. Org. Synth. 1965, 45, 96.
40. Unterstenhoter, G.; Wolfrum, G. and Putter, R. British Patent, 1959,
823001.; C. A. 1960, 54, 88546.
41. Putter, R. and Wolfrum, G. German Patent, 1959, 124, 1057; C. A. 1961, 55,
7436.
42. Hahn, S. J.; Kim, S. H.; Chae, H. J.; Youn, B. H. and Lyu, H. S. Bull.
Korean Chem. Soc., 1987, 8, 49.
43. Kenner, J. and Mackay, K. Nature 1946, 158, 909.
44. Tien, H. J.; Yeh, M. Y. and Huang, C. Y. J. Chin. Chem. Soc. 1985, 32, 461.
45. Badmi, B. V. and Puranik, G. S. Indian J. Chem. 1974, 12, 176.
46. Kuo, C. N.; Wu, M. H.; Chen, S. P.; Hwang, C. Y.and Yeh, M.Y. J. Chin.
Chem. Soc. 1994, 41, 849.
47. Yamamoto, H. Chem. Pharm. bull. 1968, 16, 17.
48. Yamamoto, H. and Nakao, M. J. J. Med. Chem. 1969, 12, 176.
49. 郭朝楠 國立成功大學化學研究所碩士論文 1992.
50. Freund, M. and Kuh, F. Chem. Ber. 1890, 23, 2821.
51. 吳明學 國立成功大學化學研究所碩士論文 1994.
52. 陳宗權 國立成功大學化學研究所碩士論文 1993.
53. Ogura, H.; Takahashi, H. and Sato, O. Chem. Pharm. Bull. 1981, 29, 2188.
54. Carruba, M. O.; Parenti, M.; Ricciardi, S. J.; Picotti, G. B. and
Mantegazza, P. Pharmacol. Res. Commun. 1979, 11, 169.
55. 郭朝楠 國立成功大學化學研究所博士論文 1996.
56. Reimlinger, H.; Vandewalle, J. J. M.; Lingier, W. R. F. Chem. Ber.
1970,103, 1934.
57. Nguyen, T. H.; Milcent, R.; Barbier, G. J. Heterocyclic Chem., 1985, 22,
38.
58. Rae, A. D.; Ramsay, C. G.; Steel, P. J. Aust. J. Chem., 1988, 41, 419.
59. Mitsuru, K. S.; Hitoshi, K. T.; Katsumasa, O. K. and Tatsul, T. H. M.
German Patent 1981, 3024316; C. A. 95, 43128b.
60. Carruba, N. O.; Parenti, M.; Ricciardi, C.; Picotti, G. B.; Mantegazza,
P.Pharmacol.Res. Commun., 1979, 11, 169.
61. Y. Hamada, C. Aadchi, T. Tsutsui and S. Saito, Jpn. J. Appl. Phys. 1992, 31; 1812.
62. C. Zhang , H. von Seggern , K. Pakbaz , B. Kraabel , H.W.Schmidt , and A.
Heeger , J. Synth. Met. , 1994 ,62 , 35.
63. B.Hu , Z. Yang and F. E.Karasz , J. Appl. Phys. , 1994 ,76 , 2419.
64. Z. Zhu ; J. S. Moore. J. Org. Chem. , 2000 , 65 , 116
65. J. A. Joule , Heterocycl. Chem. , 1984 , 35 , 83
66. 柯畢嘉, 林建村 , 化學, 2002. , 60 , 1 , 85
67. M. Y. Yeh, J. H. Tien , Y. L. Haung , H. M. Chen , J. Chin. Chem.
Soc.,1983 , 30, 29.
68. M. Y. Yeh, J. H. Tien, Y. L. Haung , H. M. Chen , J. Chin. Chem.
Soc., 1983 , 30, 29
69. 李盈儒 國立成功大學化學研究所碩士論文 2003.
70. Thelakkat, M.; Schmidt, H.W. Adv. Mater. 1998, 10, 219.
71. 邱俊彥國立成功大學化學研究所博士論文 2003

------------------------------------------------------------------------ 第 4 筆 ---------------------------------------------------------------------
系統識別號 U0026-2708201217302400
論文名稱(中文) 設計及合成具有雜環取代之亞胺醣
論文名稱(英文) Design and synthesis of heterocyclyl-azasugars
校院名稱 成功大學
系所名稱(中) 化學系碩博士班
系所名稱(英) Department of Chemistry
學年度 100
學期 2
出版年 101
研究生(中文) 鄭力維
學號 L36991263
學位類別 碩士
語文別 英文
口試日期 2012-07-24
論文頁數 181頁
口試委員 指導教授-鄭偉杰
共同指導教授-黃福永
口試委員-陳清玉
關鍵字(中) 雜環
亞胺醣
1,3-偶極環加成反應
半自動化的儀器
氮雜核苷
環狀亞胺
關鍵字(英) Heterocyclic
azasugars
1,3-dipolar cycloaddition
semiautomatic equipments
aza-C-nucleoside
cyclic imine
學科別分類
中文摘要 具有雜環取代的亞胺醣分子(HHAs),在與醣相關的反應酵素以及藥物開發方面,具有很多的應用。基於這些分子具有十分廣泛的生物活性,其製備方式就成為一個值得討論的議題。但是由於雜環亞胺醣的結構複雜,導致這類分子的合成方法在文獻中不是很完善,而本篇論文則分兩個部份來研究這類分子的合成方法:(1) 利用對掌性cyclic nitrone為起始物來設計及合成具有異噁唑及三唑雜環的亞胺醣分子。(2) 合成氮雜核苷類的分子。
在第一部分,對掌性的cyclic nitrone和乙烯格林那試劑或三甲基矽烷鋰試劑進行高選擇性的親核性加成反應,再經過一些化學的轉換之後,得到具有炔基或肟基的亞胺醣來做為重要的中間物,結合中間物以及相對應的試劑,例如:炔類、肟氯代以及三疊氮等試劑,藉由1,3-偶極環加成反應來得到具有異噁唑及三唑雜環的亞胺醣分子,並且利用半自動化的技術,例如:合成反應器,自動劑液處理系統,真空離心濃縮,以及固相萃取等等的技術; 來更有效率的合成這些分子。最後我們合成出了70個這類化合物分子的衍生物,並且具有三種變異性,其中包含:立體組態變異性、雜環及其取代基之變異性、和氮上的取代基的變異性。
第二部分則是合成氮雜核苷分子,我們結合環狀亞胺以及2,4-雙甲基嘧啶鋰試劑,藉由高選擇性的親核性加成反應來得到很好的β-選擇性產物。值得注意的是,連續式史陶丁格(Staudinger) /氮雜维蒂希(aza-wittig)反應是環狀亞胺的制備中最重要步驟。
英文摘要 Heterocyclyl hybrid azasugars (HHAs) are biologically interesting molecules for the manupulication of various sugar processing enzymes and for the potential therapeutic applications. Because of their wide spectrum of biological activity, the preparation has become a very attractive and important subject. Due to the structural complexity and diversity of HHAs, preparation of HHAs still is a synthetic challenge and has not yet been explored completely. In this study, the research was divided into two parts: (1) design and synthesis of isoxazolyl-/triazolyl- azasugars from chiral cyclic nitrones; (2) synthesis for aza-C-nucleoside–based molecules
In the first part, chiral cyclic nitrones were reacted with vinyl magnesium bromide or lithiated[2-(trimethylsilyl)ethynyl] via a highly diastereoselective nucleophilic addition, followed by proper transformations to give the corresponding intermediates, the protected azasugars bearing an alkyne or oxime moiety. The desired heterocyclic ring such as the isoxazole or triazole ring, was generated by the conjugation of intermediates with various oxime chlorides or azides via 1,3-dipolar cycloaddition. With the assistance of semiautomatic equipments, such as synthesizer, liquid handler, speed-vac , and solid-phase extraction technique, the preparation of the triazole/isoxazole-azasugar hybride-based molecule library becomes convenient and efficient. 70 compound of HHAs have been synthesized, which were categorized into three characteric type: configuration diversity, heterocyclic ring diversity, and substituent diversity
