進階搜尋

 
查詢範圍:「   」
顯示範圍:第筆 論文書目資料
顯示格式:全部欄位
共 12 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911383916
論文名稱(中文) 由水熱處理二氧化鈦所合成奈米管之結構分析
論文名稱(英文) Structure Analysis of Nanotubes Synthesized from Hydrothermal Treatment on TiO2
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 93
學期 2
出版年 94
研究生(中文) 蔡建成
學號 n3890109
學位類別 博士
語文別 中文
口試日期 2005-07-25
論文頁數 112頁
口試委員 口試委員-簡淑華
口試委員-李紫原
口試委員-張仁瑞
召集委員-翁鴻山
指導教授-鄧熙聖
口試委員-陳東煌
口試委員-吳季珍
關鍵字(中) 二氧化鈦
鈦酸化合物
選擇性觸媒活性
水熱處理
奈米管
孔洞結構
銳鈦礦相
關鍵字(英) Anatase
Anatase-to-rutile transformation
Titania
Catalytic activity Nanotubes
Hydrothermal treatment
Pore structure regulation
Nanotubes
Titanate
學科別分類
中文摘要   本研究將商業化的二氧化鈦置於氫氧化鈉溶液中,經水熱法處理後再以鹽酸清洗後可合成具有不同性質的奈米管凝團體。孔洞結構分析顯示較小的孔是屬於奈米管的貢獻,較大的孔徑則為奈米管凝團體的間隙所造成。當水熱溫度介於110-150°C時,發現合成條件不只會影響粒狀物形成板狀物的轉換程度,也會導致酸洗過程奈米管的形成,另外在煅燒熱處理時,其合成溫度也會使奈米管從anatase相轉成rutile相的轉換溫度隨之增加。奈米管凝團體的表面積隨水熱溫度的增加到130°C時可達到最大值400 m2/g,而當水熱溫度高於130°C則隨溫度的增加而下降。在鹽酸清洗過程中,板狀結構的表面電荷移除速率和最後的靜電荷狀態都會對板狀結構捲成奈米管產生影響。這說明了奈米管結構是可由酸洗的條件所控制。
  本研究說明二氧化鈦經水熱處理後由酸洗所合成的奈米管,可藉由簡單的酸洗和鹼洗步驟的順序不同,而使其結晶結構重覆出現。二氧化鈦經鹼液水熱處理後,其板狀結構的晶相為一種二價鹽的鈦酸結構Na2Ti2O5·H2O。在酸洗的過程中,隨著酸性的增加,板狀結構中的鈉離子被氫離子所取代,而使板狀結構捲成奈米管,最後再轉成anatase相的二氧化鈦粒狀物。藉由晶相結構分析也証明了titanate/titania可透過一種簡單結構重組而轉換。最後本研究用完整的流程圖說明了二氧化鈦經水熱處理再酸洗而形成奈米管,以及奈米管經由酸鹼清洗而產生結構轉換的過程。
  在應用方面,NO氣體於選擇性觸媒還原反應(SCR)中被氨氣還原的實驗,証明了奈米管的高表面積較容易使反應氣體進入觸媒表面而使還原轉換效率提高。
英文摘要  Titania nanotube aggregates with different porosities were prepared from hydrothermal treatment on commercial TiO2 particles in NaOH followed by HCl washing. Pore structure analysis reflects that pores of smaller sizes are mainly contributed by the nanotubes while those of larger sizes by the interspace region of the aggregates. The hydrothermal treatment temperature, ranging within 110-150°C, was shown to affect not only the extent of particle-to-sheet conversion, and thus the resulting structures of the nanotubes, but also the anatase-to-rutile transformation at high temperatures. The surface area of the nanotube aggregates increases with the treatment temperature to reach a maximum of ca. 400 m2/g at 130°C, and then decreases with further increase of the temperature. In HCl washing, both the charge-removal rate and final state of the electrostatic charges on TiO2 affects the rolling of TiO2 sheets into nanotubes. This demonstrates that the nanotube structure can be regulated by adjusting the washing condition. Selective catalytic reduction of NO with NH3 has been conducted to prove that the vast surface of the nanotube aggregates is accessible to the interacting molecules.
 We demonstrated that nanotubes synthesized from NaOH treatment on TiO2 with subsequent acid washing could proceed with repeatable crystalline-structure transformation through a simple acid/base washing step. By providing the unit cell parameters, a divalent-salt titanate (Na2Ti2O5·H2O) with layered structure was identified to be the structure formed after the NaOH treatment. With the increase of the acidity in the post-treatment acid washing, the layered titaniate transformed into nanotube through Na+/H+ substitution and eventually transformed into anatase TiO2. Crystalline-structure analysis has shown the feasibitity of this titanate/titania transformation through a simple structure rearrangement. A complete scheme for the formation and transformation of nanotubes caused by the NaOH treatment and the post-treatment washing was proposed.
論文目次 中文摘要 I
Abstract III
誌謝 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機 7
第二章 理論說明 14
2.1 二氧化鈦晶體結構 14
2.2 二氧化鈦的光學性質 17
2.3 奈米管孔洞結構分析 23
2.3.1 等溫吸附曲線 23
2.3.2 Langmuir等溫吸附模式 26
2.3.3 BET等溫吸附模式 28
2.3.4 t-plot 29
2.3.5 Barrett, Joyner and Halenda (BJH) Method 31
2.3.6 Kelvin equation 31
2.3.7 Density functional theory (DFT) 32
第三章 實驗方法 34
3.1 實驗藥品與設備 34
3.2 實驗方法 36
3.2.1 一段水熱法 36
3.2.2 二段水熱法 37
3.2.3 SCR觸媒反應 37
3.2.4 光電極的製備 39
3.3 實驗設備原理與檢測方法 40
3.3.1 粉末X光繞射 40
3.3.2 反射式UV-Vis吸收光譜 43
3.3.3 穿透式及掃瞄式電子顯微鏡 45
3.3.4 氮氣物理吸脫附實驗 47
第四章 結果與討論 48
4.1 奈米管合成條件之探討 48
4.1.1 水熱溫度對奈米管的影響 48
4.1.2 酸洗濃度對奈米管的影響 54
4.1.3 奈米管的熱穩定性之探討 66
4.1.4 作為觸媒載體上的應用 67
4.2 奈米管的反應機制及結構分析 75
4.3 以奈米管為前趨物所製備之二氧化鈦的合成與應用 91
4.3.1 二段水熱法 91
4.3.2 anatase相二氧化鈦在光電化學上的應用 96
第五章 結論 102
參考文獻 103
附錄一 109
附錄二 111
自述 112
參考文獻 1.“光觸媒應用製品的市場實態及展望”, CMC出版, 3月, (2002).
2.Fujishima A.; Honda K. “Electrochemical Photolysis of Water at a Semiconductor Electrode Nature” Nature, 238, 37, (1972).
3.Grätzel M. “Photoelectrochemical cells”, Nature, 414, 338, (2001).
4.Hoffman M. R.; Martin S. T.; Choi W.; Bahnemann D. W. “Environmental Application of Semiconductor Photocatalysis”, Chem. Rev., 95, 69, (1995).
5.Hagfeldt A.; Grätzel M. “Light-Induced Redox Reactions in Nanocrystalline systems” Chem. Rev., 95, 49, (1995).
6.Lijima S. “Helical microtubules of graphitic carbon” Nature, 354, 56, (1991).
7.Haidong Y.; Zhongping Z.; Mingyong H.; Xiaotao H.; Furong Z. “A General Low-Temperature Route for Large-Scale Fabrication of HighlyOriented ZnO Nanorod/Nanotube Arrays” J. Am. Chem. Soc. 127, 2378, (2005).
8.Levy P.; Leyva A. G.; Troiani H. E.; Sánchez R. D. “Nanotubes of rare-earth manganese oxide” Appl. Phys. Lett. 83, 5247, (2003).
9.Krumeich F.; Muhr H. J.; Niederberger M.; Bieri F.; Schnyder B.; Nesper R. J. Am. Chem. Soc., 121, 8324, (1999).
10.Kasuga T.; Hiramatsu M.; Hoson A.; Sekino T.; Niihara K. “Formation of Titanium Oxide Nanotube” Langmuir 14, 3160, (1998).
11.Kasuga T.; Hiramatsu M.; Hoson A.; Sekino T.; Niihara K. “Titania Nanotubes Prepared by Chemical Processing” Adv. Mater. 11, 1307, (1999).
12.Seo D. S.; Lee J. K.; Kim H. “Preparation of nanotube-shaped TiO2 powder” J. Cryst. Growth., 229, 428, (2001).
13.Zhu Y.; Li H.; Koltypin Y.; Hacohen Y. R.; Gedanken A. “Sonochemical synthesis of titania whiskers and nanotubes”, Chem. Commun. 2616, (2001).
14.Zhang Q.; Gao L.; Sun J.; Zheng S. “Preparation of Long TiO2 Nanotubes from Ultrafine Rutile Nanocrystals” Chem. Lett. 226, (2002).
15.Wang Y. Q.; Hu G. Q.; Duan X. F.; Sun H. L.; Xue Q. K. “Microstructure and formation mechanism of titanium dioxide nanotubes” Chem. Phys. Lett. 365, 427, (2002).
16.Yao B. D.; Chan Y. F.; Zhang X. Y.; Zhang W. F.; Yan Z. T.; Wang N. “Formation mechanism of TiO2 nanotubes” Appl. Phys. Lett. 82, 281, (2003).
17.Tsai C. C.; Teng H. S. “Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment” Chem. Mater. 16, 4352, (2004).
18.Wang W.; Varghese O. K.; Paulose M.; Grimes C. A. “A study on the growth and structure of titania nanotubes” J. Mater. Res. 19, 417, (2004).
19.Yang J.; Jin Z.; Wang X.; Li W.; Zhang J.; Zhang S.; Guo X.; Zhang Z. “Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2” Dalton Tans. 3898, (2003).
20.Zhang M.; Jin Z. S.; Zhang J.; Guo X.; Yang J.; Li W.; Wang X.; Zhang Z. “Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2” J. Mol. Catal. A-Chem. 217, 203, (2004).
21.Du G. H.; Chen Q.; Che R. C.; Yuan Z. Y.; Peng L. M. “Preparation and structure analysis of titanium oxide nanotubes” Appl. Phys. Lett. 79, 3702, (2001).
22.Chen Q.; Du G H.; Zhang S.; Peng L. M. “The structure of trititanate nanotubes”, Acta Crystallogr. Sec. B. B58, 587, (2002).
23.Chen Q.; Zhou W.; Du G.; Peng L. M. “Trititanate Nanotubes Made Via a Single Alkali Treatment’’ Adv. Mater. 14, 1208, (2002).
24.Tian Z. R.; Voigt J. A.; Liu J.; Mckenzie B.; Xu H. “Large Oriented Arrays and Continuous Films of TiO2-Based Nanotubes” J. Am. Chem. Soc. 125, 12384, (2003).
25.Zhang, S.; Peng, L.-M.; Chen, Q.; Du, G. H.; Dawson, G.; Zhou, W. Z. “Formation Mechanism of H2Ti3O7 Nanotubes” Phys. Rev. Lett. 91, 256103, (2003).
26.Sun X.; Li Y. “Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes” Chem. Eur. J. 9, 2229, (2003).
27.Yuan, Z.-Y; Su B.-L. “Titanium oxide nanotubes, nanofibers and nanowires” Colloids Surf., A 241, 173, (2004).
28.Thorne A.; Kruth A.; Tunstall D.; T. S. Irvine J.; Zhou W. “Formation, Structure, and Stability of Titanate Nanotubes and Their Proton Conductivity” J. Phys. Chem. B, 109, 5439, (2005).
29.Nakahira A.; Kato W.; Tamai M.; Isshiki T.; Nishio K. “Synthesis of nanotube from a layered H2Ti4O9·H2O in a hydrothermal treatment using various titania sources” J. Mater. Sci. 39, 4239, (2004).
30.Ma R.; Bando Y.; Sasaki T. “Nanotubes of lepidocrocite titanates” Chem. Phys. Lett. 380, 577, (2003).
31.Ma, R.; Fukuda, K,; Sasaki, T.; Osada, M.; Bando, Y. “Structural Features of Titanate Nanotubes/Nanobelts Revealed by Raman, X-ray Absorption Fine Structure and Electron Diffraction Characterizations” J. Phys. Chem. B 109, 6210, (2005).
32.Hoyer P. “Formation of a Titanium Dioxide Nanotube Array”, Langmuir 12, 1411, (1996)..
33.Imai H.; Takei Y.; Shimizu K.; Matsuda M.; Hirashima H. “Direct preparation of anatase TiO2 nanotubes in porous alumina membranes”, J. Mater. Chem. 9, 2971, (1999).
34.Lei Y.; Zhang L. D.; Meng G. W., Li G. H.; Zhang X. Y.; Liang C. H.; Chen W.; Wang S. X. ” Preparation and photoluminescence of highly ordered TiO2 nanowire arrays” Appl. Phys. Lett. 78, 1125, (2001)
35.Michailowski A.; AlMawlawi D.; Cheng G.; Moskovits M. “Highly regular anatase nanotuble arrays fabricated in porous anodic templates” Chem. Phys. Lett. 349, 1, (2001).
36.Liu S. M.; Gan L. M.; Liu L. H.; Zhang W. D.; Zeng H. C. “Synthesis of Single-Crystalline TiO2 Nanotubes” Chem. Mater. 14, 1391, (2002).
37.Gong D.; Grimes C. A.; Varghese O. K. “Titanium oxide nanotube arrays prepared by anodic oxidation” J. Mater. Res. 16, 3331, (2001).
38.Varghese O. K.; Gong D.; Paulose M.; Grimes C. A.; Dickey E. C. “Crystallization and high-temperature structural stability of titanium oxide nanotube arrays” J. Mater. Res. 18, 156, (2003).
39.Perry, R. H.; Chilton, C. H. “Perry’s Chemical Engineers’ Handbook”, 7nd ed.; McGRAW-HILL Book Co.: New York, (1997).
40.Ulrike D. “The surface science of titanium dioxide” Surf. Sci. Rep. 48, 53, (2003).
41.Yin H.; Wada Y.; Kitamura T.; Kambe S.; Murasawa S.; Mori H.; Sakata T.; Yanagida S.; “Hydrothermal Synthesis of Nanosized Anatase and Rutile TiO2 using Amorphous Phase TiO2” J. Mater. Chem., 11, 1694, (2001).
42.Zhang Q.-H.; Gao L.; Guo J.-K “PREPARATION AND CHARACTERIZATION OF NANOSIZED TiO2 POWDERS FROM AQUEOUS TiCl4 SOLUTION” NanoStructured Materials, 11, 1293, (1999).
43.Nasser P., Stephan W. K., Andre M., “introduction to semiconductor optics”, Prentice-Hall, New Jersey, 1993, p112.
44.Tauc J., “Amorphous and liquid semiconductors”, Plenum press, New York, 1974.
45.Dvoranová D.; Brezová V.; Mazúr M.; Malati M.A. “Investigations of metal-doped titanium dioxide photocatalysts.” Appl. Catal. B: Environ. 37, 91, (2002).
46.M. Grätzel, “Photoelectrochemical cells” Nature, 414, 338, (2001).
47.Ertl G.; Knözinger H.; Weitkamp J. “ Handbook of Heterogeneous Catalysis ”, vol 3, VCH D-69451 Weinheim, 1508, 1997.
48.Weber T. W.; Chskrsvorti R. K.“Pore and Solid Diffusion Models for Fixed-Bed Adsorbers” AIChE J. 20, 228, (1974).
49.Brunaller S.; Emmett P.H.; Teller E. J. Am. Chem. Soc., 60, 390. (1938).
50.Gregg S. J.; Sing K. S. W. “Adsorption, Surface Area and Porosity”, 2nd ed.; Academic Press: London, 1991.
51.Lowell, S.; Shields, J. E., “Powder Surface Area and Porosity”, 3rd ed.; Chapman & Hall: London, 1991
52.de Boer, J.H.; Lippens, B.G.; Linsen, J.C.; Broekhoff, J.C.P.; van den Heuvel, A.; Osinga, Th. J. Colloid Interface Sci. 21, 405, (1966).
53.Barrett E. P.; Joyner L.G.; Halenda P. P. J. Am. Chem. Soc. 73, 373, (1951).
54.Donohue M. D.; Aranovich G. L. J. Colloid Interface Sci. 205, 121, (1998).
55.Tarazona, P.; Marconi, U.M.B.; Evans, R. Mol. Phys. 60, 543, (1987).
56.Fujishima A.; Rao T. N.; Tryk D. A. “Titanium dioxide photocatalysis” J. Photochem. Photobiol. C: Photochem. Rev. 1, 1, (2000).
57.Cullity B. D. “Elements of X-ray diffraction”, Addison-wesley, California, 1956.
58.林冠豪, “帶電的陰陽離子液胞之製備及物理穩定性研究”,國立成功大學化學工程研究所碩士論文, 2004.
59.呂宗昕, “圖解奈米科技與光觸媒”, 商周出版, 台北市, 2003.
60.Hoffman, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69.
61.Stone, V. F.; Davis, R. J. “Synthesis, Characterization, and Photocatalytic Activity of Titania and Niobia Mesoporous Molecular Sieves” Chem. Mater. 1998,10, 1468.
62.Ishikawa, Y.; Matsumoto, Y.; Nishida, Y.; Taniguchi, S.; Watanabe, J. “Surface Treatment of Silicon Carbide Using TiO2(IV) Photocatalyst” J. Am. Chem. Soc. 2003, 125, 6558.
63.Zhao, W.; Ma, W.; Chen, C.; Zhao, J.; Shuai, Z. “ ” J. Am. Chem. Soc. 2004, 126, 4782.
64.Bao, N.; Shen, L.; Yanagisawa, K. “Textural and Catalytic Properties of Combinational Micro-Mesoporous Octatitanate Fibers Prepared by Solvothermal Soft Chemical Process” J. Phys. Chem. B 2004, 108, 16739.
65.Peng, T.; Zhao, D.; Dai, K.; Shi, W.; Hirao, K. “Synthesis of Titanium Dioxide Nanoparticles with Mesoporous Anatase Wall and High Photocatalytic Activity” J. Phys. Chem. B 2005, 109, 4947.
66.Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. “GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting” J. Am. Chem. Soc. 2005, 127, 8286.
67.O’Regan, B.; Lenzmann, F.; Muis, R.; Wienke, J. “A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics” Chem. Mater. 2002, 14, 5023.
68.Unal, U.; Matsumoto, Y.; Tanaka, N.; Kimura, Y.; Tamoto, N. “Electrostatic Self-Assembly Deposition of Titanate(IV) Layered Oxides Intercalated with Transition Metal Complexes and Their Electrochemical Properties” J. Phys. Chem. B 2003, 107, 12680.
69.Park, H.; Choi, W. “Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors” J. Phys. Chem. B 2004, 108, 4086.
70.Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T. “Electronic Band Structure of Titania Semiconductor Nanosheets Revealed by Electrochemical and Photoelectrochemical Studies” J. Am. Chem. Soc. 2004, 126, 5851.
71.Yin, J.; Zou, Z.; Ye, J. “Photophysical and Photocatalytic Activities of a Novel Photocatalyst BaZn1/3Nb2/3O3” J. Phys. Chem. B 2004, 108, 12790.
72.Miao, Z.; Xu, D.; Ouyang, J.; Guo, G.; Zhao, X.; Tang, Y. “Electrochemically Induced Sol-Gel Preparation of Single-Crystalline TiO2 Nanowires” Nano Lett. 2002, 2, 717.
73.Cozzoli, P. D.; Kornowski, A.; Weller, H. “Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods” J. Am. Chem. Soc. 2003, 125, 14539.
74.Jun, Y.-W.; Casula, M. F.; Sim, J.-H.; Kim, S. Y.; Cheon, J.; Alivisatos, A. P. “Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO2 Nanocrystals” J. Am. Chem. Soc. 2003, 125, 15981.
75.Zhu, H.; Gao, X.; Lan, Y.; Song, D.; Xi, Y.; Zhao, J. “Hydrogen Titanate Nanofibers Covered with Anatase Nanocrystals: A Delicate Structure Achieved by the Wet Chemistry Reaction of the Titanate Nanofibers” J. Am. Chem. Soc. 2004, 126, 8380.
76.Powder Diffraction Files of the Joint Committee on Powder Diffraction Standards, Card No. 47-0124, Internationa Center for Diffraction Data.
77.Sugita, M.; Tsuji, M.; Abe, M. Bull. Chem. Soc. Jpn. 1990, 63, 1978.
78.Sasaki, T.; Watanbe, M.; Hashizume, H.; Yamada, H.; Nakazawa, H. “Macromolecule-like Aspects for a Colloidal Suspension of an Exfoliated Titanate. Pairwise Association of Nanosheets and Dynamic Reassembling Process Initiated from It” J. Am. Chem. Soc. 1996, 118, 8329.
79.Tuckerman, M.; Lassonen, K.; Sprik, M.; Parrinello, M. “Ab initiomolecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water” J. Chem. Phys. 1995, 103, 150.
80.Rustad, J. R.; Felmy, A. R.; Rosso, K. M.; Bylaska E. J. “Ab initio investigation of the structures of NaOH hydrates and their Na+ and OH– coordination polyhedra” Am. Mineral. 2003, 88, 436.
81.Gouma P. I.; Mills M. J. “Anatase-to-Rutile Transformation in Titania Powders” J. Am. Ceram. Soc. 84, 619, (2001).
82.蔡宗憲, “以二氧化鈦奈米管為前驅物製作染料敏化太陽能電池之陽極電極”,國立成功大學化學工程研究所碩士論文, 2004.
83.陳興安, “利用銅在二氧化鈦奈米管為觸媒以NH3還原NO反應之研究”,國立成功大學化學工程研究所碩士論文, 2004.
84.http://www.degussa.com/en/home.html