In the second part, the preparation of aza-C-nucleoside-based HHAs was achieved by the conjugation of a chiral cyclic imine with lithiated 2,4-dimethoxypyrimidine via a highly diastereoselective nucleophilic addition with an excellent β-position stereoselectivity. Notably, the chiral cyclic imine was prepared using the tandem Staudinger/aza-Wittig reaction as a key step via an intramolecular cyclization.
論文目次 Table of Content
摘要.......................................................I
Abstract..................................................II
Acknowledgement...........................................IV
Table of Content..........................................VI
Index of Figures........................................VIII
Index of Schemes...........................................X
Abbreviations.............................................XI
Chapter 1. Introduction....................................1
1.1 Introduction of aryl- and heterocyclyl-azasugars.......1
1.1.1 Mechanism for glycosidases or glycosyltransferases involved processes11.......................................2
1.1.2 Relationship between azasugars and transition state mimics.....................................................4
1.2 Synthesis of aryl-azasugars............................5
1.2.1 D. Correia method for preparaed aryl-azasugars.......5
1.2.2 Synthesis of aryl-azasugar from solution phase combinatorial approach.....................................6
1.3 Synthesis and biological applications of HHAs..........8
1.3.1 Synthesis of the Immucillin from D-gulonolactone.....8
1.3.2 Synthesis of the pseudouridine’s aza-nucleoside analogue...................................................9
1.4 Motivation............................................12
Chapter 2. Results and Discussion.........................13
2.1 Design and synthesis of isoxazolyl-/triazolyl- azasugars from chiral cyclic nitrones...............................13
2.1.1 Strategy of synthesizing azasugars from chiral cyclic nitrones..................................................13
2.1.2 Preparation of chiral tri-O-benzyl cyclic nitrones.14 ..........................................................14
2.1.3 Preliminary Model Studies...........................15
2.1.3.1 Preparation of C5’-isoxazolyl azasugars...........15
2.1.3.2 Preparation of 1,2,3-triazolyl azasugars..........19
2.1.3.3 Preparation of C3’-isoxazolyl azasugars...........21
2.1.4 Library design......................................23
2.1.4.1 Library generation................................25
2.2 Synthesis for aza-C-nucleoside–based molecules........30
2.2.1 Synthesis of the 5-bromo-2,4-dimethoxy-pyrimidine...30
2.2.2 Synthesis of C-4-aminouridines from cyclic nitrone..30
2.2.3 New strategy of synthesis of C-4-aminouridines from cyclic imine..............................................31
2.2.4 Development of new synthesis method for cyclic imine 43........................................................33
2.2.4.1 Retrosynthetic analysis...........................33
2.2.4.2 Preparation of cyclic imine 43....................33
2.2.5 Conjugation between cyclic imine and lithiated 2,4-dimethoxy- pyrimidine.....................................37
2.3 Chemical space analysis of the library................38
2.4 Biological evaluation.................................40
2.5 Conclusion............................................44
Chapter 3. Experimental Section...........................45
3.1 General experimental procedure........................45
3.2 Procedures and experimental data.....................46
References................................................81
Appendix..................................................87


Index of Figures
Figure 1.1. Structures of aryl and heterocyclyl-azasugar ...........................................................1
Figure 1.2. Mechanisms of retaining and inverting enzymatic hydrolysis.................................................3
Figure 1.3. The relationship of a sugar with an oxocarbenium TS.........................................................4
Figure 1.4. Aryl-azasugar 3 mimicking the transition state structure for a nucleoside hydrolase.......................4
Figure 2.1. Set of intermediate for the library...........23
Figure 2.2. Set of alkyne 12{1-10} for the library........23
Figure 2.3. Set of azide 22{1-4} for the library..........24
Figure 2.4. Set of oxime chlorides 26{1-7} for the library ..........................................................24
Figure 2.5. General workup procedure for the synthesis of HHAs......................................................25
Figure 2.6. Operation principles for our liquid-liquid extraction................................................26
Figure 2.7. Proposed transition state with the ketone reduction of 51...........................................35
Figure 2.8. Analysis of Lipinski’s “rule of five”.........39