------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911595656
論文名稱(中文) 鈦酸鹽結構合成之奈米二氧化鈦銳鈦礦於染料敏化太陽能電池之應用
論文名稱(英文) Nanocrystalline anatase TiO2 derived from a titanate-directed route for dye-sensitized solar cells
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 鄭至韋
學號 n3693124
學位類別 碩士
語文別 中文
口試日期 2006-07-20
論文頁數 105頁
口試委員 口試委員-陳東煌
口試委員-楊明長
口試委員-楊乾信
指導教授-鄧熙聖
關鍵字(中) 奈米結晶銳鈦礦二氧化鈦
染料敏化太陽能電池
水熱處理
溶膠凝膠法
鈦酸鹽
關鍵字(英) nanocrystalline
hydrothermal treatment
sol-gel
anatase TiO2
dye-sensitized solar cells
titanate
學科別分類
中文摘要 應用在許多方面的二氧化鈦奈米顆粒,ㄧ般採用溶膠凝膠法製備而得。在溶膠凝膠法的製備上,由於不同的製備情況,所得到的二氧化鈦可能具有銳鈦礦(anatase)、金紅石(rutile)和板鈦礦(brookite)三種結晶相。在本實驗,我們發展一套有別於ㄧ般溶膠凝膠法的獨特製程方法,製備出有利於電子輸送以及避免電荷產生再結合,當做染料敏化太陽能電池電極材料的高純度銳鈦礦二氧化鈦膠體。在我們發展的製程中,以TiO6八面體排列形成zigzag結構的鈦酸鹽當做中間產物,zigzag結構也是銳鈦礦二氧化鈦的特徵。由XRD以及Raman的結果得知,以我們發展的製程製備出二氧化鈦膠體為純銳鈦礦。相對地,在相同溫度下,以溶膠凝膠法製備出的二氧化鈦主要成分為銳鈦礦以及少量的金紅石和板鈦礦。由於高純度銳鈦礦,我們以方向性鈦酸鹽製程所製備出二氧化鈦膠體來製作中孔薄膜,應用在染料敏化太陽能電池上有非常好的表現。
英文摘要 TiO2 nanoparticles used in numerous applications are generally prepared from the sol-gel method. Because of the different preparation conditions, formation of the three TiO2 polymorphs, anatase, brookite and rutile, in the sol-gel synthesis. The present work demonstrates a unique route, alternative to the conventional sol-gel method, to prepare high-purity anatase TiO2 colloids, which can be deposited as electrodes for dye-sensitized solar cells to facilitate electron transport and avoid charge recombination. In this developed route, a titanate with its TiO6 octahedra arranged in a zigzag configuration, which is also a characteristic feature of anatase TiO2, is produced as an intermediate. XRD and Raman analysis shows that a phase-pure anatase TiO2 colloid is prepared from the developed route, while the TiO2 derived from the sol-gel at the same temperature is predominantly composed of anatase with the presence of a minute amount of rutile and brookite. Because of the high-purity in anatase phase, the TiO2 colloid derived from the titanate-directed route is shown to constitute a mesoporous film exhibiting high performance in a dye-sensitized solar cell.
論文目次 目錄
中文摘要.................................I
Abstract..............................II
誌謝  .................................III
目錄  .................................IV
圖目錄 .................................VII
表目錄 .................................X

第一章 緒論 ...............................1
  1-1 前言 ..............................1
  1-2 市場上不同型態的太陽能電池 ...................3
  1-3 研究背景與目的 .........................9
第二章 文獻回顧與理論說明 ........................10
  2-1 染料敏化太陽能電池 .......................10
  2-2 奈米結晶多孔膜電極(nanocrystalline porous electrode) ......14
  2-3 染料敏化劑 ...........................18
  2-4 氧化還原電解質 .........................27
  2-5 相對電極 ............................30
  2-6 BET和BJH理論 ..........................31
  2-7 拉曼散射原理 ..........................35
第三章 實驗方法 .............................38
  3-1 藥品器材 ............................38
  3-2 實驗設備 ............................39
  3-3 TiO2奈米顆粒Paste的製作與相關測試 ................41
   3-3.1 水熱法合成二氧化鈦奈米顆粒Paste ..............42
   3-3.2 溶膠凝膠法(Sol-Gel)合成二氧化鈦奈米顆粒Paste ........44
   3-3.3 利用Degussa P25製備Paste  ..................46
   3-3.4 氮氣物理吸脫附實驗 .....................46
   3-3.5 XRD繞射分析 .........................47
   3-3.6 SEM結構分析 .........................48
   3-3.7 TEM微結構分析 ........................48
   3-3.8 RAMAN分析 ..........................48
  3-4 染料敏化太陽能電池 ........................49
   3-4.1 二氧化鈦薄膜光電極製備 ...................50
   3-4.2 薄膜厚度測定 ........................50
   3-4.3 染料吸附 ..........................50
   3-4.4 電解質配製 .........................51
   3-4.5 相對電極製作 ........................51
   3-4.6 太陽能電池組裝 .......................51
  3-5 電池光電轉化效率測試 .......................53
第四章 結果與討論 ............................56
  4-1 二氧化鈦特性分析 .........................57
   4-1.1 XRD分析 ...........................57
   4-1.2 TEM微結構分析 ........................65
   4-1.3 氮氣吸脫附實驗 .......................70
   4-1.4 SEM分析 ...........................74
   4-1.5 RAMAN分析 ..........................81
  4-2 染料敏化太陽能電池特性分析 ...................83
   4-2.1 奈米薄膜光電極特徵 .....................83
   4-2.2 染料敏化太陽能電池之表現 ..................86
第五章 結論與建議 ............................97
  5-1 結論 ..............................97
  5-2 建議 ..............................99
第六章 參考文獻 .............................100
參考文獻 [1] 劉世忠, “越熱越來電的太陽能電池”, 產經資訊, 9, 33-36, (2003).
[2] 楊素華, 蔡泰成, “太陽能電池”, 科學發展, 390, 51-55, (2005).
[3] 莊家琛, “太陽能工程-太陽電池篇”, 全華, 台北市, 第一章、第二章, 民86.
[4] 張品全, “太陽電池”, 科學發展, 349, 22, (2002).
[5] 吳財福、張健軒、陳裕愷, “太陽能供電與照明系統綜論”, 全華, 台北市, 第     二章, 民89.
[6] 王釿鋊, “染料半導體光電池”, 中技社通訊, 41, 5, (2002).
[7] M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobio. A, 164, 3-14, (2004).
[8] D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 104, 2053-2059, (2000).
[9] D. Matthews, P. Infelta, M. Grätzel, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes”, Sol. Energy Mater. Sol. Cells, 44, 119-155, (1996).
[10] C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications”, J. Am. Ceram. Soc., 80, 3157-3171, (1997).
[11] A. Hagfeldt, M. Grätzel, “Light Induced Redox Reactions in Nanocrystalline Systems”, Chem. Rev., 95, 49-68, (1995).
[12] K. Kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coord. Chem. rev., 177, 347-414, (1998).
[13] N.-G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of Dye-sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, J. Phys. Chem. B, 104, 8989-8994, (2000).
[14] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. Soc., 115, 6382-6390, (1993).
[15] G. P. Smestad, M. Grätzel, “Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter”, J. Chem. Educ., 75, 752-756, (1998).
[16] M. Grätzel, “Dye-sensitized solar cells”, J. Photochem. Photobio. C, 4, 145-153, (2003).
[17] Z.-S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell”, Coord. Chem. rev., 248, 1381-1389, (2004).
[18] Z.-S. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa, “Significant Efficiency Improvement of the Black Dye-Sensitized Solar Cell through Protonation of TiO2 Films”, Langmuir, 21, 4272-4276, (2005).
[19] G. J. Meyer, “Efficient Light-to Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers”, J. Chem. Educ., 74, 652-656, (1997).
[20] P. Wang, S. M. Zakeeruddin, I. Exnarb, M. Grätzel, “High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte”, Chem. Commun., 2972–2973, (2002).
[21] E. Stathatos, P. Lianos, “A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol-Gel Nanocomposite Electrolyte Containing Ionic Liquid”, Chem. Mater., 15, 1825-1829, (2003).
[22] P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane, M.Grätzel, “Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell”, J. Am. Chem. Soc., 126, 13590-13591, (2004).
[23] N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst For Aqueous and Organic Media”, J. Electrochem. Soc., 144, 876-884, (1997).
[24] A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 44, 99-117, (1996).
[25] S. Brunaller, P. H. Emmett, E. Teller, “Adsorption of Gases in Multimolecular Layers”, J. Am. Chem. Soc., 60, 309, (1938).
[26] E. P. Barrett, L. G. Joyner, P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances”, J. Am. Chem. Soc., 73, 373-380, (1951).
[27] C. Karr, “Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals”, (1975).
[28] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 14, 3160-3163, (1998).
[29] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater., 11, 1307-1311, (1999).
[30] C.-C. Tsai, H. Teng, “Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments”, Chem. Mater., 18, 367-373, (2006).
[31] G. J. Wilson, G. D. Will, R. L. Frost, S. A. Montgomery, ‘‘Efficient microwave hydrothermal preparation of nanocrystalline anatase TiO2 colloids’’, J. Mater. Chem., 12, 1787-1791, (2002).
[32] S. Musić, M. Gotić, M. Ivanda, S. Popović, A. Turković, R. Trojko, A. Sekulić, K. Furić, “Chemical and microstructural properties of TiO2 synthesized by sol-gel procedure”, Mater. Sci. Eng. B, 47, 33-40, (1997).
[33] L. Kavan, M. Grätzel, J. Rathouský, A. Zukal, “Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties”, J. Electrochem. Soc., 143, 394-400, (1996).
[34] C. A. Melendres, A. Narayanasamy, V. A. Maroni, R. W. Seigel, “Raman spectroscopy of nanophase TiO2”, J. Mater. Res., 4, 1246-1250, (1989).
[35] J. C. Parker, R. W. Seigel, “Raman microprobe study of nanophase titania and oxidation-induced spectral changes”, J. Mater. Res., 5, 1246-1252, (1990).
[36] M. Gotić, M. Ivanda, S. Popović, S. Musić, A. Sekulić, A. Turković, K. J. Furić, “Raman investigation of nanosized TiO2”, J. Raman Spectrosc., 28, 555-558., (1997).
[37] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa, “Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells”, Sol. Energy Mater. Sol. Cells, 70, 151-161, (2001).
[38] S. Y. Huang, G. Schlichtho1rl, A. J. Nozik, M. Grätzel, A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B, 101, 2576-2582, (1997).
[39] A. Zaban, M. Greenshtein, J. Bisquert, “Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements”, CHEMPHYSCHEM, 4, 859-864, (2003).
[40] T. Y. Peng, A. Hasegawa, J. R. Qiu, K. Hirao, “Fabrication of Titania Tubules with High Surface Area and Well-Developed Mesostructural Walls by Surfactant-Mediated Templating Method”, Chem. Mater., 15, 2011-2016, (2003).
[41] N.-G. Park, G. Schlichthörl, J. van de Lagematt, H. M. Cheong, A. Mascarenhas, A. J. Frank, “Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4”, J Phys. Chem. B, 103, 3308-3314, (1999).

------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200912000979
論文名稱(中文) 量身訂做的二氧化鈦光觸媒之合成及應用
論文名稱(英文) Synthesis and Application of Tailored Titania Photocatalysts
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 鄭智鴻
學號 n3693427
學位類別 碩士
語文別 中文
口試日期 2006-06-22
論文頁數 75頁
口試委員 口試委員-李玉郎
口試委員-吳季珍
口試委員-鐘宜璋
指導教授-楊毓民
口試委員-鄧熙聖
關鍵字(中) 量身訂做
金紅石
銳鈦礦
混合增效作用
甲烯藍
紫外光光催化
二氧化鈦光觸媒
關鍵字(英) methylene blue
UV-illumination
synergetic effect.
rutile
anatase
Tailored titania photocatalysts
biphase titania
學科別分類
中文摘要 本研究利用四氯化鈦(TiCl4)為前驅物,經由沈澱(precipitating)與解膠(peptizing)兩個過程製備二氧化鈦粉體。先將四氯化鈦與氫氧化鈉反應產生白色沈澱後,再加入硝酸在90℃下解膠,經過水解縮合反應,合成二氧化鈦光觸媒。藉由控制硝酸濃度可以合成各種銳鈦礦(anatase)與金紅石(rutile)比例的量身訂做二氧化鈦光觸媒。當硝酸濃度從0增加到0.5M時,二氧化鈦的結晶相態由純的銳鈦礦轉變成純的金紅石;當硝酸濃度從0.5繼續增加到4.0M時,二氧化鈦的結晶相態又由純的金紅石轉變成純的銳鈦礦。上述硝酸濃度對於二氧化鈦結晶相態轉變的雙重影響,本研究分別以pH值及硝酸根離子濃度的效應解釋之。本研究也將量身訂做的二氧化鈦光觸媒進行一系列的甲烯藍水溶液的紫外光催化反應。實驗結果顯示含82.6%銳鈦礦的混合結晶相態二氧化鈦光觸媒具有最佳的光催化轉化效率,這也證明了二氧化鈦的混合結晶相態對光催化具有混合增效作用。此外,本研究也探討以機械混合銳鈦礦與金紅石而成的混合二氧化鈦光觸媒的光催化效率,並與上述合成的相同結晶相態比例的二氧化鈦光觸媒作比較。


英文摘要 In this study, titanium tetra-chloride (TiCl4) was used as precursor to prepare titanium dioxide powders by the process involves two stages: precipitating and peptizing. Firstly, white precipitates of amorphous oxide were produced from the precipitation reaction of TiOCl2 with sodium hydroxide. Then the precipitates were redispersed in aqueous solution of HNO3 at 90oC for peptizing. Tailored titania photocatalysts, which consist biphase titania with various phase compositions of anatase and rutile, can then be synthesized by controlling the concentration of HNO3. With increasing the nitric acid concentration from 0 to 0.5M, the titania crystalline changed from single phase anatase to single phase rutile. With further increasing nitric acid concentration from 0.5 to 4.0M, titania crystalline changed over from single phase rutile to single phase anatase. The reverse trend of crystalline phase formation with HNO3 concentration were explained by pH and nitric ion concentration , respectively. Furthermore, photocatalystic degradation of methylene blue by the synthesized tailored titania catalysts under UV illumination was systematically studied. A synergetic effect between the anatase and rutile particles is observed. The optimal composition of catalyst is found to be 82.6 wt% anatase. Moreover, photocatalystic performance of mechanically mixed biphase titania catalysts was also studied.


論文目次 摘要………………………………………………………………………………Ⅰ
Abstract………………………………………………………………………Ⅱ
誌謝………………………………………………………………………………Ⅲ
目錄………………………………………………………………………………Ⅳ
表目錄………………………………………………………………………………Ⅶ
圖目錄………………………………………………………………………………Ⅷ

第一章 緒論………………………………………………………….. 1
1.1 前言………………………………………………………...... 1
1.2 研究動機與目的…………………………………………...... 1
第二章 文獻回顧…………………………………………………….. 3
2.1 二氧化鈦的性質與應用……………………………………... 3
2.2 二氧化鈦的製備……………………………………………... 5
2.2.1 粉體製備………………………………………………. 5
2.2.2 薄膜製備………………………………………………. 7
2.3 合成TiO2的機制………………………………….. 8
2.3.1 四氯化鈦於水溶液中的水解縮合行為………………. 8
2.3.2 水解反應……………………………............................. 8
2.3.3 縮合反應……………………………………………… 9
2.4 影響二氧化鈦晶相的因素…………………………………... 10
2.4.1 pH值與濃度對於TiO2結晶相態的影響…………… 10
2.4.2 溫度對於TiO2結晶相態的影響……………………… 14
2.4.3 硫酸離子對於TiO2結晶相態的影響………………… 16
2.5 二氧化鈦結晶相態與結晶粒子大小分析計算……………... 19
2.5.1 二氧化鈦混和結晶相態比例…………………………. 19
2.5.2 二氧化鈦結晶粒子大小………………………………. 19
2.6 二氧化鈦光催化的機制……………………………………... 20
2.7 二氧化鈦混合晶相在應用上的優點………………………... 22
第三章 實驗…………………………………………………………... 24
3.1 藥品………………………………………………………… 24
3.2 儀器設備及裝置…………………………………………… 25
3.2.1 X光繞射分析儀………………………………………. 25
3.2.2 燒結裝置:高溫爐………………………..................... 25
3.2.3 紫外光-可見光(UV-vis)光譜儀……………………... 25
3.2.4 Mili-Q超純水系統……………………………………. 26
3.2.5 掃描式電子顯微鏡……………………………………. 26
3.2.6 紫外光源………………………………………………. 27
3.3 實驗方法……………………………………………………... 28
3.3.1 TiOCl2母液的配置……………...…………………….. 28
3.3.2 母液TiOCl2的沈澱反應………………..…..…………. 29
3.3.3 鈦的氫氧化物的解膠反應……………………………. 30
3.3.4 二氧化鈦光觸媒薄膜的製備…………………………. 32
3.3.5 光催化測試……………………………………………. 33
第四章 結果與討論………………………………………………….. 34
4.1 二氧化鈦混和結晶相態比例的計算………………………... 34
4.2 二氧化鈦結晶粒子大小的計算……………………………... 34
4.3 未進行解膠的二氧化鈦……………………………………... 35
4.4 硝酸濃度對於二氧化鈦的結晶相態影響…………………... 36

4.4.1 pH值對二氧化鈦結晶相態的影響:硝酸濃度0~0.5M 40
4.4.2 [NO3-]對二氧化鈦結晶相態的影響:硝酸濃度0.5~4.0M……………………………………………….
44
4.5 二氧化鈦的回收率…….…………………………………….. 46
4.6 二氧化鈦光觸媒紫外光光催化分解甲烯藍的結果……….. 51
4.6.1 紫外光對甲烯藍水溶液的影響………………………. 51
4.6.2 甲烯藍水溶液檢量線製作……………………………. 52
4.6.3 商品P25與Alfa Aesar光催化甲烯藍比較………….. 54
4.6.4 合成的二氧化光催化甲烯藍比較……………………. 57
4.6.5 合成的二氧化鈦與商品光催化效果比較……………. 63
4.6.6 純銳鈦礦與純金紅石以機械混合後的二氧化鈦光催化效果…………………………………………………. 65
第五章 結論與建議………………………………………………….. 69
5.1 結論………………………………………………………….. 69
5.2 建議………………………………………………………….. 70
參考文獻………………………………………………………………… 71
自述……………………………………………………………………… 75
表 4-1 硝酸濃度對於450℃煅燒後的二氧化鈦銳鈦礦結晶相態比例、銳鈦礦(101)與金紅石(110)繞射主峰的半高寬及結晶粒子大小。……………………………………………

38
表 4-2 硝酸濃度對二氧化鈦回收率的影響。…………..……… 47
表 4-3 P25與Alfa Aesar TiO2 的性質。………………………… 55
圖2-1 金紅石、銳鈦礦、板鈦礦的結晶結構圖(陳永芳, 2003)。……..…………………………………………… 3
圖2-2 構成TiO2的基本單元[TiO6]8-。…………………………. 4
圖2-3 TiO2結構單元的連接。………………………………….. 4
圖2-4 TiO2的XRD圖譜: pH(a-e) 與 [TiC14]: (f-h): (a) 8.2, (b) 7.1, (c) 3.4, (d) 1.0, (e) 0.0,(f) 0.44 mol dm-3, (g) 0.53 mol dm-3, (h) 1.40 mol dm-3 (Cheng et al.1995)。……………..