Figure 2.9. Chaperone effect of Library on cellular N370S GC activity at 10 μM.........................................40
Figure 2.10. Chaperone effect of Library on cellular N370S GC activity at 50 μM......................................41
Figure 2.11. Structures of entry 35{10,3}, 35{10,2}, 14{4,1} ..........................................................41
Figure 2.12. Structures of the 27{7,2}, 36{7,2}, 36{7,2}, 27{7,1}...................................................43


Index of Tables
Table 2.1. Model study for the preparation of C5’-isoxazole 11{1}.....................................................16
Table 2.2. Study of the Suzuki coupling reaction of 11{10} ..........................................................18
Table 2.3. Study on debenzylation of 25{1,1}..............22
Table 2.4. Yield and purity of the HHAs library...........27
Table 2.5. Preparation of cyclic imine 43 from cyclic nitrone...................................................32
Table 2.6. Selective reduction of ketone 50...............35
Table 2.7. Preparation of azide 51 from alcohol 50........36
Table 2.8. MICs of the Mycobacterium smegmatis............41


Index of Schemes
Scheme 1.1. Synthesis of aryl-azasugars 9 by Heck reactions ...........................................................5
Scheme 1.2. Preparation of cyclic nitrones 12a and 12b.....6
Scheme 1.3. General synthetic route toward aryl-azasugars ...........................................................7
Scheme 1.4. Preparation of immucillin-H from D-gulonolactone ...........................................................8
Scheme 1.5. Preparation of the aza-C-nucleoside 17 reported by Yokoyama................................................9
Scheme 1.6. Preparation of pseudourindine analogues 28a and 28b.......................................................10
Scheme 2.1. General synthetic route of isoxazolyl-/triazolyl azasugars.................................................13
Scheme 2.2. Preparation of chiral tri-O-benzyl cyclic nitrone 6.................................................14
Scheme 2.3. Preparation of oxime 10 from cyclic nitrone 6 ..........................................................15
Scheme 2.4. Diversity improvement of the C5’-isoxazolyl azasugars.................................................17
Scheme 2.5. Preparation of 14{9,1} by hydrogenation.......18
Scheme 2.6. Preparation of 1,2,3-triazolyl azasugars 16a and 16b.......................................................19
Scheme 2.7. Proposed mechanism for the preparation of cyclic nitrones 16a and 16b......................................20
Scheme 2.8. Nitrogen-Oxygen bond cleavage by 15...........20
Scheme 2.9. Preparation of 1,2,3-triazolyl azasugars 24{2,1}...................................................21
Scheme 2.10. Preparation of C3’-isoxazolyl azasugars 25{1,1} from alkyne 21............................................22
Scheme 2.11. Solution-phase combinatorial synthesis of HHAs ..........................................................24
Scheme 2.12. Preparation of the 5-bromo-2,4-dimethoxy-pyrimidine 39.............................................30
Scheme 2.13. Preparation of 42 from cyclic nitrone 41.....30
Scheme 2.14. Retrosynthetic analysis of cyclic imine 43...33
Scheme 2.15. Preparation of alcohol 49 form 2,3,5-tri-O-benzyl-D-ribofuranose 47..................................33
Scheme 2.16. Epimerization of alcohol 49..................34
Scheme 2.17. Preparation of cyclic imine 43 from azide 51 ..........................................................37
Scheme 2.18. Preparation of C-4-aminouridines and analogues ..........................................................37
參考文獻 1. Ribes, C.; Falomir, E.; Murga, J.; Carda, M.; Alberto Marco, J., Convergent, stereoselective syntheses of the glycosidase inhibitors broussonetines D and M. Org. Biomol. Chem. 2009, 7, 1355-1360.
2. Anzeveno, P. B.; Creemer, L. J.; Daniel, J. K.; King, C. H. R.; Liu, P. S., A facile, practical synthesis of 2,6-dideoxy-2,6-imino-7-O-.beta.-D-glucopyranosyl-D-glycero -L-gulo-heptitol (MDL 25,637). J. Org. Chem. 1989, 54, 2539-2542.
3. Mehta, A.; Zitzmann, N.; Rudd, P. M.; Block, T. M.; Dwek, R. A., α-Glucosidase inhibitors as potential broad based anti-viral agents. FEBS lett. 1998, 430, 17-22.
4. Winchester, B. G., Iminosugars: from botanical curiosities to licensed drugs. Tetrahedron: Asymmetry 2009, 20, 645-651.
5. Tsou, E.-L.; Chen, S.-Y.; Yang, M.-H.; Wang, S.-C.; Cheng, T.-R. R.; Cheng, W.-C., Synthesis and biological evaluation of a 2-aryl polyhydroxylated pyrrolidine alkaloid-based library. Bioorg. Med. Chem. 2008, 16, 10198-10204.
6. Shankaraiah, G.; Sateesh Chandra Kumar, R.; Poornima, B.; Babu, K. S., Stereoselective synthesis of (+)-radicamine B. Tetrahedron Lett. 2011, 52, 4885-4887.
7. Just, G.; Donnini, G. P., C-Nucleosides and related compounds. XIV. The synthesis of a nitrogen analogue of showdomycin. Can. J. Chem. 1977, 55, 2998-3006.
8. Roy-Burman, S.; Roy-Burman, P.; Visser, D. W., Showdomycin, a new nucleoside antibiotic. Cancer Research 1968, 28, 1605-1610.