11
圖2-5 由[TiO(OH2)5]2+與[Ti(OH)2(OH2)4]2+成核結晶生成二氧化鈦金紅石、銳鈦礦與板鈦礦可能的聚集成長機制途徑(Zheng et al., 2001)。…………………………………….. 12
圖2-6 硫酸濃度與二氧化鈦結晶相的關係(Wu et al.,2004)。… 13
圖2-7 金紅石(110)與銳鈦礦(101)繞射強度比與反應溫度的關係(Kim et al.,1999)。……………………………………… 15
圖2-8 二氧化鈦在各種鍛燒的溫度下XRD繞射圖(Kim et al.,1999)。………………………………………………… 15
圖2-9 硫酸濃度對銳鈦礦的影響(Yan et al.,2005)。…………… 16
圖2-10 硫酸根離子在反應過程可能扮演的角色(a)利用三個八面體的排列,描述金紅石還是銳鈦礦結構(b)SO42-與TiO62-產生鍵結(c)在硫酸根離子存在時兩個八面體可能提供的共邊鍵結位置(d)硫酸根離子存在而生成銳鈦礦(Yan et al.,2005)。………………………………………… 18
圖2-11 各種半導體在水溶液電解質pH=1時所測得的能隙 (Linsebigler et al., 1995)。……………………………….. 21
圖2-12 二氧化鈦受紫外光激發後,產生電子電洞的情形 (Parkin and Palgrave, 2005)……………………………… 21
圖2-13 P25在光催化時電子電洞對分離的可能機制(Sun et al.,2003)。………………………………………………… 23
圖3-1 甲烯藍的結構式………………………………………… 24
圖3-2 光催化裝置圖。………………………………………….. 27
圖3-3 光催化燈源的波長強度圖。…………………………….. 27
圖4-1 Degussa P25 的XRD圖。………………………………… 34
圖4-2 白色沈澱煅燒前後的XRD圖。 35
圖4-3 硝酸濃度對生成的二氧化鈦在煅燒前後的XRD圖譜(a)煅燒前(b)煅燒後。………………………………………… 37
圖4-4 硝酸濃度對450℃煅燒後二氧化鈦結晶相態的影響。… 39
圖4-5 高pH值時,以八面體[Ti(OH)2(OH2)4]2+合成銳鈦礦與板鈦礦的可能機制。………………………………………… 41
圖4-6 低pH值時,以八面體[TiO(OH2)5]2+形成金紅石的可能機制。………………………………………………………… 43
圖4-7 硝酸根離子對於二氧化鈦結晶相態可能的影響機制。… 45
圖4-8 硝酸濃度對合成的二氧化鈦粒子大小的影響(0.1、0.2、0.3M)。……………………………………………………… 48
圖4-8 硝酸濃度對合成的二氧化鈦粒子大小的影響(0、0.5、0.7、1.0、1.5、2.0M)。…………………………………… 49
圖4-8 硝酸濃度對合成的二氧化鈦粒子大小的影響(0.1、0.2、0.3M)。……………………………………………………… 50
圖4-9 甲烯藍5ppm在各種不同時間下紫外光照射後所測得的紫外光-可見光吸收圖譜。………………………………… 51
圖4-10 各種不同濃度甲烯藍水溶液的紫外光-可見光吸收光譜圖。…………………………………………………………
53
圖4-11 甲烯藍水溶液濃度0~10ppm的檢量線。………………… 53
圖4-12 銳鈦礦99.9% TiO2 (Alfa Aesar)在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。………………… 54
圖4-13 銳鈦礦80% TiO2 (P25)在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。……………………………… 54
圖4-14 Alfa Aesar與P25在不同光催化時間下甲烯藍水溶液在波長665nm的吸收與時間作圖。…………………………… 56
圖4-15 Alfa Aesar與P25在不同光催化時間下甲烯藍水溶液的轉化率。……………………………………………………… 56
圖4-16 銳鈦礦0% TiO2 (HNO3 0.5M)在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。……………………… 57
圖4-17 銳鈦礦48.9% TiO2 (HNO3 0.7M)在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。………………… 58
圖4-18 銳鈦礦76.1% TiO2 (HNO3 1.0M)在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。………………… 58
圖4-19 銳鈦礦82.6%% TiO2 (HNO3 1.5M)在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。………………… 59
圖4-20 銳鈦礦95%% TiO2 (HNO3 2.0M)在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。………………… 59
圖4-21 各種硝酸濃度下合成的二氧化鈦在不同光催化時間下甲烯藍水溶液在波長665nm的吸收與時間作圖。………… 61
圖4-22 各種硝酸濃度下合成的二氧化鈦在不同光催化時間下甲烯藍水溶液的轉化率。…………………………………… 61
圖4-23 銳鈦礦重量百分比例對甲烯藍水溶液經過兩個小時後轉化率的影響。………………………………………………
62
圖4-24 合成的二氧化鈦相態比例與商品接近的光催化吸收度比較。………………………………………………………… 64
圖4-25 合成的二氧化鈦相態比例與商品接近的光催化轉化率比較。………………………………………………………… 64
圖4-26 商品P25、合成、混合三種不同方法獲得的二氧化鈦結晶相態銳鈦礦與金紅石82:18的XRD圖譜。………… 66
圖4-27 由混合方式獲得銳鈦礦82% TiO2在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。………………… 66
圖4-28 商品P25、合成、混合三種不同方法獲得的二氧化鈦在不同光催化時間下,甲烯藍水溶液在波長665nm的吸收與時間作圖。……………………………………………… 67
圖4-29 商品P25、合成、混合三種不同方法獲得的二氧化鈦在不同光催化時間下,甲烯藍水溶液的轉化率。………… 67
圖4-30 商品P25、合成、混合三種不同方法獲得的二氧化鈦在光催化2小時後,甲烯藍水溶液的轉化率。…………… 68
參考文獻 Acosta, D. R. ; Mart´ınez, A. I. ; L´opez1, A. A. ; Maga˜na, C. R., “Titanium dioxide thin films: the effect of the preparation method in their photocatalytic properties, ” Journal of Molecular Catalysis A Chemical. 228, 183(2005).
Arvan, B. ; Khakifirooz, A., ; Tarighat, R. ; Mohajerzadeh, S. ; Goodarzi, A. ; Soleimani, A. E. ; Arzi, E., “Atmospheric pressure chemical vapor deposition of titanium dioxide films from TiCl4, ” Materials Science and Engineering B 109, 17 (2004).
Brinker, C.J. ; Scherer G.W., Sol-Gel Science, p21-42, Academic Press, New York, (1990).
Cheng, H. ; Ma, J. ; Zhao, Z. ; Qi, L., “Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles, “Chem. Mater. 7, 663 (1995).
Dupont Co., http://www.titanium.dupont.com (2006).
Fang, C. S. and Chen, Y.W., “Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution, “Materials Chemistry and Physics 78, 739 (2003).
Fujishima, A. and Honda, K., “Electrochemical photolysis of water at a semiconductor electrode, ”Nature 238, 37(1972).
Gao, L. ; Li, Q. ; Song, Z. ; Wang, J., “Preparation of nano-scale titania thick film and its oxygen sensitivity, ” Sensors and Actuators B 71, 179 (2000).
He, J.A., ; Mosurkal, R. ; Samuelson, L. A. ; Li, L. ; Kumar, J., “Dye-sensitized Solar Cell Fabricated by Electrostatic Layer-by-Layer Assembly of Amphoteric TiO2 Nanoparticles, “Langmuir, 19 2169 (2003).
Hinczewski, D. ; Saygin ; Hinczewski, M. ; Tepehan, F.Z. ; Tepehan, G.G., “Optical filters from SiO2 and TiO2 multi-layers using sol-gel spin coating method, “Solar Energy Materials and Solar Cells 87, 181 (2005).
Izumi, F., “The Polymorphic Crystallization of Titanium(IV) Oxide under Hydrothermal Conductions.II.The Roles of Inorganic Anions in the Nucleation of Rutile and Anatase from Acid Solution, ”Bulletin of the Chemical Society of Japan 51, 1771(1978).
Khalil, L.B.; Mourad, W.E.; Rophael, M.W., ” Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination, ” Applied Catalysis B: Environmental 17, 267(1998).
Kim, S.J. ; Park, S.D. ; Jeong, Y. H., “Homogeneous Precipitation of TiO2 Ultrafine Powders from Aqueous TiOCl2 Solution ,”J. Am. Ceram. Soc., 82, 927 (1999).
Kim, S.J. ; Park, S. D. ; Kim, K. H. ; Jeong, Y. H. Kuk, I. H., United States Patent : 6001326(1999).
Lao, C. ; Chuai, Y. ; Su, L. ; Liu, X. ; Huang, L. ; Cheng, H. ; Zou, D., “Mix-solvent-thermal method for the synthesis of anatase nanocrystalline titaniumdioxide used in dye-sensitized solar cell , “Solar Energy Materials & Solar Cells 85, 457 (2005).
Lee, D.S.and Liu T.K., “Preparation of TiO2 Sol Using TiCl4 as a Precursor ,” Journal of Sol-Gel Science and Technology 25, 121(2002).
Lee, K. ; Nam, W. S. ; Han, G. Y., “Photocatalytic water-splitting in alkaline solution using redox mediator. 1:Parameter study , ” International Journal of Hydrogen Energy 29, 1343 (2004).
Linsebigler, Amy L.; Lu, Guangquan ; Yates, John T.; Jr.,” Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results ,” Chemical Reviews 95, 735(1995).
Nam, H. D. ; Lee, B.H. ; Kim, S.J. ; Jung, C.H. ; Lee, J.H. ; Park, S., “Preparation of Ultrafine Crystalline TiO2 Powders from Aqueous TiCl4 Solution by Precipitation, “Jpn. J. Appl. Phys. 37, 4603 (1998).
O’Regan, B. and Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, ”Nature 353, 737(1991).
Park, H. K. ; Kim, D. K. ; Kim, C. H., “Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4, “J. Am. Ceram. Soc.80, 743. (1997).
Park, N. G. ; van de Lagemaat, J. ; Frank, A. J., “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells, ” J. Phys. Chem. B 104, 8989 (2000).
Parkin, I. P. and Palgrave, R. G. “Self-cleaning coatings,” J. Mater. Chem., 15, 1689 (2005).
Park, S. D. ; Cho, Y. H. ; Kim, W. W. ; Kim, S.J., “Understanding of Homogeneous Spontaneous Precipitation for Monodispersed TiO2 Ultrafine Powders with Rutile Phase around Room Temperature ,”J. Solid State Chem., 146, 230 (1999).
Prasad, K. ; Bally,A. R. ; Schmid,P. E. ; Levy, F. ; Benoit, J. ; Barthou, C. ; Benalloul, P.,” Ce-doped TiO 2 Insulators in Thin Film Electroluminescent Devices, ” Jpn. J. Appl. Phys. 36, 5696 (1997).
Raupp, G. B. ; Alexiadis, A. ; Hossain, Md. M. ; Changrani, R., “First-principles modeling, scaling laws and design of structured photocatalytic oxidation reactors for air purification , “Catalysis Today 69, 41(2001).
Serpone, N. “Brief introductory remarks on heterogeous photocatalysis , ”Solar Energy Materials and Solar Cells 38, 369 (1995).
Shimizua, K. ; Imaia, H. ; Hirashimab, H. ; Tsukumab, K.,” Low-temperature synthesis of anatase thin flms on glass and organic substrates by direct deposition from aqueous solutions, “ Thin Solid Films 351, 220 (1999).
Sun, B. and Smirniotis, P. G., “Interaction of anatase and rutile TiO2 particles in aqueous photooxidation, ” Catalysis Today 88, 49 (2003).
Sun, B. ; Vorontsov, A. V. ; Smirniotis, P. G.,”Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation, ” Langmuir 19, 3151(2003).
Thevenet, F. ; Guaïtella, O. ; Herrmann, J.M. ; Rousseau, A. ; Guillard, C., “Photocatalytic degradation of acetylene over varioustitanium dioxide-based photocatalysts, ” Applied Catalysis B: Environmental 61, 58(2005).
TOTO Co., http://www.toto.co.jp/products/hydro/genri.htm (2006).
Wang, C.C. and Ying, J. Y.,” Sol-Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals ,” Chemistry of Materials 11, 3113 (1999).
Wang, C. ; Deng, Z.X. and Li, Y., “The Synthesis of Nanocrystalline Anatase and Rutile Titania in Mixed Organic Media , “Inorganic Chemistry 40, 5210 (2001).
Wu, C. ; Yue, Y. ; Deng, X. ; Hua, W. ; Gao, Z., “Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations ,” Catalysis Today 93-95, 863(2004).
Yamashita, H.; Ichihashi, Y.; Anpo, M.; Hashimoto, M.; Louis, C.; Che, M., “Photocatalytic Decomposition of NO at 275 K on Titanium Oxides Included within Y-Zeolite Cavities: The Structure and Role of the Active Sites, ” J. Phys. Chem. 100, 16041(1996).
Yang, H. G. and Zeng, H. C., “Control of Nucleation in Solution Growth of Anatase TiO2 on Glass Substrate , “J. Phys. Chem. B 107 , 12244 (2003).
Yang, S. ; Liu, Y. ; Guo, Y. ; Zhao, J. ; Xu, H. ; Wang, Z., ” Preparation of rutile titania nanocrystals by liquid method at room temperature , ” Materials Chemistry and Physics 77, 501 (2002).
Yang, S. and Gao, L., “Fabrication and Characterization of Nanostructurally Flowerlike Aggregates of TiO2 via a Surfactant-free Solution Route: Effect of Various Reaction Media, “Chemistry Letters 34, 1044 (2005).
Yan, M. ; Chen, F. ; Zhang, J.; Anpo, M., “Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties, ” J. Phys. Chem. B 109, 8673 (2005).
Zhang, H. and Banfield, J.F., “Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2, ”J. Phys. Chem. B 104, 3481 (2000).
Zheng, Y. ; Shi, E. ; Chen, Z. ; Li, W. ; Hu, X. ,” Influence of solution concentration on the hydrothermal preparation of titania crystallites, “ J. Mater. Chem. 11, 1547 (2001).
Zhu, Y. F. ; Zhang, L. ; Gao, C. ; Cao, L. L. ,” The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor, ” J. Mater. Sci. 35, 4049 (2000).
王勝民, “新世代的綠色產品—光催化觸媒”, 化工資訊, 14, 35 (2000).
陳永芳 以四異丙醇鈦為前驅物利用化學氣相沉積法和水解法製備二氧化鈦, 國立交通大學應用化學系博士論文, p3(2003).
高濂;鄭珊;張青紅 奈米光觸媒, p41 (2004).

------------------------------------------------------------------------ 第 4 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200913435589
論文名稱(中文) 電子傳遞特性的差異對染料敏化太陽能電池表現之影響
論文名稱(英文) Influence of Electron Transfer Pattern on the Performance of Dye-Sensitized Solar Cells
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 蕭博聰
學號 n3694109
學位類別 碩士
語文別 中文
口試日期 2007-07-10
論文頁數 98頁
口試委員 口試委員-陳進成
口試委員-蔡建成
口試委員-陳東煌
口試委員-鄭靜
口試委員-黃肇瑞
指導教授-鄧熙聖
關鍵字(中) 電子再結合反應
染料敏化太陽能電池
銳鈦礦
關鍵字(英) anatase
recombination
dye-sensitized solar cell
學科別分類
中文摘要 染料敏化太陽能電池光電轉換效率受到電子傳遞速度以及電子與電解質中的I3-所產生之再結合反應的影響,本研究針對電子與電解質中的I3-所產生之再結合反應,建構出動力學方程式,利用I-V特性曲線、電池開環電壓對光源強度改變之回應、電池開環電壓對I3-濃度改變之回應和切斷光源後開環電壓衰退的實驗結果合併,可將式中的參數予以定量。藉由電解質中加入TBP可提升電池開環電壓(從0.489至0.706V),以致光電轉換效率提升(從5.095至8.687%),利用我們所建構的方式運用至此系統,說明TBP的加入造成導帶邊緣能量的平移,此平移的差異與實際電池開環電壓的差異甚為相同,證實此法所求得的參數可性度。
至於電子傳遞的部分,我們發展出一套以鈦酸鹽結構直接形成二氧化鈦奈米結晶顆粒的方式與一般使用溶膠凝膠法來製備的二氧化鈦奈米顆粒作比較,藉由此法形成的奈米顆粒用來製成電極薄膜可獲得純銳鈦礦相及氧空缺較少的二氧化鈦結晶,有利於電子在導帶上的傳遞,因此可得到較高的光電轉換效率,從IMPS(Intensity-Modulated Photocurrent Spectroscopy)分析的結果可證實具純銳鈦礦相與結晶缺陷少的二氧化鈦擁有較快的電子擴散速度。
英文摘要 Charge recombination between dye-sensitized TiO2 electrodes and I3- in the electrolyte and electron diffusion in the nanocrystalline TiO2 electrode govern the performance of a dye-sensitized solar cell (DSSC). The present work constructed a theoretical model to explore the recombination kinetics. The sensitizer was cis-di(thiocyanate)bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium (II). The photocurrent-voltage characteristics, the open-circuit voltage in response to light intensity, the open-circuit voltage in response to I3- concentration, and the open-circuit voltage decay behavior were combined to give the kinetic parameters for the recombination. This developed model was applied to cells with or without the presence of 4-tert-butylpyridine (TBP), which improved significantly the open-circuit voltage (from 0.489 to 0.706 V) and thus the cell conversion efficiency (from 5.095 to 8.687%). The promotion in the open-circuit voltage has been ascribed to the shift of the TiO2 conduction band edge due to TBP addition.
As to electron transfer, TiO2 electrodes made of colloids derived from a titanate-directed route and a conventional sol-gel synthesis were subjected to examination. The TiO2 electrode obtained from the titanate-directed route consisted of phase-pure anatase with a lower degree of oxygen vacancy, and gave a better performance for an DSSC. IMPS (Intensity-Modulated Photocurrent Spectroscopy) analysis showed a higher rate for electron diffusion in the phase-pure and structure intact anatase TiO2.
論文目次 第一章 緒論...1
1-1 前言...1
1-2 半導體簡介...3
1-3 光伏效應...6
1-4 各種太陽能電池發展現況及比較...8
1-5 研究背景與目的...12
第二章 文獻回顧與理論說明...14
2-1 染料敏化太陽能電池...14
2-1.1 裝置構造...14
2-1.2 工作原理...15
2-1.3 逆反應...16
2-2 奈米結晶多孔膜電極...18
2-3 染料敏化劑...22
2-4 電解質...26
2-5 相對電極...28
第三章 實驗方法及儀器原理介紹...29
3-1 實驗藥品與器具...29
3-2 實驗設備...30
3-3 二氧化鈦奈米顆粒paste的製作與相關測試...31
3-3.1 水熱法合成二氧化鈦奈米顆粒paste...31
3-3.2 溶膠凝膠法合成二氧化鈦奈米顆粒paste...32
3-3.3 XRD繞射分析...34
3-3.4 BET和BJH分析...36
3-4 製作染料敏化太陽能電池...39
3-4.1 二氧化鈦薄膜電極的製備...39
3-4.2 染料敏化劑的吸附...39
3-4.3 電解質的配置...39
3-4.4 相對電極的製備...40
3-4.5 組裝染料敏化太陽能電池...40
3-5 電池的電性測試...42
3-5.1 I-V特性曲線的測試...42
3-5.2 電子再結合模式中參數的求取...44
3-5.3 IMPS和IMVS的測量...45
3-6 X光吸收光譜(XAS)...47
3-6.1 同步幅射光源...47
3-6.2 X光吸收近邊緣結構(XANES)...50
3-6.3 延伸X光精細結構(EXAFS)...51
第四章 結果與討論...55
4-1 二氧化鈦奈米顆粒的特性分析...56
4-1.1 XRD分析...56
4-1.2 RAMAN分析...59
4-1.3 氮氣吸脫附結果分析...60
4-1.4 SEM分析...62
4-2 理論式子的推導...63
4-2.1 電池於照光下的光電壓與光電流...63
4-2.2 切斷光源後開環電壓的衰退...65
4-3 電子再結合反應對電池表現的影響...68
4-3.1 電子再結合反應的反應階數...68
4-3.2 TBP對電池的電子再結合反應之影響...75
4-3.3 H240和S240的電子再結合反應之差異...80
4-4 以H240作為染料敏化電池電極的優越性...84
4-4.1 IMPS和IMVS的測定...84
4-4.2 H240與S240於X光吸收光譜的差異...87
第五章 結論...91
5-1 電子再結合參數定量化...91
5-2 以水熱法合成奈米結晶顆粒的H240作為染料敏化太陽能電池電極的優勢...91
第六章 參考文獻...93
作者簡介...98

圖目錄
圖1-1 各種化合物半導體的能帶結構圖...5
圖1-2 pn-junction示意簡圖:在接面附近由於電子電洞流的擴散,形成正負離子而產生電場,此區域一般稱為空乏區或空間電荷區...7
圖1-3 染料敏化太陽能電池的各項研究主題...13
圖2-1 染料敏化太陽能電池裝置圖...14
圖2-2 染料敏化太陽能電池工作原理示意圖...15
圖2-3 染料敏化太陽能電池各反應動力學比較示意圖...17
圖2-4 二氧化鈦二種主要的晶相結構...21
圖2-5 N3及Black dye染料的IPCE(incident photo to current conversion efficiency)應答曲線及其化學結構...24
圖2-6 染料分子能階的示意圖...25
圖2-7 (a)染料透過carboxylate groups與TiO2表面形成ester linkages(b)染料分子與TiO2其它的鍵結模式...25
圖2-8 spiro-MeOTAD固態電解質的元件結構圖...27
圖3-1 以溶膠凝膠法與溶膠凝膠法合成二氧化鈦奈米顆粒之實驗流程及測試...33
圖3-2 高溫高壓反應器...33
圖3-3 X光對晶體繞射的示意圖...35
圖3-4 X光繞射分析儀之設備圖...35
圖3-5 表面積分析測定儀...38
圖3-6 染料敏化太陽能電池的組裝步驟...41
圖3-7 染料敏化太陽能電池的電池光電轉換效率測試系統...43
圖3-8 I-V特性曲線示意圖...43
圖3-9 IMPS和IMVS的光應答示意圖...46
圖3-10 典型的X光吸收光譜...49
圖3-11 二種測量模式之示意圖...49
圖3-12 背向散射程式之示意圖...54
圖4-1 H240、S240與P25於450℃下鍛燒30分鐘後之XRD分析比較圖...57
圖4-2 由P25前驅物經130℃中水熱20小時後,再利用硝酸酸洗至pH約1.5左右,進行240℃水熱12小時所獲得H240二氧化鈦奈米顆粒,其實驗過程中各個階段的XRD分析...58
圖4-3 鈦酸鹽結構合成二氧化鈦銳鈦礦示意圖...58
圖4-4 H240和S240於450℃下鍛燒30分鐘後之RAMAN分析圖...59
圖4-5 H240、S240與P25之BJH脫附曲線孔徑分佈圖(a)鍛燒前(b)於450℃下鍛燒30分鐘後...61
圖4-6 (a)H240(b)S240經doctor-blade塗佈成薄膜後,於450℃下鍛燒30分鐘之SEM圖...62
圖4-7 染料敏化太陽能電池的能階示意圖(EF與E(I3-/I-)的差值即為電壓)及電子再結合的傳遞路徑R1和R2(染料受光激發將電子注入導帶中,導帶上電子可能與染料氧化態或I3-進行再結合反應)...67
圖4-8 針對持續照光下進行電位掃描與照光後將光源切斷並控制系統於開環的情況,當電位逐漸下降時,電子傳遞路徑的差別...67
圖4-9 以H240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配電解質成分為0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile所組成的電池,改變光源強度(60-220mW/cm2)照射下開環電壓的變化...69
圖4-10 以H240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配不同LiI/I2濃度(0.1/0.05、0.3/0.15、0.5/0.25)、0.6M DMPII、0.5M TBP溶於acetonitrile之電解質所組成的電池,其開環電壓的變化...70
圖4-11 以H240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配無TBP添加或0.5M TBP添加以及0.1M LiI、0.05M I2、0.6M DMPII溶於acetonitrile之電解質所組成的電池,比較TBP添加的與否在光源強度(60-220mW/cm2)改變下開環電壓變化之差異...71
圖4-12 以H240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配無TBP添加或0.5M TBP添加以及不同LiI/I2濃度(0.1/0.05、0.3/0.15、0.5/0.25)、0.6M DMPII溶於acetonitrile之電解質所組成的電池,比較TBP添加在I3-濃度改變下開環電壓變化之差異...72
圖4-13 以H240與S240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配電解質成分為0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile所組成的電池,比較H240和S240在光源強度(60-220mW/cm2)改變下開環電壓變化之差異...73
圖4-14 以H240與S240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配電解質成分為0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile所組成的電池,比較H240和S240在I3-濃度改變下開環電壓變化之差異...74
圖4-15 以H240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配無TBP添加或0.5M TBP添加以及0.1M LiI、0.05M I2、0.6M DMPII溶於acetonitrile之電解質所組成的電池,於100mW/cm2之光源強度照射下,比較TBP添加的與否對電池I-V特性曲線的影響...77
圖4-16 以H240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配無TBP添加或0.5M TBP添加以及0.1M LiI、0.05M I2、0.6M DMPII溶於acetonitrile之電解質所組成的電池,先於100mW/cm2之光源強度照射後切斷光源並設定在開環情況下,lnτn對 的關係圖(a)H240搭配未含TBP的電解質(b)H240搭配含有0.5M TBP的電解質...78
圖4-17 以H240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配無TBP添加或0.5M TBP添加以及0.1M LiI、0.05M I2、0.6M DMPII溶於acetonitrile之電解質所組成的電池,於100mW/cm2之光源強度照射下進行電位掃描(Voc至0V),lnJr對 的關係圖(a)H240搭配未含TBP的電解質(b)H240搭配含有0.5M TBP的電解質...79
圖4-18 以H240與S240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配電解質成分為0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile所組成的電池,於100mW/cm2之光源強度照射下,比較H240和S240對電池I-V特性曲線的影響...81
圖4-19 以H240和S240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配電解質成分為0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile所組成的電池,先於100mW/cm2之光源強度照射後切斷光源並設定在開環情況下,lnτn對 的關係圖(a)H240作為工作電極(b)S240作為工作電極...82
圖4-20 以H240和S240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配電解質成分為0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile所組成的電池,於100mW/cm2之光源強度照射下進行電位掃描(Voc至0V),lnJr對 的關係圖(a)H240作為工作電極(b)S240作為工作電極...83
圖4-21 以H240和S240作為染料敏化電池之工作電極搭配染料為N3與0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile的電解質成分所組成之電池,以455nm的藍光(強度10mW/cm2,震幅2.5%)作為激發光源並控制電池於開環的條件下,H240與S240的IMVS分析圖(左:Nyquist圖、右:Bode圖)...85
圖4-22 以H240和S240作為染料敏化電池之工作電極搭配染料為N3與0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile的電解質成分所組成之電池,以455nm的藍光(強度10mW/cm2,震幅2.5%)作為激發光源並控制電池於閉環的條件下,H240與S240的IMPS分析圖(左:Nyquist圖、右:Bode圖)...86
圖4-23 H240和S240奈米顆粒經450℃下鍛燒30分鐘後的X光吸收光譜...89
圖4-24 H240和S240的X光吸收光譜之dμ/dE對能量的變化圖...89
圖4-25 H240和S240的X光吸收光譜在EXAFS部分,經傅立葉轉換後之圖及其適套結果...90

表目錄
表2-1 二氧化鈦各晶相的物理特性...21
表4-1 由XRD估計H240、S240與P25於450℃下鍛燒30分鐘後的粒徑大小...57
表4-2 H240、S240與P25於450℃鍛燒前後的比表面積及平均孔徑...60
表4-3 以H240作為染料敏化電池之工作電極搭配染料為N3與無TBP添加或0.5M TBP添加以及0.1M LiI、0.05M I2、0.6M DMPII溶於acetonitrile的電解質成分所組成之電池,於100mW/cm2之光源強度照射下的光應答表現...77
表4-4 以H240作為染料敏化電池之工作電極搭配染料為N3與無TBP添加或0.5M TBP添加以及0.1M LiI、0.05M I2、0.6M DMPII溶於acetonitrile的電解質成分所組成之電池,其TBP添加與否對電子再結合模式中參數的影響...79
表4-5 以H240和S240作為染料敏化電池之工作電極搭配染料為N3與0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile的電解質成分所組成之電池,於100mW/cm2之光源強度照射下的光應答表現...81
表4-6 以H240和S240作為染料敏化電池之工作電極搭配染料為N3與0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile的電解質成分所組成之電池,比較H240和S240對電子再結合模式中參數的影響...83
表4-7 由IMVS和IMPS所計算出H240和S240電子傳遞特性的差異...86
表4-8 適套EXFAFS傅立葉轉換圖所求出的結構參數...90
參考文獻 1. M.Grätzel, “Photoelectrochemical cells”, Nature, 414, 338, (2001).
2. 莊家琛, “太陽能工程-太陽電池篇”, 全華, 台北市, 第一章、第二章, 民86.
3. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. Soc., 115, 6382, (1993).
4. M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar cells”, J. Am. Chem. Soc., 123, 1613, (2001).
5. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applicayions”, J. Am. Ceram. Soc., 80, 3157, (1997).
6. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes”, Sol. Energy Mater. Sol. Cells, 77, 89, (2003).
7. T. Horiuchi, H. Miura, S. Uchida, “Highly-efficient metal-free organic dyes for dye-sensitized solar cells”, Chem. Commun., 3036, (2003).
8. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam, M. Grätzel, “The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications”, J. Electrochem. Soc., 143, 3099, (1996).
9. B. O’Regan, D. T. Schwartz, “Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL’NCS/CuSCN: Initiation and Potential Mechanisms”, Chem. Mater., 10, 1501, (1998).
10. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photo-to-electron conversion efficiencies”, Nature, 395, 583, (1998).
11. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, “A stable Quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte”, Nature materials, 2, 402, (2003).
12. C. Longo, A. F. Nogueira, M.-A. D. Paoli, “Solid-State and Flexible Dye-Sensitized TiO2 Solar cells: a Study by Electrochemical Impedance Spectroscopy”, J. Phys. Chem. B, 106, 5925, (2002).
13. A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 44, 99, (1996).
14. D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 104, 2053, (2000).
15. D. Matthews, P. Infelta, M. Grätzel, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes”, Sol. Energy Mater. Sol. Cells, 44, 119, (1996).
16. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobio. A, 164, 3, (2004).
17. A. Hagfeldt, M. Grätzel, “Light Induced Redox Reactions in Nanocrystalline Systems”, Chem. Rev., 95, 49, (1995).
18. D. Ulrike, “The Surface Science of Titanium Dioxide”, Surf. Sci. Rep., 48, 53, (2003).
19. K. Kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coord. Chem. rev., 177, 347, (1998).
20. N.-G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of Dye-sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, J. Phys. Chem. B, 104, 8989, (2000).
21. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. Soc., 115, 6382, (1993).
22. G. P. Smestad, M. Grätzel, “Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter”, J. Chem. Educ., 75, 752, (1998).
23. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 107, 8981, (2003).
24. G. J. Meyer, “Efficient Light-to Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers”, J. Chem. Educ., 74, 652, (1997).
25. S. Cherian, C. C. Wamser, J. Phys. Chem. B, 104, 3624, (2000).
26. S. Y. Huang, G. Schlichthorl, A.J. Nozik, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 101, 2576, (1997).
27. A. Hauch, R. Kern, J. Ferber, “Charactisation of the Electrolyte-solid interfaces of Dye-Sensitized Solar Cell by Means of Impedance Spectroscopy”, 2nd World Conference, Vienna, European Communities, (1998).
28. N. Papageorgiou, M. Grätzel, P. P. Infelta, “On the Relevance of Mass Transport in Thin Layer Nanocrystalline Photoelectrochemical Solar Cells”, Sol. Energy Mater. Sol. Cells, 44(4), 405, (1996).
29. U. Bach, D. Lupo, P. Comte, “Solid-State Dye Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies”, Nature, 395(6702), 583, (1998).
30. P. Wang, S. M. Zakeeruddin, I. Exnarb, M. Grätzel, “High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte”, Chem. Commun., 2972, (2002).
31. E. Stathatos, P. Lianos, “A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol-Gel Nanocomposite Electrolyte Containing Ionic Liquid”, Chem. Mater., 15, 1825, (2003).
32. N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media”, J. Electrochem. Soc., 144, 99, (1996).
33. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 14, 3160, (1998).
34. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater., 11, 1307, (1999).
35. B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction”, 3rd ed., Prentice, (2001).
36. C. Kittel, “Introduction to Solid State Physics”, Wiley, 4th ed., (1971).
37. M. Yan, F. Chen, J. Zhang, M. Anpo, “Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties”, J. Phys. Chem. B, 109, 8673, (2005).
38. S. Brunaller, P. H. Emmett, E. Teller, “Adsorption of Gases in Multimolecular Layers”, J. Am. Chem. Soc., 60, 390, (1938).
39. E. P. Barrett, L. G. Joyner, P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances”, J. Am. Chem. Soc., 73, 373, (1951).
40. M. Kruk, M. Jaroniec, J. Phys. Chem. B, 104, 7960, (2000).
41. L. M. Peter, K. G. U. Wijayantha, “Intensity Dependence of the Electron Diffusion Length in Dye-Sensitized Nanocrystalline TiO2 Photovoltaic Cells”, Electro. Commun., 1, 576, (1999).
42. L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shwa, I. Uhlendorf, “Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cell: Characterization by Intensity-Modulated Photocurrent Spectroscopy”, J. Phys. Chem. B, 101, 10281, (1997).
43. G. Schlichthörl, S. Y. Huang, J. Spraque, A. J. Frank, “Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy”, J. Phys. Chem. B, 101, 8141, (1997).
44. K. B. Teo, “EXAFS: Basic Principle and Data Analysis”, Springer-Verlag, New York, (1998).
45. D. C. Koningsberger, R. Prins, “X-Ray Absorption: Principles, Application, Techniques of EXAFS, SEXAFS, and XANES”, John Wiley, New York, (1988).
46. C. C. Tsai, H. Teng, “Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments”, Chem. Mater., 18, 367, (2006).
47. S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Grätzel, A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B, 101, 2576, (1997).
48. A. Zaban, M. Greenshtein, J. Bisquert, “Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements”, Chem. Phys. Chem., 4, 859, (2003).
49. A. J. Frank, N. Kopidakis, Jao van de Lagemaat, “Electrons in Nanostructured TiO2 Solar Cells: Transport, Recombination and Photovoltaic Properties”, Coord. Chem. Rev., 248, 1165, (2004).
50. Z. Y. Wu, G. Ouvrard, P. Gressier, C. R. Natoli, “Ti and O K edges for Titanium Oxides by Multiple Scattering Calculations: Comparison to XAS and EELS Spectra”, Phys. Rev. B, 55, 10382, (1997).