9. (a) Furneaux, R. H.; Limberg, G.; Tyler, P. C.; Schramm, V. L., Synthesis of transition state inhibitors for N-riboside hydrolases and transferases. Tetrahedron 1997, 53, 2915-2930; (b) Evans, G. B.; Furneaux, R. H.; Hutchison, T. L.; Kezar, H. S.; Morris, P. E.; Schramm, V. L.; Tyler, P. C., Addition of lithiated 9-deazapurine derivatives to a carbohydrate cyclic Imine: Convergent Synthesis of the aza-C-nucleoside immucillins. J. Org. Chem. 2001, 66, 5723-5730; (c) Merino, P.; Tejero, T.; Delso, I., Current Developments in the synthesis and biological activity of aza-C-nucleosides: Immucillins and related compounds. Curr. Med. Chem. 2008, 15, 954-967; (d) Evans, G. B.; Furneaux, R. H.; Gainsford, G. J.; Schramm, V. L.; Tyler, P. C., Synthesis of transition state analogue inhibitors for purine nucleoside phosphorylase and N-riboside hydrolases. Tetrahedron 2000, 56, 3053-3062; (e) Braunheim, B. B.; Miles, R. W.; Schramm, V. L.; Schwartz, S. D., Prediction of inhibitor binding free energies by quantum neural networks. nucleoside analogues binding to trypanosomal nucleoside hydrolase. Biochemistry 1999, 38, 16076-16083.
10. (a) Bzowska, A.; Kulikowska, E.; Shugar, D., Purine nucleoside phosphorylases: properties, functions, and clinical aspects. Pharmacol. Ther. 2000, 88, 349-425; (b) Wang, F.; Miles, R. W.; Kicska, G.; Nieves, E.; Schramm, V. L.; Angeletti, R. H., Immucillin-H binding to purine nucleoside phosphorylase reduces dynamic solvent exchange. Protein Sci. 2000, 9, 1660-1668.
11. Pearson, M. S. M.; Mathé-Allainmat, M.; Fargeas, V.; Lebreton, J., Recent advances in the total synthesis of piperidine azasugars. Eur. J. Org. Chem. 2005, 2159-2191.
12. Zechel, D. L.; Withers, S. G., Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc. Chem. Res. 1999, 33, 11-18.
13. Severino, E. A.; Costenaro, E. R.; Garcia, A. L. L.; Correia, C. R. D., Probing the stereoselectivity of the heck arylation of endocyclic enecarbamates with diazonium salts. concise syntheses of (2S,5R)-phenylproline methyl ester and Schramm's C-azanucleoside. Org. Lett. 2003, 5, 305-308.
14. Tsou, E.-L.; Yeh, Y.-T.; Liang, P.-H.; Cheng, W.-C., A convenient approach toward the synthesis of enantiopure isomers of DMDP and ADMDP. Tetrahedron 2009, 65, 93-100.
15. Evans, G. B., The synthesis of N-ribosyl transferase inhibitors based on a transition state blueprint. Aust. J. Chem. 2004, 57, 837-854.
16. (a) Momotake, A.; Mito, J.; Yamaguchi, K.; Togo, H.; Yokoyama, M., synthesis and properties of C-azalyxonucleosides. J. Org. Chem. 1998, 63, 7207-7212; (b) Yokoyama, M.; Ikenogami, T.; Togo, H., Stereoselective synthesis of C-4’-aminouridines (uracil C-4-amino-D-ribonucleosides). J. Chem. Soc. Perkin Trans 1. 2000, 13, 2067-2071.
17. Grohar, P. J.; Chow, C. S., A practical synthesis of the modified RNA nucleoside pseudouridine. Tetrahedron Lett. 1999, 40, 2049-2052.
18. (a) Bookser, B. C.; Zhu, S., Solid phase extraction purification of carboxylic acid products from 96-well format solution phase synthesis with DOWEX 1×8-400 formate anion exchange resin. J. Comb. Chem. 2001, 3, 205-215; (b) Shih, H.-W.; Guo, C.-W.; Lo, K.-H.; Huang, M.-Y.; Cheng, W.-C., Solution-phase parallel synthesis of novel spirooxazolinoisoxazolines. J. Comb. Chem. 2009, 11, 281-287; (c) Boger, D. L.; Desharnais, J.; Capps, K., Solution-phase combinatorial libraries: modulating cellular signaling by targeting protein–protein or protein–DNA interactions. Angew. Chem. Int. Ed. 2003, 42, 4138-4176.
19. Delso, I.; Marca, E.; Mannucci, V.; Tejero, T.; Goti, A.; Merino, P., Tunable diastereoselection of biased rigid systems by lewis acid induced conformational effects: a rationalization of the vinylation of cyclic nitrones en route to polyhydroxylated pyrrolidines. Chem. Eur. J. 2010, 16, 9910-9919.
20. Izquierdo, I.; Plaza, M. T.; Tamayo, J. A.; Franco, F.; Sánchez-Cantalejo, F., Total synthesis of natural (+)-hyacinthacine A6 and non-natural (+)-7a-epi-hyacinthacine A1 and (+)-5,7a-diepi-hyacinthacine A6. Tetrahedron 2010, 66, 3788-3794.
21. Padwa, A.; Pearson, W. H.; Editors, Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products. [In: Chem. Heterocycl. Comp. (Chichester, U. K.), 2002; 59]. Wiley: 2002; p 940 pp.
22. Desvergnes, S.; Desvergnes, V.; Martin, O. R.; Itoh, K.; Liu, H.-w.; Py, S., Stereoselective synthesis of β-1-C-substituted 1,4-dideoxy-1,4-imino-d-galactitols and evaluation as UDP-galactopyranose mutase inhibitors. Bioorg. Med. Chem. 2007, 15, 6443-6449.
23. Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L., Catalysts for Suzuki−Miyaura coupling processes: scope and studies of the effect of ligand structure. J. Am. Chem. Soc. 2005, 127, 4685-4696.
24. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596-2599.
25. Shibata, T.; Uemae, K.; Yamamoto, Y., Highly stereoselective synthesis of C2-chiral and meso nitroxides from an optically active pyrrolidine. Tetrahedron:Asymmetry 2000, 11, 2339-2346.
26. (a) Roy, B.; Pérez-Luna, A.; Ferreira, F.; Botuha, C.; Chemla, F., Addition of a 3-alkoxy allenylzinc to N-acyliminium ions: new entry to propargyl syn-1,2-aminoalcohol units. Tetrahedron Lett. 2008, 49, 1534-1537; (b) Alexakis, A.; Croset, K., Tandem copper-catalyzed enantioselective allylation−metathesis. Org. Lett. 2003, 5, 4239-4239.