------------------------------------------------------------------------ 第 5 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200913455694
論文名稱(中文) 以射頻磁控濺鍍法製備TiO2/SnO2複合薄膜之光觸媒活性及光致親水性質之研究
論文名稱(英文) Investigation of Photocatalytic activity and Photo-induced Hydrophilic Properties of TiO2/SnO2 Co-deposited Thin Films Produced by Radio Frequency Sputtering
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 蔡佳真
學號 n5694146
學位類別 碩士
語文別 中文
口試日期 2007-07-06
論文頁數 129頁
口試委員 口試委員-楊耀昇
指導教授-李世欽
口試委員-陳貞夙
口試委員-陳克昌
口試委員-林天財
關鍵字(中) 銳鈦礦
金紅石
水接觸角
光觸媒
二氧化錫
二氧化鈦
關鍵字(英) photocatalyst
contact angle
rutile
TiO2
anatase
SnO2
學科別分類
中文摘要 二氧化鈦為目最廣泛研究和使用的光觸媒材料,因其光觸媒活性高、具有良好的化學與物理穩定性、無毒性與成本低廉的優點,但其照射紫外光後產生的電子與電洞除了產生光觸媒效果之外,亦會產生再結合反應,而降低光觸媒的效率。因此,許多學者投入研究,以增加其電子與電洞的生命週期。
本研究利用反應性磁控濺鍍法,製備二氧化鈦與二氧化錫的單層膜、複合膜及共沉積薄膜,藉由改變工作壓力與基板溫度的濺鍍參數、以及複合膜的厚度比例將薄膜沉積於(100)矽晶片與康寧玻璃,以得到不同性質表現之鍍膜。以X光粉末繞射儀(XRD)與X-ray 光電子能譜儀(XPS)進行鍍膜結構與成分分析、以穿透式電子顯微鏡(TEM)觀察鍍膜顯微結構、以掃描式電子顯微鏡(SEM)觀察薄膜表面形態,光性的表現以紫外-可見光光譜儀(UV-vis)做分析。光觸媒性質方面,以紫外光(365nm)照射薄膜表面後,利用水接觸角分析薄膜的親水性變化和利用SEM觀察銀離子(Ag+)的還原反應。
研究結果得知,在TiO2單層膜中,當工作壓力為12mtorr、射頻功率為200W與基板溫度為100oC時,具有較佳的光致親水性質。在改變工作壓力條件下,其結晶相以Anatase相為主,而Anatase相較於Rutile具有較大的光學能隙値,且其電子-電洞生命週期較長。
在SnO2單層膜中,當射頻功率為120W、工作壓力為12mtor、基板溫度為100oC時,濺鍍粒子具有最適當的能量,可以進行遷移與擴散,因此結晶性最佳。
在TiO2/SnO2雙層膜中,因其非晶質結構中具有短程有序的Anatase相散佈,故有光觸媒之效果。當TiO2鍍膜厚度為30~90nm時,硝酸銀的還原效果較不明顯,因其電子-電洞有效的分離,而使電子移至TiO2鍍膜表面的數量較少。當TiO2鍍膜厚度為150nm時,具有雙層膜中最佳的光致親水性質,因其結構中具有,短程有序的Anatase相與Rutile相,而加上SnO2鍍膜提升電子-電洞的生命週期。
在TiO2/SnO2共沉積薄膜中,根據硝酸銀還原與TEM選區繞射的結果,得知共沉積鍍膜Ti0.3Sn00.7O2中,Ti原子以TiO2的Anatase相(200)的結晶面,存在於鍍膜中,因此具有最佳的光觸媒效果。
英文摘要 Titanium dioxide (TiO2) has been well known as an efficient photocatalyst and extensive research material because of its high photocatalytic activity, chemical and physical stablility, nonpoison and cheap. When TiO2 illuminated by ultraviolet (UV) light with higher energy than the TiO2 band-gap, inter-band transition can be induced resulting in the generation of electron-hole pairs. Such excited electrons or holes can diffuse to the surface and generate some kinds of radicals or ions which can decompose organic compounds and induced hydrophilicity. But the fast recombination rate of photogenerated electron-hole pairs hinders the commercialization of this technology. Hence, many researchers had studied to improve the life-time of electron-hole pairs.
In this study, TiO2, SnO2 thin films, TiO2/ SnO2 bilayers and co-deposited thin films were deposited on (100) Si wafer and Corning glass substrates by radio frequency magtron sputtering deposition. The properties of the films investigated with changes of working pressure, substrate temperature and the ratio of thickness TiO2/ SnO2 bilayers. The structure and composition of thin films were characterized by X-ray powder diffraction (XRD) and XPS. The microstructure of thin films was observed by TEM. The morphology of thin films was observed by SEM. The optical transmittance of thin films was measured by UV-VIS spectrophotometer. The photocatalytic properties under UV light were characterized as water-contact angle measurement and reduction of Ag+ to Ag in AgNO3 aqueous solution.
These results showed that when TiO2 single layer deposited at working pressure 12mtorr, RF power 200W and substrate temperature 100oC, it has better photo-induced hydrophilicity. As changing the substrate temperature, it has more percentage of Anatase (200) peack intensity of total diffraction peaks. When changing the working pressure, the structure is Anatase phase. Besides Anatase phase has larger energy gap and longer electron-hole life-time than Rutile phase.
When SnO2 single layer deposited at RF power 120W, working pressure 12mtorr and substrate temperature 100oC the energy of deposited particles is able to diffuse and migrate thus it has better crystallization.
It is founded that the TiO2/ SnO2 bilayers have photocatalytic properties because it exists short range order Anatase phase. When the thickness of TiO2 are 30~90nm, the reduction of Ag+ is not obvious. The electron-hole pairs are separated efficiently due to less electrons moving to the surface of TiO2 thin films. When the thickness of TiO2 is 150nm, it has better hydrophilic property for TiO2/ SnO2 bilayer resulting from short range order Anatase phase and Rutile phase of the crystal structure. Additionally, SnO2 layer improved the life-time of electron-hole.
For TiO2/ SnO2 co-deposited thin films, according to the results of selection area of diffraction pattern and the reduction of Ag+ to Ag, Ti atoms existed in the structure of Ti0.3Sn0.7O2 co-deposited thin films to form Anatase phase with (200) plane. Therefore, it had the best photocatalytic activity. According to above results, it can deduce that the hrdrophilicity of (200) plane of Anatase phase is better than (101) plane of Anatase phase.
論文目次 總目錄
中文摘要 I
Abstract III
致謝 V
總目錄 VI
圖目錄 XI
表目錄 XVII
第一章 緒論 1
1-1 前言 1
1-2研究動機與目的 4
第二章 文獻回顧和理論基礎 6
2-1 二氧化鈦的基本性質 6
2-2 二氧化鈦的光催化氧化還原反應機構 9
2-3 電荷分離(Charge separation) 13
2-4 二氧化錫的基本特性和二氧化鈦接合電荷分離機制 15
2-5 超親水性(Hydrophilicity) 18
2-6 二氧化鈦與二氧化錫的相關文獻 20
2-7二氧化鈦光觸媒的應用 21
2-8 濺鍍原理 24
2-8.1電漿原理 27
2-8.2 射頻放電 29
2-8.3 磁控濺鍍法 30
2-9 薄膜成長理論 32
2-10 薄膜之光學性質 36
第三章 實驗方法與流程 38
3-1實驗設備 38
3-2 實驗材料 41
3-3 實驗流程 42
3-3.1基板清洗 43
3-3.2鍍膜程序及參數設定 43
3-3.3實驗流程簡介 43
3-4 薄膜性質量測 46
3-4.1晶體結構分析 46
3-4.2 顯微結構分析 47
3-4.3 薄膜厚度量測與成長速率 47
3-4.4 表面形態觀察 48
3-4.5 光學量測 48
3-4.6 成份及化學鍵結分析 48
3-4.7 光誘導親水性之接觸角量測 49
3-4.8 硝酸銀還原 50
第四章 結果與討論 51
4-1 TiO2單層膜 51
4-1.1工作壓力對鍍膜沉積速率之影響 51
4-1.2工作壓力對TiO2鍍膜晶體結構之影響 53
4-1.3 鍍膜晶體微結構之分析 56
4-1.4 鍍膜之表面型態觀察 61
4-1.4.1 掃描式電子顯微鏡分析(SEM) 61
4-1.4.2 原子力顯微鏡分析(AFM) 65
4-1.5 鍍膜之元素成份與鍵結之分析 68
4-1.6 鍍膜之光學性質之分析 72
4-1.7鍍膜之表面張力分析 76
4-1.8鍍膜之光致親水性質分析 80
4-2 SnO2單層膜 81
4-2.1鍍膜沉積速率之分析 81
4-2.2鍍膜之晶體結構分析 83
4-2.3 鍍膜表面型態之分析 84
4-2.3.1 掃描式電子顯微鏡分析(SEM) 84
4-2.3.2原子力顯微鏡分析(AFM) 87
4-2.4鍍膜之表面元素和成分分析 90
4-2.5 鍍膜之光學性質分析 93
4-3 雙層膜與共沉積薄膜 95
4-3.1 鍍膜晶體結構之分析 96
4-3.2 鍍膜晶體微結構之分析 98
4-3.3鍍膜表面型態之分析 100
4-3.3.1 掃描式電子顯微鏡觀察 100
4-3.3.2 原子力顯微鏡分析(AFM) 101
4-3.4 鍍膜之元素成份與鍵結之分析 107
4-3.5鍍膜光學性質分析 109
4-3.6 鍍膜之表面張力分析 110
4-3.7 光致親水性質之分析 113
4-3.8 硝酸銀還原測試 116
第五章 結論 122
參考文獻 123
自述 129
參考文獻 [1] A. Fujishima and K. Honda, Nature, 238, (1972) 37-38.
[2] Y. Yamada, H. Uyama, T. Murata and H. Nozoye, J. Vac. Sci. Technol., A, A 19, 5, (2001) 2479.
[3] R. Wang, K. Hashimoto, A. Fujishima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Nature, 388, (1997) 431.
[4] Jing Shang, Wenqing Yao, Yongfa Zhu and Nianzu Wu, Applied Catalysis A: General, 257, 1, (2004) 25-32.
[5] P. Lobl, M. Huppertz and D. Mergel, Thin Solid Films, 251, 1, (1994) 72-79.
[6] Makiko Yamagishi, Shna Kuriki, P. K. Song and Yuzo Shigesato, Thin Solid Films, 442, 1-2, (2003) 227-231.
[7] Arturo I. Martinez, Dwight R. Acosta and Gerardo Cedillo, Thin Solid Films, 490, 2, (2005) 118-123.
[8] L. Cao, F. J. Spiess, A. Huang, S. L. Suib, T. N. Obee, S. O. Hay and J. D. Freihaut, J. Phys. Chem. B, 103, 15, (1999) 2912-2917.
[9] Michele Lazzeri, Andrea Vittadini and Annabella Selloni, Physical Review B, 63, 15, (2001) 155409.
[10] A. Fujishima, K. Hashimoto and T. Watanabe, "TiO2 Photocatalysis Fundamentals and Applications", 1st edition, BKC Inc., (1999).
[11] Ulrike Diebold, Surface Science Reports, 48, 5-8, (2003) 53-229.
[12] H. L. M. Chang, J. Mater. Res., 7, (1992) 2495-2506
[13] P. G. Wahlbeck and P. W. Gilles, J. Am. Ceram. Soc, 49, (1966) 180.
[14] B. Karunagaran, R. T. Rajendra Kumar, C. Viswanathan, D. Mangalaraj, S. K. Narayandass and G. Mohan Rao, Cryst. Res. Technol., 38, (2003) 773-778.
[15] H. J. Frenck, W. Kulisch, M. Kuhr and R. Kassing, Thin Solid Films, 201, 2, (1991) 327-335.
[16] K. Bange, C. R. Ottermann, O. Anderson, U. Jeschkowski, M. Laube and R. Feile, Thin Solid Films, 197, 1-2, (1991) 279-285.
[17] Xiu-Tian Zhao, Kenji Sakka, Naoto Kihara, Yasuyuki Takada, Makoto Arita and Masataka Masuda, Microelectronics Journal, 36, 3-6, (2005) 549-551.
[18] J. O. Carneiro, V. Teixeira, A. Portinha, L. Dupak, A. Magalhaes and P. Coutinho, Vacuum, 78, 1, (2005) 37-46.
[19] Michael R. Hoffmann, Scot T. Martin, Wonyong Choi and Detlef W. Bahnemann, Chem. Rev., 95, 1, (1995) 69-96.
[20] M. D. Driessen and V. H. Grassian, J. Phys. Chem. B, 102, 8, (1998) 1418-1423.
[21] Chao He, Yun Yu, Xingfang Hu and Andre Larbot, Appl. Surf. Sci., 200, 1-4, (2002) 239-247.
[22] G. Colon, M. Maicu, M. C. Hidalgo and J. A. Navio, Applied Catalysis B: Environmental, 67, 1-2, (2006) 41-51.
[23] S. K. Zheng, T. M. Wang, W. C. Hao and R. Shen, Vacuum, 65, 2, (2002) 155-159.
[24] Idriss Bedja and Prashant V. Kamat, J. Phys. Chem., 99, 22, (1995) 9182-9188.
[25] Shiyanovskaya I and Hepel M, Journal of the Electrochemical Society, 145, 11, (1998) 3981-3985.
[26] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti and H. Hidaka, Journal of Photochemistry and Photobiology A: Chemistry, 85, 3, (1995) 247-255.
[27] G. Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R. J. D. Tilley and A. M. Venezia, J. Phys. Chem. B, 105, 5, (2001) 1026-1032.
[28] 橋本和仁, "圖解光觸媒", 全華科技, (民95) 2-14.
[29] Linus Pauling, "The Nature of the Chemical Band", (1989) 514.
[30] T. B. Massalski, "Binary Alloy Phase Diagrams", (1990) 2919.
[31] Z. M. Jarzebski and J. P. Marton, J. Electrochem. Soc. –Rew. New, 123, 7, (1976) 199C.
[32] Z. M. Jarzebski and J. P. Marton, J. Electrochem. Soc. –Rew. New, 123, 9, (1976) 299C.
[33] Z. M. Jarzebski and J. P. Marton, J. Electrochem. Soc. –Rew. New, 123, 10, (1976) 333C.
[34] D. A. Neamen, "Semiconductor physics & devices: Basic principles", Second ed, IRRWIN, (1997) 304-314.
[35] H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B, 104, 19, (2000) 4585-4587.
[36] Akihiko Hattori, Yoshifumi Tokihisa, Hiroaki Tada and Seishiro Ito, J. Electrochem. Soc., 147, 6, (2000) 2279-2283.
[37] James G. Highfield and Michael Graetzel, J. Phys. Chem., 92, 2, (1988) 464-467.
[38] Lo Wei Jen, Chung Yip Wah and G. A. Somorjai, Surface Science, 71, 2, (1978) 199-219.
[39] R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe and K. Hashimoto, J. Phys. Chem. B, 105, 10, (2001) 1984-1990.
[40] M. Miyauchi, A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, Chem. Mater., 12, 1, (2000) 3-5.
[41] Akira Fujishima, Tata N. Rao and Donald A. Tryk, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1, (2000) 1-21.
[42] Satoshi Takeda, Susumu Suzuki, Hidefumi Odaka and Hideo Hosono, Thin Solid Films, 392, 2, (2001) 338-344.
[43] S. M Rossnagel et al, "Handbook of plasma processing technology", Noyes Publications Park Ridge, New Jersey, U.S.A, (1982).
[44] Brain Campman, "Plasma", Glow Discharge Process, John Wiley & Sons, New York, U. S. A, (1980) Chap.3.
[45] 林光隆, "材料表面工程講義", 國立成功大學材料科學及工程學系, (2001) chap.7.
[46] L. John Vossen and Werner Kerm, "Thin Film Process", Academic Process, (1999) 134.
[47] R. F. Bunshah, "Deposition Technologies for Films and Coatings", Noyes Publications, Park Ridge, New Jersey, U. S. A, (1982).
[48] J. Venables, Rep. Prog. Phys., 47, (1984) 399.
[49] John A. Thornton, J. Vac. Sci. Technol., A, 11, 4, (1974) 666-670.
[50] 艾啟峰, 科儀新知, 第 20 卷第 3 期, (1998) 79–89 頁.
[51] Lata Gupta, Abhai Mansingh and P. K. Srivastava, Thin Solid Films, 176, 1, (1989) 33-44.
[52] 李玉華, 科儀新知, 第十二卷第一期, (1990) 94-102.
[53] Elias Burstein, Phys. Rev., 93, 3, (1954) 632.
[54] H.L Hartangel, A.L. Dawar, A.K. Jain and C. Jagadish, "Semiconducting Transparent Thin Films", Institute of Physics, Philiadelphia, (1995) 219-230.
[55] P. Zeman and S. Takabayashi, Surf. Coat. Technol., 153, 1, (2002) 93-99.
[56] 陳力俊, "材料電子顯微鏡學", 國科會精儀中心發行, 修訂再版, (1994) 75-77.
[57] Dwight R. Acosta, Arturo Martinez, Carlos R. Magana and Jesus M. Ortega, Thin Solid Films, 490, 2, (2005) 112-117.
[58] Takahira Miyagi, Masayuki Kamei, Takefumi Mitsuhashi, Takamasa Ishigaki and Atsushi Yamazaki, Chemical Physics Letters, 390, 4-6, (2004) 399-402.
[59] Hsiao-Chiang Yao, Ming-Chieh Chiu, Wen-Tang Wu and Fuh-Sheng Shieu, J. Electrochem. Soc., 153, 10, (2006) F237-F243.
[60] A. Amaral, P. Brogueira, C. Nunes de Carvalho and G. Lavareda, Surf. Coat. Technol., 125, 1-3, (2000) 151-156.
[61] D. Briggs and M.P. Seah, "Practical Surface Analysis", Chichester, Wiley, (c1990-c1992) New York.
[62] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder and G.E. muilenberg(Editor), "HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY", Eden Prairie, Minn., Physical Electronics, (1995).
[63] John F. Moulder, Jill Chastain and Roger C. King, "Handbook of x-ray photoelectron spectroscopy : a reerence book of standard spectra for identification and interpretation of XPS data", Eden Prairie, Minn., Physical Electronics, (c1995).
[64] G. B. Song, H. Joly, F. S. Liu, T. J. Peng, P. Wan and J. K. Liang, Appl. Surf. Sci., 220, 1-4, (2003) 159-168.
[65] Jing Liqiang, Fu Honggang, Wang Baiqi, Wang Dejun, Xin Baifu, Li Shudan and Sun Jiazhong, Applied Catalysis B: Environmental, 62, 3-4, (2006) 282-291.
[66] G. J. Wan, N. Huang, P. Yang, A. S. Zhao, H. Sun, Y. X. Leng, J. Y. Chen, J. Wang and Xi Wu, Surf. Coat. Technol., 201, 15, (2007) 6889-6892.
[67] R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo and F.Levy, J. Appl. Phys, 75, 6, (1994) 2945-2951.
[68] Xiao-Ping Wang, Yun Yu, Xing-Fang Hu and Lian Gao, Thin Solid Films, 371, 1-2, (2000) 148-152.
[69] 李正中, "薄膜光學與鍍膜技術", 藝軒圖書出版社, 第一版, (1999) 390-397.
[70] H. Lin, S. Kumon, H. Kozuka and T. Yoko, Thin Solid Films, 315, 1-2, (1998) 266-272.
[71] Yu Zhang, John Wang and Jun Li, J Electroceram., 16, 4, (2006) 499-502.
[72] Thomas Young, Phil. Trans. R. Soc. (London), 95, -1, (1805) 65-87.
[73] F. M. Fowkes, J. Phys. Chem., 66, 2, (1962) 382-382.
[74] D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 8, (1969) 1741-1747.
[75] Q. Zhao, Y. Liu and E. W. Abel, Journal of Colloid and Interface Science, 280, 1, (2004) 174-183.
[76] D. E. Packham, International Journal of Adhesion and Adhesives, 23, 6, (2003) 437-448.
[77] M. Ohing, "The Materials Science of Thin Films", printed in the United States of America, (1991) 11-112.
[78] W. H. Lee, H. C. Son, H. S. Moon, Y. I. Kim, S. H. Sung, J. Y. Kim, J. G. Lee and J. W. Park, Journal of Power Sources, 89, 1, (2000) 102-105.
[79] M. Moroseac, T. Skala, K. Veltruska, V. Matolin and I. Matolinova, Surface Science, 566-568, Part 2, (2004) 1118-1123.
[80] M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik and J. Szuber, Thin Solid Films, 490, 1, (2005) 36-42.
[81] Zhiwen Chen, Joseph K. L. Lai and Chan-Hung Shek, Appl. Phys. Lett., 89, 231902, (2006).
[82] Masahiko Maeda and Kenichi Hirota, Applied Catalysis A: General, 302, 2, (2006) 305-308.
[83] L. Sirghi, T. Aoki and Y. Hatanaka, Thin Solid Films, 422, 1-2, (2002) 55-61.
[84] Cun Wang, Bo-Qing Xu, Xinming Wang and Jincai Zhao, Journal of Solid State Chemistry, 178, 11, (2005) 3500-3506.
[85] J. S. Chen, H. L. Li and J. L. Huang, Appl. Surf. Sci., 187, 3-4, (2002) 305-312.
[86] C.B. Alcock O. Kubaschewski, P.J. Spencer,, "Materials Thermochemistry", Pergamon Press, Oxford, (1993) Chapter 5.