27. (a) Lee, C. K. Y.; Easton, C. J.; Gebara-Coghlan, M.; Radom, L.; Scott, A. P.; Simpson, G. W.; Willis, A. C., Substituent effects in isoxazoles: identification of 4-substituted isoxazoles as Michael acceptors. J. Chem. Soc. Perkin Trans 2. 2002, 12, 2031-2038; (b) Akhrem, A.; Lakhvich, F.; Khripach, V., Isoxazole derivatives in the synthesis of bifunctional compounds by cleavage of the heteroring (review). Chem. Heterocycl. Compd. 1981, 17, 853-868; (c) Saxena, R.; Singh, V.; Batra, S., Studies on the catalytic hydrogenation of Baylis–Hillman derivatives of substituted isoxazolecarbaldehydes. Unusual retention of isoxazole ring during Pd–C-promoted hydrogenation of Baylis–Hillman adducts. Tetrahedron 2004, 60, 10311-10320.
28. Mukherjee, S.; Ghorai, B. K., Metallation of 2,4-Dialkoxy-5-bromopyrimidine and f ormylation with dimethylformamide: Isolation of 2,6-Dialkoxy-5-dimethylamino- pyrimidine-4-carboxaldehyde. Synth. Commun. 2010, 40, 1939-1943.
29. Koszytkowska-Stawińska, M.; Mironiuk-Puchalska, E.; Sas, W., Synthesis of 1-pyrroline 1-oxides analogous to pseudouridine. Tetrahedron Lett. 2011, 52, 1866-1870.
30. Cividino, P.; Dheu-Andries, M.-L.; Ou, J.; Milet, A.; Py, S.; Toy, P. H., Mechanistic investigations of the phosphine-mediated nitrone deoxygenation reaction and its application in cyclic imine synthesis. Tetrahedron Lett. 2009, 50, 7038-7042.
31. (a) Ilias, M.; Barman, D. C.; Prajapati, D.; Sandhu, J. S., An indium mediated efficient chemoselective deoxygenation of N-oxides and nitrones. Tetrahedron Lett. 2002, 43, 1877-1879; (b) Balicki, R., TiCl4/NaI - A novel, efficient reagent for mild reduction of the N-O bond in amine N-oxides and nitrones. Chem. Ber. 1990, 123, 647-648.
32. Li, Y.; Zhou, Y.; Ma, Y.; Li, X., Design and synthesis of novel cell wall inhibitors of Mycobacterium tuberculosis GlmM and GlmU. Carbohydr. Res. 2011, 346, 1714-1720.
33. (a) Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; de los Santos, J. M., The aza-Wittig reaction: an efficient tool for the construction of carbon–nitrogen double bonds. Tetrahedron 2007, 63, 523-575; (b) Mulzer, J.; Meier, A.; Buschmann, J.; Luger, P., Synthesis of enantiopure 1,2-didehydropyrrolidine, D-proline, and oxazoline derivatives via Staudinger-aza-Wittig cyclization of γ-azido aldehydes. Synthesis 1996, 1, 123-132; (c) Cossío, F. P.; Alonso, C.; Lecea, B.; Ayerbe, M.; Rubiales, G.; Palacios, F., Mechanism and stereoselectivity of the aza-Wittig reaction between phosphazenes and aldehydes. J. Org. Chem. 2006, 71, 2839-2847.

------------------------------------------------------------------------ 第 5 筆 ---------------------------------------------------------------------
系統識別號 U0026-2807201116034000
論文名稱(中文) 雪梨酮性質與[3+2]雙極成環反應反應性之理論計算研究
論文名稱(英文) Studies of electronic structure of sydnones and their reaction via [3+2] dipolar cycloaddition by molecular orbital calculation
校院名稱 成功大學
系所名稱(中) 化學系碩博士班
系所名稱(英) Department of Chemistry
學年度 99
學期 2
出版年 100
研究生(中文) 董澤霈
學號 l36981218
學位類別 碩士
語文別 中文
口試日期 2011-07-20
論文頁數 82頁
口試委員 指導教授-王小萍
口試委員-葉茂榮
口試委員-施良垣
關鍵字(中) 雪梨酮
成環反應
雜環
超共軛
芳香性之簡諧振動模型
關鍵字(英) sydnone
cycloaddition
heterocyclic
hyperconjugation
HOMA
學科別分類
中文摘要 雪梨酮在雜環化學中為一特別存在的一員,它特殊的共振性仍為許多人討論著,而它特有的藥理活性也是現今製藥不可或缺的角色。而現代的電腦日益進步,無形中也推動著理論化學計算這部分的變革。這次我們將以在理論計算所看到的結果,為之前所看到雪梨酮的現象和反應做一個解釋。
一開始我們會以天然鍵性軌域(NBO)來探討電荷上的改變,也藉由電荷的改變觀看到整個電子流向;接下來再以分子間距離、E2值來討論整個雪梨酮的共振性,並導入本實驗室所引用的芳香性的簡諧振動模型(HOMA)來判斷共振性上的好壞。
最後我們再利用計算出來的HOMO-LUMO軌域能量來討論取代基對雪梨酮軌域所造成的影響,並進而引入到雪梨酮近來的反應合成,從電荷、分子間鍵長、軌域分別探討其反應特性,並在最後以活化能來做一個全部的總結。
英文摘要 Sydnones are classified as one class in hetercyclic chemistry and the resonance hybrids of these compounds have been research interests since their advent in literatures. Furthermore, the unique pharmacological activity exhibited by sydnone derivatives allow them an integral role in the pharmaceutical area. With the improving of Computer hardware systems, Molecular Orbital Calculations can be employed as a powerful and versatile physical method for chemists to date.
The conjugation patters of sydnone compounds have been subjected to studies by ab initio calculations at the Density Functional Theory (DFT) level followed by analysis using the Natural Bond Orbitals (NBO) method performed on the DFT wavefunctions. In addition to the geometry parameters and fundamental electronic properties, we have employed the second order perturbation energy within the NBO approach and the Harmonic Oscillator Model of Aromaticity to evaluate the major conjuation patterns reported in literature.