------------------------------------------------------------------------ 第 6 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200914242820
論文名稱(中文) 不同型態的二氧化鈦電極對染料敏化太陽能電池之發電效率的研究
論文名稱(英文) Study on efficiencies of dye sensitised solar cells with different morphologies of titania electrodes
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 96
學期 2
出版年 97
研究生(中文) 李惟德
學號 n3695412
學位類別 碩士
語文別 中文
口試日期 2008-07-27
論文頁數 65頁
口試委員 指導教授-黃耀輝
口試委員-陳志勇
口試委員-王振乾
口試委員-廖文城
關鍵字(中) 銳鈦礦
二氧化鈦
染料敏化太陽能電池
關鍵字(英) Anatase
Titania
dye sensitized solar cells
TiO2
學科別分類
中文摘要 二氧化鈦多孔性薄膜是染料敏化太陽能電池的核心部分,本研究使用三種不同的二氧化鈦顆粒構成二氧化鈦多孔性薄膜,分別是市售Degussa P25,粒徑與P25相近平均粒徑為35nm與平均粒徑較小18nm具銳鈦礦晶型的二種二氧化鈦奈米顆粒,堆積成多孔性薄膜製備染料敏化太陽能電池並測量其光照下電池發電效率。與P25粒徑相近自行合成Anatase顆粒由於其純的Anatase晶型有較良好的發電效率,分別是5.5%與6.5%。由平均粒徑18nm顆粒沉積為多孔性薄膜的電池發電效率6.0%。改變電解質溶劑的種類,探討其對於太陽能電池發電效率的影響,發現較低黏度的Acetonitrile有最好的表現。添加分散良好的棒狀二氧化鈦在由顆粒構成的二氧化鈦多孔性薄膜以幫助導電,並提高電池發電效率。由棒狀二氧化鈦與平均粒徑18nm二氧化鈦顆粒以8:2重量比混摻構成二氧化鈦薄膜所製備之電池有最高的發電效率7.6%。
英文摘要 Nanoporous TiO2 layer is the core in Dye-Sensitised Solar Cell. In this research we use three different kinds of TiO2 particle to deposit nanoporous TiO2 film and measure their efficiencies under light illumination. The used particles are commercial available Degussa P25 TiO2, pure anatase structure particle with a similar particle size (35nm) to P25, and a smaller particle size (18nm) anatase particle. The cell made by 35 nm anatase particle gives a higher efficiency than P25 cell (6.5 % and 5.5 %) due to pure anatase structure. Cell with smaller particles have an efficiency of 6.0 %. We also try four different solvent in electrolyte. Acetonitrile has the lowest viscosity, and can give the best cell performance. Mixing TiO2 Rod in nanoparticle film can enhance the electron transport. The cell with a TiO2 mixture of 20 wt% rod and 80 wt% particles in a size of 18 nm can give the best efficiency of 7.6 %.
論文目次 中文摘要………………………………………………………………….I
英文摘要………………………………………………………………...II
致謝……………………………………………………………………..III
目錄……………………………………………………………………..IV
圖目錄…………………………………………………………………..VI
表目錄……………………………………………………………….......X

第一章 緒論………………………………………………………………1
第二章 文獻回顧………………………………………………………...5
2.1太陽能電池簡介……………………………………………………..5
2.2染料敏化太陽能電池………………………………………………...7
2.3染料敏化太陽能電池的發電機制…………………………………..9
2.4染料敏化太陽能電池中的染料…………………………………….12
2.5二氧化鈦多孔性薄膜電極………………………………………….17
2.6染料敏化太陽電池的電解質……………………………………….21
2.7白金對電極…………………………………………………………22
2.8照光下太陽能電池的表現…………………………………………22
第三章 實驗方法……………………………………………………….24
3.1實驗流程……………………………………………………………24
3.2 實驗藥品…………………………………………………………..28
3.3 儀器設備…………………………………………………………..29
第四章 結果與討論…………………………………………………….30
4.1以二氧化鈦顆粒沉積多孔性薄膜製備太陽能電池………………30
4.1.1 Degussa P25®顆粒製備二氧化鈦多孔性薄膜…………….......31
4.1.2溶膠凝膠伴隨燒結合成二氧化鈦顆粒製備多孔性薄膜………34
4.1.3溶膠凝膠法伴隨水熱法製備二氧化鈦顆粒沉積多孔性薄膜…37
4.2二氧化鈦顆粒構成多孔性薄膜膜厚度對太陽能電池表現的影響.39
4.3電解液溶劑的影響…………………………………………………44
4.4棒狀二氧化鈦的鑑定………………………………………………45
4.5棒狀二氧化鈦與Degussa P25®混摻構成多孔性薄膜……………48
4.6棒狀二氧化鈦與P25®顆粒混摻製備為太陽能電池之表現……...50
4.7棒狀二氧化鈦與不同顆粒混摻之太陽能電池表………………….54
4.8 A35顆粒與棒狀二氧化鈦混摻構成太陽能電池之表現…………57
第五章 結論……………………………………………………………..62
參考文獻………………………………………………………………..63






圖目錄
圖1.1:(a)全球表面平均溫度 (b)全球平均海平面 (c)北半球冰覆蓋量 (d) 過去兩千年大氣中溫室氣體濃度 (e) 1970~2004年全球年度人為溫室氣體排放。……………………………………...1
圖1.2:(a)2004年全球人為溫室氣體排放組成 (b)世界主要能源消耗燃料。…………………………………………………………..3
圖2.1:染料敏化太陽能電池結構圖…………………………………..8
圖2.2:常見寬禁帶半導體能帶位置…………………………………..9
圖2.3:染料敏化太陽能電池原理示意圖…………………………….11
圖2.4:常用光敏染料的結構式……………………………………….12
圖2.5:N3與Black dye的單波長光子電子轉換效率(IPCE)圖……..14
圖2.6:N3染料與二氧化鈦表面鍵結…………………………………15
圖2.7:控制染料均勻吸附在二氧化鈦表面的幾種不同方法……….16
圖2.8:n-hexadecylmalonic acid與deoxycholic acid結構式………….17
圖2.9:二氧化鈦的八面體結構單元連接圖………………………….17
圖2.10:Grätzel等人以水熱法製備二氧化鈦顆粒的SEM圖……….20
圖3.1:30~40nm二氧化鈦奈米顆粒製作流程圖…………………….25
圖4.1:以Degussa P25二氧化鈦顆粒製備多孔性薄膜SEM圖……32
圖4.2:以Degussa P25製備的二氧化鈦多孔性薄膜SEM圖。(a)放大倍率50k (b)放大倍率10k (c)截面放大倍率3k……………..32
圖4.3:P25二氧化鈦X光繞射分析………………………………….34
圖4.4:以20~40nm二氧化鈦奈米顆粒製備二氧化鈦薄膜SEM圖 (a)放大倍率100k (b)放大倍率50k (c)放大倍率10k…………..35
圖4.5:溶膠凝膠法伴隨燒結合成出奈米二氧化鈦顆粒之XRD繞射圖………………………………………………………………35
圖4.6:以溶膠凝膠法伴隨水熱法製備奈米顆粒二氧化鈦薄膜SEM圖(a)放大倍率200k(b)放大倍率100k(c)放大倍率10k………….38
圖4.7:溶膠凝膠法伴隨水熱法合成出二氧化鈦顆粒的X光繞射分析………………………………………………………………38
圖4.8:顆粒構成多孔性二氧化鈦薄膜厚度對電池效率的影響…….39
圖4.9:顆粒構成二氧化鈦多孔性薄膜厚度對短路電流的影響…….40
圖4.10:顆粒構成多孔性二氧化鈦薄膜厚度對開環電壓的影響……42
圖4.11:顆粒構成二氧化鈦多孔性薄膜厚度對填充因子影響………43
圖4.12:以二氧化鈦顆粒製成太陽能電池光照下的安伏曲線……..43
圖4.13:水熱法合成二氧化鈦SEM圖………………………………45
圖4.14:水熱法合成出棒狀二氧化鈦 (a)以超音波分散光學顯微鏡放大倍率500倍(b)以超音波分散製成糊膠燒結在導電玻璃上SEM放大倍率5k…………………………………………..46
圖4.15:水熱法合成棒狀二氧化鈦X光繞射分析…………………..47
圖4.16:棒狀二氧化鈦與P25以不同比例混摻製成糊膠,沉積在導電玻璃後燒結之剖面SEM圖,放大倍率皆為50k (a)棒狀二氧化鈦 (b)P25/R=5/5 (c)P25/R=8/2 (d)P25/R=9/1………….48
圖4.17:P25®與棒狀二氧化鈦混摻薄膜厚度與薄膜重量關係圖…..49
圖4.18:棒狀二氧化鈦與P25顆粒混摻薄膜之厚度與發電效率關係……………………………………………………………..51
圖4.19:棒狀二氧化鈦與P25顆粒混摻薄膜之厚度與短路電流關係……………………………………………………………..52
圖4.20:棒狀二氧化鈦與P25顆粒混摻薄膜之厚度與開環電壓關係……………………………………………………………..53
圖4.21:棒狀二氧化鈦與P25顆粒混摻薄膜之厚度與填充因子關係……………………………………………………………..53
圖4.22:三種顆粒與棒狀二氧化鈦以8:2重量比混摻薄膜之太陽能電池發電效率與厚度關係…………………………………..54
圖4.23:三種顆粒與棒狀二氧化鈦以8:2重量比混摻薄膜之太陽能電池短路電流與厚度關係…………………………………..55
圖4.24:三種顆粒與棒狀二氧化鈦以8:2重量比混摻構成薄膜之太陽能電池開環電壓與厚度關係……………………………..56
圖4.25:三種顆粒與棒狀二氧化鈦以8:2重量比混摻構成薄膜之太陽能電池填充因子與厚度關係……………………………..56
圖4.26:A18顆粒與棒狀二氧化鈦混摻薄膜重量與薄膜厚度關係….57
圖4.27:A18顆粒混摻棒狀二氧化鈦薄膜之厚度對光穿透度關係….58
圖4.28:A18顆粒混摻棒狀二氧化鈦太陽能電池之發電效率對厚度關係……………………………………………………………..60
圖4.29:A18顆粒混摻棒狀二氧化鈦太陽能電池之發電效率對厚度關係……………………………………………………………..60
圖4.30:A18顆粒混摻棒狀二氧化鈦太陽能電池之發電效率對厚度關係……………………………………………………………..61
圖4.31:A18顆粒混摻棒狀二氧化鈦太陽能電池之發電效率對厚度關係……………………………………………………………..61














表目錄
表2.1:太陽能電池的種類與特性……………………………………….5
表2.2:不同晶相二氧化鈦奈米顆粒薄膜內的電子擴散常數………...18
表4.1:溶劑的黏度與製成電池之發電效率………………………….44
表4.2:棒狀與顆粒二氧化鈦混摻構成薄膜之密度與填充率………50
表4.3:A18顆粒與棒狀二氧化鈦混摻薄膜之密度與填充率………58
參考文獻 [1] Climate Change 2007: Synthesis Report, IPCC,(2007),p.31,36.
http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf
[2] Climate Change 2007: The Physical Science Basis, IPCC, (2007), Ch.1 Introduction, p.103,105.
http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter1.pdf
[3] Climate Change 2007: The Physical Science Basis, IPCC, (2007), Ch.2 Changes in Atmospheric Constituents and in Radiative Forcing, p.135.
http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf
[4] BP Statistical Review of World Energy June 2008, BP, (2008), p.41.
http://www.bp.com/liveassets/bp_internet/globalbp/
globalbp_uk_english/reports_and_publications/
statistical_energy_review_2008/STAGING/local_
assets/downloads/pdf/statistical_review_of_world_
energy_full_review_2008.pdf
[5] K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev. 177 (1998) 347
[6] Thin-Film Solar Cells Techonology Evaluation and Perspectives (2000) Netherland Agency of Energy and the Environment
[7] R. D. McDonnell, Renewable and Sustainable Energy Review. 6 (2002) 273
[8] B. O’Regan, M. Grätzel, Nature. 353 (1991) 737
[9] M. K. Nazeeruddin, A. Kay, I. Radicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Gärtzel, J. Am. Chem. Soc. 115 (1993) 6382
[10] C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann,V. Shklover, M. Grätzel, J. Am. Ceram. Soc. 80 (1997) 3157
[11] R. Eichberger, F. Willig, Chem. Phys. 141 (1990) 159
[12] A. Hagfeldt, M. Grätzel, Chem. Rev. 95 (1995) 49
[13] M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, Le Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 123 (2001) 1613
[14] E. M. J. Johansson, M. Hedlund, H. Siegbahn, H. Rensmo, J. Phys. Chem. B. 109 (2005) 22256
[15] H. Rensmo, K. Westermark, S. Södergren, O. Kohle, P. Persson, S.Lunell, H. Siegbahn, J. Chem. Phys. 111 (1999) 2744
[16] K. Westermark, H. Rensmo, H. Siegbahn, K. Keis, A. Hagfeldt, L. Ojamäe, P. Persson, J. Phys Chem. B. 106 (2002) 10102
[17] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 127 (2005) 808
[18] P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, Michael Grätzel, J. Phys. Chem. B. 107 (2003) 14336
[19] K. Hara, Y. Dan-oh, C. Kasada, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, Langmuir. 20 (2004) 4205
[20] S. N. Mori, W. Kubo, T. Kanzaki, N. Masaki, Y. Wada, S. Yanagida, J. Phys. Chem. C. 111 (2007) 3522
[21] N.-G. Park, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B. 104 (2000) 8989
[22] S. Kambe, S. Nakade, Y. Wada, T. Kitamura, S. Yanagida, J. Mater. Chem. 12 (2002) 723
[23] D. Kuang, S. Ito, B. Wenger, C. Klein, J. Moser, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 128 (2006) 4246
[24] K. Leea, V. Suryanarayananb, K. Ho, Sol. Energy Mater. Solar Cells. 90 (2006) 2398
[25] J. Ferber, R. Stangl, J. Luther, Sol. Energy Mater. Solar Cells. 53 (1998) 29
[26] S. Nakade, T. Kanzaki, W. Kubo,T. Kitamura, Y. Wada, S. Yanagida, J. Phys. Chem. B. 109 (2005) 3480
[27] S. Y. Huang, G. Schlichtho1rl, A. J. Nozik, M. Grtzel, A. J. Frank, J. Phys. Chem. B. 101 (1997) 2576
[28] M. Adachi, Y. Murata, I. Okada, S. Yoshikawa, J. Electrochem. Soc. 150 (2003) G488
[29] N. Papageorgiou, W. F. Maier, M. Grätzel, J. Electrochem. Soc. 144 (1997) 876
[30] T. Hoshikawa, M. Yamada, R. Kikuchi, K. Eguchi. J. Electroanal Chem. 577 (2005) 339
[31] X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, E. Abe, Thin Solid Film. 472 (2005) 242
[32] T. Hoshikawa, M. Yamada, R. Kikuchi, K. Eguchi, J. Electrochem. Soc. 152 (2005) E68
[33] T. C. Wei, C. C. Wan, Y. Y. Wang, J. Appl. Phys. Lett. 88 (2006) 103122
[34] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe, J. Electroanal Chem. 570 (2004) 257
[35] J. Y. Chen, L. Gao, J. H. Huang, D. S. Yan, J. Mater. Sci. 31 (1996) 3497
[36] P. Jain, M. Singh, J. Chem. Eng. Data. 49 (2004) 1214
[37] Q. Wang, S. M. Zakeeruddin, I. Exnar, M. Grätzel, J. Electrochem. Soc. 151 (2004) A1598
[38] Z. Kebede, S. Lindquist, Sol. Energy Mater. Solar Cells. 57 (1999) 259
[39] I. Johnson, M. Kalidoss, R. Srinivasamoorthy, J. Chem. Eng. Data. 47 (2002) 1388
[40] F. Pichot, B. A. Gregg, J. Phys. Chem. B. 104 (2000) 6
[41] G. Armstrong, A. R. Armstrong, J. Canales, P. G. Bruce, Chem. Comm. 19 (2005) 2454
[42] 有機與塑膠太陽能電池, 張正華, 李陵嵐, 葉楚平, 楊平華, 五南圖 書2007初版