The substitution effects on the energies of HOMO/LUMO have also been examined and interpreted in terms of the orbital interaction argument develop at our lab. Kinetic studies by DFT calculations have also been performed on the recent synthetic study, making use the actitivity of sydnones, in the pharmacological chemistry.
論文目次 目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 IX
第一章 緒論 1
第二章 理論背景 2
2-1 雪梨酮 2
2-1-1 雪梨酮研究歷史 2
2-1-2 雪梨酮性質 3
2-2 π電子系統 6
2-2-1 共振(resonance) 6
2-2-2 芳香性(aromaticity) 7
2-3超共軛(Hyperconjugation) 9
第三章 計算原理及方法 11
3-1 計算原理 11
3-1-1薛丁格方程式(Schrödinger equation) 11
3-1-2 HF理論方法 11
3-1-3 DFT(Density Functional Theory)理論方法 12
3-1-4 基底 16
3-1-5 分裂( split )基底 17
3-1-6 極化函數( polarization function ) 17
3-1-7 限定自洽場和非限定自洽場 18
3-1-8 天然鍵結軌域 (NBO) 19
3-1-9 HOMA (芳香性之簡諧振動模型) 22
3-2 計算方法 25
3-2-1 選用軟體 25
3-2-2 計算條件 25
3-2-3 計算流程 26
3-2-4 計算指令 27
3-2-5 選用基底 27
第四章 雪梨酮的電荷鍵長分析 28
4-1 Charge分析 28
4-2 Bond分析 36
第五章 雪梨酮HOMO-LUMO和反應 44
5-1 HOMO-LUMO分析 44
5-2 雪梨酮的反應 55
5-3 相關圖檔和表格 71
第六章 結論 77
參考文獻 79

表目錄
表4-1-1 基本雪梨酮結構的電荷分佈。 29
表4-1-2 改變R1取代基的電荷變化。 30
表4-1-3 R1取代基為鹵素的電荷變化。 31
表4-1-4 改變R2取代基的電荷變化。 34
表4-1-5 增加F取代造成的電荷影響。 35
表4-2-1 路易士鍵級和孤對電子數。 36
表4-2-2 基本雪梨酮結構鍵級鍵長。 37
表4-2-3 改變R1取代基的鍵長變化。 37
表4-2-4 R1接鹵素的鍵長變化。 39
表4-2-5 各取代基的HOMA值。 40
表4-2-6 改變R2取代基的鍵長變化。 43
表5-1-1 改變R1取代基的HOMO、LUMO變化。 44
表5-1-2 R1取代基為鹵素的HOMO、LUMO變化。 47
表5-1-3 氟化鹵烷取代基和氟取代基的比較。 48
表5-1-4 R1=CF3,R2=H的反鍵結和孤對電子對對HOMO和LUMO軌域
的貢獻度。 49
表5-1-5 改變R1取代基各原子HOMO貢獻度變化。 50
表5-1-6 改變R1取代基各原子LUMO貢獻度變化。 51
表5-1-7 (a) R1為鹵素取代基各原子HOMO貢獻度變化。 52
表5-1-7 (b) R1為鹵素取代基各原子LUMO貢獻度變化。 52
表5-1-8 改變R2取代基的HOMO、LUMO變化。 52
表5-1-9 (a) 改變R2取代基各原子HOMO貢獻度變化。 53
表5-1-9 (b) 改變R2取代基各原子LUMO貢獻度變化。 53
表5-2-1 炔基硼酸的HOMO、LUMO變化。 56
表5-2-2 (a) 改變炔基硼酸取代基各原子HOMO貢獻度變化。 56
表5-2-2 (b) 改變炔基硼酸取代基各原子LUMO貢獻度變化。 57
表5-2-3 sydnone在反應中的電荷變化量。 59
表5-2-4 alkynylboronate在反應中的電荷變化量。 60
表5-2-5 (a) 不同反應物在TS1的鍵長。 62
表5-2-5 (b) 不同反應物在intermediate state的鍵長。 63
表5-2-6 各反應物的HOMO、LUMO能量和差值。 64
表5-2-7 各反應的TS1正逆活化能。 64
表5-3-1 文獻實驗數值。 75
表5-3-2 各反應在TS1的電荷變化。 75

圖目錄
圖2-1-1 雪梨酮常見的結構式。 4
圖2-2-1 共軛二烯。 7
圖2-3-1 (A)超共軛軌域圖,(B)負超共軛軌域圖。 9
圖4-1-1 (a)雪梨酮環結構圖,(b)雪梨酮化合物的基本結構。 28
圖4-1-2 O(6)和R1取代基對五員環電荷總和做圖。 32
圖4-1-3 N(2)+N(3)+C(4)總和對五員環電荷總和做圖。 33
圖4-1-4 雪梨酮五員環電子流向圖。 34
圖4-2-1 雪梨酮路易士結構圖。 36
圖4-2-2 (a) N(2)-N(3)-C(4)的HOMA對整個鏈的HOMA做圖。 41
圖4-2-2 (b) C(4)-C(5)-O(6)的HOMA對整個鏈的HOMA做圖。 41
圖4-2-3 分子內氫鍵的產生對HOMA值的影響。 42
圖5-1-1 雪梨酮在N(3)上加入苯基時的HOMO、LUMO變化圖。 45
圖5-1-2 含孤對電子對造成HOMO、LUMO能階上升MO圖。 46
圖5-1-3 取代基上σ_(C-F)^*造成HOMO、LUMO能階下降MO圖。 48
圖5-2-1 炔基硼酸結構。 56
圖5-2-2 (a) 3-phenyl sydnone。 58
圖5-2-2 (b) b_H的alkynylboronate。 58
圖5-2-3 3-phenyl sydnone和b_H的alkynylboronate反應位能
圖 58
圖5-2-4 (a)2-form產物。 61
圖5-2-4 (b)4-form產物。 61
圖5-2-5 反應1的正向逆向活化能圖。 66
圖5-2-6 反應2的正向逆向活化能圖。 66
圖5-2-7 反應3的正向逆向活化能圖。 67
圖5-2-8 反應4的正向逆向活化能圖。 68
圖5-2-9 反應5的正向逆向活化能圖。 69
圖5-2-10 反應6的正向逆向活化能圖。 69
圖5-3-1 各雪梨酮的HOMO軌域圖。 71
圖5-3-2 各雪梨酮的LUMO軌域圖。 73
參考文獻 1. Tien, H. J.;Yeh, M. Y. and Huang, C. Y. J. Chin. Chem. Soc. 1985, 32, 461.
2. Tien, J. M. and Hunsberger, I. M. Am. Chem. Soc. 1961, 83, 178.
3. Kier, C. B. and Roche, E. B. J. Pharm. Soc. 1967, 56, 149.
4. Browne, D. L.; Vivat J. F.;Plant A.; Enrique G.-B. and Harrity J. P. A. J. Am. Chem. Soc. 2009, 131, 7762-7769.
5. Earl, J. C. and Mackney, A. W. J. Chem. Soc. 1935, 899.
6. Thoman, C. J. and Voaden, D. J. Org. Synth. 1965, 45, 96.
7. Unterstenhoter, G.; Wolfrum, G. and Putter, R. British Patent 1959, 823001.; C. A. 1960, 54, 88546.
8. Putter, R. and Wolfrum, G. German Patent 1959, 124, 1057; C. A. 1961, 55, 7436.
9. Gotthardt, H. and Reiter, F. Chem. Ber. 1979, 112, 1193; C. A. 91, 5155t.
10. Maerky, M.; Hansen, H. J. and Schmid, H. Helv. Chim. Acta 1971, 54, 1275.
11. Huseya, Y.; Chinone, A. and Ohta, M. Bull. Chem. Soc. Jpn. 1972, 45, 3202.
12. Bhat, V.; Dixit, V. M.; Ugarker, B. G.; Trozzolo, A. M. and George, M. V. J. Org. Chem. 1979, 44, 2957.
13. Kenner, J. and Mackay, K. Nature 1946, 158, 909
14. Tien, H. J.; Yeh, M. Y. and Huang, C. Y. J. Chin. Chem. Soc. 1985, 32, 461.
15. Baker, W.; Ollis W. D. and Poole, V. D. J. Chem. Soc. 1950, 1542.
16. Tien, H. J. and Ohta, M. Bull. Chem. Soc. Japen 1972, 45, 2924.
17. Thoman, C. J.; Voaden, D. J. and Hunsberger, I. M. J. Org. Chem. 1964, 29, 2044.
18. Yashunskii, V. G.; Vasi’eva, V. F. and Sheinker, Y. N. Zh. Obshch. Khim. 1959, 29, 2712; C. A. 54, 10999b.
19. Fan, J.-M.; Wang, Y. and Ueng, C.-H. J. Phys. Chem. 1993, 97, 8193-8199.
20. Improta, R.; Santoro, F.;Barbier, C.; Giordano F. and Delre G. J.Mol. Struc.(Theochem) 1997, 433, 291-299.
21. Morley, J. O. J. Phys. Chem. 1994, 99, 1923-1927.
22. Sherigara, B. S.; Shivaraj, Y.; Mascarenhas, R. J.; Rainoji, S. and Kalluraya, B. Croat. Chem. Acta 2006, 79, 273-279.
23. Niranjana, E.; Naik, R. R.; Swamy, B. E. K.; Bodke, Y. D.; Sherigara, B. S.; Jayadevappa, H. and Badami, B. V. Int. J. Electrochem. Sci. 2008, 3, 980-992.
24. Imashiro, Y. and Masuda, K. Japa. 1969, 69, 32, 411;C. A. 72, 111482q.
25. Mashkovakii, M. D.; Yashunskii, V. C. and Al’tshuler, R. Fr. 1970, 1, 589, 783; C. A. 74, 13131w.
26. Delaunay, T.; Genix, P.; Mazen, E.-S.; Vors, J.-P.; Monteiro, N. and Balme, G. Org. Lett. 2010, 12, 3328-3331.
27. Browne, D. L.; Helm, M. D.; Plant, A. and Harrity, P. A. Angew. Chem. 2007, 119, 8810-8812.
28. Simpson, J. C. E. J. Chem. Soc. 1946, 94.
29. Baker, W. and Ollis, W. D. Quart. Rew. 1957, 11, 15.
30. Stewart, F. H. C. Chem. Rev. 1964, 64, 129.
31. Ueng, C. H.; Lee, P. L.; Wang, Y. and Yeh, M. Y. Acta Cryst. 1985, C41, 1776.
32. Ueng, C. H.; Wang, Y. and Yeh, M. Y. Acta Cryst. 1987, C43, 1122.
33. Schmid, G. H. J. Molec. Struc. 1969, 5, 236.
34. Kartritzky, A. R. Chem. Ind. 1955, 521.
35. Barber, M.; Broadbent, S. J.; Connor, J. A.; Guest, M. F.; Hiller, I. H. and Puxley, H. J. J. Chem. Soc. Perkin II 1992, 1517.
36. Jones, M. Organic Chemistry 2nd ed.; W. W. Norton Company Inc.: New York, 2000.
37. Schleyer, P. V. R. Chem. Rev. 2001, 101, 1115–1118.
38. Pauling, L. The Nature of the Chemical Bond and Structure of Molecules in Crystals; Cornell University Press: Ithaca, 1960, pp 188ff.
39. (a) Cyranski, M. K.; Krygowski, T. M.; Katritzky, A. R.; Schleyer, P. V. R. J. Org. Chem. 2002, 67, 1333-1338; (b) Cyranski, M. K.; Schleyer, P. V. R.; Krygowski, T. M.; Jiao, H.; Hohlneicher, G. Tetrahedron 2003, 59, 1657-1665; (c) Kruszewski, J.; Krygowski, T. M. Tetrahedron Lett. 1972, 3839-3842; (d) Bird, C. W. Tetrahedron 1985, 41, 1409-1414; (e) Krygowski, T. M. J. Chem. Inf. Comput. Sci. 1993, 33, 70-78; (f) Julg, A.; Francüoise, Ph. Theor. Chim. Acta 1967, 8, 249-259.
40. (a) Flygare, W. H. Chem. Rev. 1974, 74, 653-687; (b) Dauben, H. J.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 90, 811-813; (c) Dauben, H. J.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1969, 91, 1991-1998; (d) Dauben, H. J.; Wilson, J. D.; Laity, J. L. In Non- Benzenoid Aromatic Compounds; Snyder, J. P., Ed.; Academic Press: New York, 1971; Vol. 2; (e) Lazzeretti, P. Prog. Nucl. Magn. Reson. Spectrosc. 2000, 36, 1-88.
41. (a) Hellmann H. Einfurung in die Quantenchemie. Franz Deuticke: Leipzig, 1937; (b) Feynman RP. Phys. Rev. 1939, 56, 340–343.
42. (a) Krygowski, T. M.; Cyranski, M. K.; Czarnocki, Z.; Hafelinger, G.; Katritzky, A. R. Tetrahedron 2000, 56, 1783–1796; (b) Krygowski T.M.; Cyranski M. K. Chem. Rev. 2001, 101, 1385–1420.
43. (a) Krygowski, T. M.; Anulewicz, R.; Jagodzinski, T. Pol. J. Chem. 1998, 72, 439–448; (b) Krygowski, T. M.; Stepien, B.; Anulewicz-Ostrowska, R.; Dziembowska, T. Tetrahedron 1999, 55, 5457–5464.
44. Mulliken, R. S. J. Phys. Chem. 1933, 1, 492-503; 1935, 3, 517-528; 1937, 7, 339-352.
45. Schleyer, P. V. R.; Kos, A. J. Tetrahedron 1983, 39, 1141-1150.
46. (a) Wheland, G. W. J. Chem. Phys., 1934, 2, 474-481; (b) Cramer, C. J. In Encyclopedia of Computational Chemistry; Schelyer, P. V. R., Ed.; John Wiley & Sons: Berlin, 1998; p.1294.
47. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
48. (a) Sovers, O. J.; Kern, C. W.; Pitzer, R. M.; Karplus, M. J. Chem. Phys. 1968, 49, 2592-2599; (b) Pauling, L. C. The Nature of the Chemical Bond; 3rd ed.; Cornell University Press: Ithaca, NY, 1960; (c) Hoyland, J. R. J. Am. Chem. Soc. 1968, 90, 2227-2232.
49. (a) Goodman, L.; Gu, H. J. Chem. Phys. 1998, 109, 72-78; (b) Goodman, L.; Pophristic, V.; Weinhold, F. Acc. Chem. Res. 1999, 32, 983-993; (c) Goodman, L.; Gu, H.; Pophristic, V. J. Chem. Phys. 1999, 110, 4268-4275; (d) Pophristic, V.; Goodman, L. Nature 2001, 411, 565-568.
50. (a) Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1994, 116, 6142-6148; (b) Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69-89.
51. Weeny, R. M.; Dierksen, G.; Nugent, W. A.; Harlow, R. L. J. Chem. Phys. 1968, 49, 4852-4856.
52. (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864-B871; (b) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138; (c) Salahub, D. R.; Zerner, M. C. Eds. The Challenge of d and f Electrons (ACS, Washington, D.C., 1989) ; (d) Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989).
53. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652; (b) Becke, A. D. Phys. Rev. 1988, A38, 3098-3100.
54. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev., 1988, B37, 785-789.
55. Goodman, L.; Pophristic, V.; Weinhold, F. Acc. Chem. Res. 1999, 32, 983-993.
56. Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001, 105, 5560-5566.
57. (a) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200-206; (b) Wong, N. B.; Cheung, Y. S.; Wu, D. Y.; Ren, Y.; Wang, X.; Tian, A. M.; Li, W. A. J. Mol. Struct.(Theochem) 2000, 507, 153-156; (c) Aubauer, C.; Klapotke, T. M.; Schulz, A. J. Mol. Strust.(Theochem) 2001, 543, 285-297; (d) Yang, W.; Drueckhammer, D. G. J. Am. Chem. Soc. 2001, 123, 11004-11009; (e) Anane, H.; Boutalib, A.; Nebot-Gil I.; Tomas, F. J. Phys. Chem. A 1998, 102, 7070-7073; (f) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1986, 84, 5687-5705; (g) Weinhold, F. J. Mol. Struct.(Theochem) 1997, 398, 181-197; (h) Mitzel, N. W.; Losehand, U. J. Am. Chem. Soc. 1998, 120, 7320-7327; (i) Hobza, P.; Sponer, J.; Cubero, E.; Orozco, M.; Luque, F. J. J. Phys. Chem. B 2000, 104, 6286-6292; (j) Ananthavel, S. P.; Manoharan, M. Chem. Phys. 2001, 269, 49-57; (k) Wilkens, S. J.; Weatler, W. M.; Weinhold, F.; Markley; J. L. J. Am. Chem. Soc. 2002, 124, 1190-1191.
58. (a) Krygowski, T. M.; Cyranski, M. K.; Czarnocki, Z,; Hafelinger, G.; Katritzky, A. R. Tetrahedron 2000, 56, 1783–1796; (b) Krygowski T. M.; Cyranski M. K Chem. Rev. 2001, 101, 1385–1420.
59. Shaik, S.S.; Hiberty, P. C.; Lefour, J. M.; Ohanessian, G. J. Am. Chem. Soc. 1987, 109, 363-374.
60. (a)Schneider, W. F.; Nance, B. I.; Wallington, T. J. J. Am. Chem. Soc. 1995, 117, 478; (b) Salzner, U.; Schleyer, P. V. R. Chem. Phys. Lett. 1992, 190, 401; (c) Reed, A. E.; Schleyer, P. V. R. J. Am. Chem. Soc., 1990, 112, 1434; (d) Schleyer, P. V. R.; Kos, A. J. Tetrahedron 1983, 39, 1141; (e) Roberts, J. D.; Webb, R. L.; McElhill, E. A. J. Am. Chem. Soc. 1950, 72, 408.

 


如您有疑問,請聯絡圖書館
聯絡電話:(06)2757575#65773
聯絡E-mail:etds@email.ncku.edu.tw