------------------------------------------------------------------------ 第 7 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915185922
論文名稱(中文) 自組裝苯乙硫醇單分子層吸附在Au圖案及沉積TiO2的玻璃表面使具有光觸媒強化效果之研究
論文名稱(英文) Study of photocatalytic effect enhanced by phenylethyl mercaptan assembled monolayers adsorbed on the patterned Au and deposited on the TiO2-coated glass substrate
校院名稱 成功大學
系所名稱(中) 奈米科技暨微系統工程研究所
系所名稱(英) Institute of Nanotechnology and Microsystems Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 黃怡文
學號 q2695403
學位類別 碩士
語文別 中文
口試日期 2009-06-12
論文頁數 67頁
口試委員 口試委員-黃肇瑞
口試委員-李玉郎
指導教授-廖峻德
關鍵字(中) 二氧化鈦銳鈦礦相薄膜
光觸媒效果
溶膠凝膠法

效率
關鍵字(英) sol-gel method
Au
TiO2-anatase thin film
efficiency
Photo-catalytic effect
學科別分類
中文摘要 本研究利用溶膠凝膠法以異丙氧鈦為起始物,在低溫下(< 80 ℃)製作出高穿透率的二氧化鈦銳鈦礦相薄膜於玻璃基板上。之後,在局部二氧化鈦薄膜表面沉積金顆粒。為增進光觸媒作用,於局部金/二氧化鈦表面化學吸附苯乙硫醇自組裝單分子層。在局部二氧化鈦薄膜表面,選擇三種不同比率的沉積金顆粒的覆蓋面積,約為3.77 %、15.58 %、以及41.97 %。金局部覆蓋於二氧化鈦表面乃考量到外露二氧化鈦的表面積。

利用低掠角X光繞射分析儀以及拉曼散射光譜儀分析薄膜晶體結構,以掃描式電子顯微鏡以及原子力顯微鏡分析薄膜表面形貌;以X光光電子能譜儀分析薄膜表面化學組成,以歐傑電子能譜儀分析薄膜深度分析,最後以亞甲基藍降解試驗評估光觸媒薄膜的效能。外露二氧化鈦表面積及苯乙硫醇自組裝單分子層的吸附量會受到金的覆蓋率改變而影響。

在金/二氧化鈦的試片,其光觸媒效能測試結果依覆蓋面積比率表示為15.58 % > 41.97 % > 3.77 %,適度的金覆蓋面積可預期地減少電子與電洞對的合併機率。另一方面,苯乙硫醇自組裝單分子層吸附於金/二氧化鈦表面,能增強光觸媒效果,依序為:3.77 % >15.58 % > 41.97 %。此顯示,苯乙硫醇自組裝單分子層吸附於金/二氧化鈦表面不同於金在二氧化鈦銳鈦礦相薄膜。

苯乙硫醇自組裝單分子層吸附愈多,受光激發出電子,電子往外傳遞給O2時生成.O2-與.OH反應,造成亞甲基藍的初始降解反應被阻斷;或是.O2-遷移到與表面電洞復合,藉由被吸附而占據二氧化鈦的活性位置,如:缺陷及氧空位,此將致使.OH的生成量減少或光觸媒效果下降。另外,苯乙硫醇將電子回傳給金時,造成金吸引二氧化鈦電子的趨動力下降,減低捕捉二氧化鈦自由電子的能力,增加電子電洞對復合的機率。經評估後,以苯乙硫醇於3.77 %金之二氧化鈦表面為最佳光觸媒反應系統,比二氧化鈦銳鈦礦相薄膜效率高約18.7 %。
英文摘要 High transparency TiO2–anatase thin film on glass substrate was prepared by the sol-gel method with the precursor of titanium isopropoxide (TTIP) under low temperature (< 80 ℃). Subsequently, a part of TiO2–anatase thin film was deposited with Au particles. To enhance the photo-catalytic effect, self assembled phenylethyl mercaptan monolayer was chemically adsorbed on the as-prepared partial Au/TiO2 thin film, chosen with three different Au-coverage areas, 3.77, 15.58, and 41.97 %. Au was partially deposited upon TiO2-anatase thin film for the consideration of the exposure of TiO2 surface.

GIXRD and Raman spectrometer was employed for characterizing the crystalline structure of TiO2, while SEM and AFM for measuring surface morphologies. XPS was utilized for analyzing chemical structures on the as-prepared surfaces, while AES for profiling depths. The photo-catalytic effect was then evaluated by the TiO2-anatase induced degradation of methylene blue. The exposed TiO2 surface area and the quantity of the adsorbed phenylethyl mercaptan were varied with Au coverage rates.

Photo-catalytic activities of Au/TiO2-anatase thin film were enhanced by the sequence of Au coverage areas: 15.58 % > 41.97 % > 3.77 %. An appropriate coverage of Au upon TiO2-anatase thin film was thus anticipated to reduce the recombination probability of their electron-hole pairs. On the other hand, photo-catalytic activities of the chemisorbed phenylethyl mercaptan/Au/TiO2 were enhanced by the sequence of Au coverage upon TiO2-anatase thin film: 3.77 % > 15.58 % > 41.97 %. It reveals that the photo-catalytic contribution of phenylethyl mercaptan on Au/TiO2 differs from that of Au upon TiO2-anatase thin film.

As increased the adsorbed quantity of phenylethyl mercaptan monolayer, the UV-excited electrons transferring to O2, forming.O2-, and reacting with.OH, which result in blocking the initial degradation of methylene blue. It is also probable that.O2- species move forward to TiO2 surface and recombine with photo-holes or adsorb on the surface containing TiO2 active sites such as defects and oxygen vacancies. That will lead to decrease the formation of.OH or therefore the photo-catalytic effect. In addition, it is assumable that the electrons returning to Au will cause the degradation of driving force to capture free electrons from TiO2. As a result, the recombination of electron-hole pairs tends to be increased. An optimized photo-catalytic system is thus suggested by the structure of phenylethyl mercaptan/3.77 % Au/TiO2-anatase thin film. Potentially about 18.7 % efficiency is increased as compared with the as-deposited TiO2-anatase thin film.
論文目次 摘要............I
Abstract........II
致謝............IV
目錄............V
表目錄..........VII
圖目錄..........VII
第一章 序論....1
1.1 前言....1
1.2 研究動機........2
1.3 文獻回顧........3
1.3.1 低溫溶膠凝膠法(sol-gel)製備TiO2穿透性薄膜.......3
1.3.2 以金屬沉積TiO2的光觸媒提升效果..................6
1.3.3 導電性高分子與TiO2以及金屬間的電子傳遞效應......8
1.4 研究目的.........11
第二章 理論基礎..........12
2.1 TiO2光觸媒.......12
2.1.1 Sol-gel法製備TiO2.......12
2.1.2 TiO2光觸媒反應..........13
2.1.3 TiO2光觸媒效應的提升....16
2.1.4 TiO2降解亞甲基藍(methylene blue, MB)機制........17
2.2 薄膜沉積原理............19
2.3 有機半導體傳導機制......20
第三章 實驗方法與設備...........22
3.1 實驗材料與準備..........22
3.1.1 試片準備................22
3.1.2 低溫法製備銳鈦礦相穿透性TiO2薄膜................22
3.1.3 電子束蒸鍍沉積Au於TiO2薄膜表面..................24
3.1.4 自組裝苯乙硫醇單分子層..........................27
3.2 實驗設備........................................27
3.2.1 旋轉塗佈機(spin coater).........................27
3.2.2 CO2雷射雕刻系統(CO2 laser marker system)........27
3.2.3 電子束蒸鍍機(electron beam evaporation, EBE)....28
3.3 TiO2光觸媒薄膜系統實驗流程設計..................29
3.4 分析儀器........................................30
3.4.1 表面粗度儀(alpha step)..........................30
3.4.2 紫外光-可見光分光儀(UV-visible spectroscopy, UV-VIS)............30
3.4.4 低掠角X光繞射儀(grazing incident X-ray diffraction, GIXRD)......31
3.4.5 拉曼散射儀(Raman scattering spectrosmeter)......32
3.4.6 X光光電子能譜儀.................................32
3.4.7 掃瞄式電子顯微鏡................................33
3.4.8 奈米級歐傑電子能譜儀(Auger electron nanoscope, AES).............33
3.4.9 原子力顯微鏡............34
第四章 結果與討論.......35
4.1 TiO2薄膜分析....35
4.1.1 紫外光-可見光光譜儀分析TiO2薄膜穿透率試驗.......35
4.1.2 拉曼散射分析儀分析TiO2薄膜結晶結構......36
4.1.3 低掠角X光繞射分析儀分析TiO2薄膜結晶結構.37
4.2 TiO2薄膜表面鍍Au薄膜表面形貌分析........38
4.2.1 掃描式電子顯微鏡分析鍍Au薄膜的TiO2表面形貌......38
4.2.2 原子力顯微鏡分析鍍Au薄膜的TiO2表面形貌..40
4.2.3 TiO2薄膜表面鍍Au薄膜覆蓋面積計算........40
4.3 TiO2薄膜表面鍍Au圖形分析................41
4.3.1 掃描式電子顯微鏡分析Au矩陣圖形表面形貌..41
4.3.2 能量散射光譜儀分析Au圖形與TiO2薄膜之接著........42
4.4 TiO2薄膜上自組裝苯乙硫醇單分子層之分析..43
4.4.1 TiO2薄膜24 hr酒精浸泡耐受性試驗分析.....43
4.4.2 X光光電子能譜儀分析.....45
4.5 TiO2光觸媒親水性試驗....47
4.6 TiO2光觸媒效能評估......49
4-7 實驗結果討論............52
4.7.1 TiO2薄膜分析討論........52
4.7.2 SAMs/Au/TiO2圖形分佈以及圖形覆蓋面積的影響......52
4.7.3 光觸媒效果的評估........55
4.7.4 Au/ TiO2以及SAMs/Au /TiO2對TiO2光觸媒的增強效果.58
第五章 結論.....61
參考文獻........61
參考文獻 [1] M. R. Hoffmann, S. T. Martin, W. Choi and D.W. Bahnemann,” Environmental applications of semiconductor photocatalysis”, Chemical review, Vol. 95, 69-96, 1995.

[2] U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports, Vol. 48, 53-229, 2003.

[3] C. Y. Wang, R. Pagel, J. K. Dohrmann and D. W. Bahnemann, “Antenna mechanism and deaggregation concept: novel mechanistic principles for photocatalysis”, Comptes Rendus Chemie, Vol. 9, 761-773, 2006.

[4] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, Vol. 238, 37-38, 1972.

[5] I. P. Parkin and R.G. Palgrave, “Self-cleaning coatings”, Journal of Materials Chemistry, Vol. 15, 1689-1695, 2005.

[6] V.H. Grassian, “Environmental catalysis”, CRC Press, 369, 2005.

[7] G. Li and K. A. Gray, “The solid–solid interface: explaining the high and unique photocatalytic reactivity of TiO2 -based nanocomposite materials”, Chemical Physics, Vol. 339, 173–187, 2007.

[8] Y. Hu and C. Yuan, “Low-temperature preparation of photocatalytic TiO2 thin films on polymer substrates by direct deposition from anatase Sol”, Journal of Materials Science and Technology, Vol.22, 239-244, 2006.

[9] M. A. Fox and M. T. Dulay, “Heterogeneous photocatalysis”, Chemical Reviews, Vol. 93, 341-257, 1993.

[10] Y. J. Yun, J.S. Chung, S. Kim, S. H. Hahn and E. J. Kim, “Low-temperature coating of sol gel anatase thin film”, Materials Letters, Vol. 58, 3703-3706, 2004.

[11] K. Nakagawa, F. Wang, Y. Murata and M. Adachi, “Effect of acetylacetone on morphology and crystalline structure fo nanostructured TiO2 in titanium aqueous solution system”, Chemistry Letters, Vol. 34, 736-737, 2005.

[12] J. H. Yang, Y. S. Han and J. H. Choy, “TiO2 thin-film on polymer substrates and their photocatalytic activity”, Thin Solid Films, Vol. 495, 266-271, 2006.

[13] J. L. H. Chau, Y. M. Lin, A. K. Li, W. F. Su, K. S. Chang, S. L. C. Hsu and T. L. Li, "Transparent high refractive index nanocomposite thin films", Materials Letters, Vol. 61, 2908-2910, 2007.

[14] Y. T. Kim, Y. S. Park, H. Myung and H. K. Chae, ”A chelate-assisted route to anatase TiO2 nanoparticles in acidic aqueous media”, Colloids and Surfaces A,Vol. 313-314, 260-263, 2008.

[15] O. Carp, C.L. Huisman and A. Reller, “Photoinduced reactivity of titanium dioxide”, Solid State Chemistry, Vol. 32, 33-177, 2004.

[16] M. Sadeghi, W. Liu, T.G. Zhong, P. Stavropoulos and B. Levy, “Role of photoinduced charge carrier separation distance in heterogeneous photocatalysis: oxidative degradation of CH3OH vapor in contact with Pt / TiO2 and cofumed TiO2-Fe2O3”, The Journal of Physical Chemistry, Vol. 100, 19466–19474, 1996.

[17] E. Wahlstrom, R. Schaub, C. Africh, A. Ronnau and F. Besenbacher, “Bonding of gold nano-clusters to oxygen vacancies on rutile TiO2(110)”, Physical Review Letters, Vol. 90, 026101.1-026101.4, 2003.

[18] A. Linsebigler, C. Rusu and J. T. Yates, “Absence of platinum enhancement of a photoreaction on TiO2-CO photooxidation on Pt/TiO2(110)”, Journal of the American Chemical Society, Vol. 118, 5284-5289, 1996.

[19] H. Gerischer and Adam Heller, “The role of oxygen in photooxidation of organic molecules on semiconductor particles”, The Journal of Physical Chemistry, Vol. 95, 5261-5266, 1991.

[20] S. Sakthivel, M.V. Shankar, M. Palanichamy, Banumathi Arabindoo, D.W. Bahnemann and V. Murugesan, “Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst”, Water Research, Vol. 38, 3001-3008, 2004.

[21] V. Subramanian, E. E. Wolf and P. V. Kamat,” Catalysis with TiO2/gold nanocomposites effect of metal particle size on the fermi level equilibration”, Journal of the American Chemical Society, Vol. 126, 4943-4950, 2004.

[22] X. P. Wang, Y. Yu, X. F. Hu and L. Gao, “Hydrophilicity of TiO2 films prepared by liquid phase deposition”, Thin Solid Films, Vol. 371, 148-152, 2000.

[23] J. M. Jung, M. Wang, E. J. Kim and S. H. Hahn, “Photocatalytic properties of Au/TiO2 thin films prepared by RF magnetron co-sputtering”, Vacuum, Vol. 82, 827–832, 2008.

[24] J. M. Jung, M. Wang, E. J. Kim, C. Park and S. H. Hahn,” Enhanced photocatalytic activity of Au-buffered TiO2 thin films prepared by radio frequency magnetron sputtering”, Applied Catalysis B: Environmental, Vol. 84, 389-392, 2008.

[25] A. Ulman, “An introduction to ultrathin organic films from langmuir–blodgett to self-assembly”, Academic press, 1991.

[26] R. Senadeera, N. Fukuri, Y. Saito, T. Kitamura, Y. Wada and S. Yanagida, “Volatile solvent-free solid-state polymer-sensitized TiO2 solar cells with poly(3,4-ethylenedioxythiophene) as a hole-transporting medium”, Chemical Communications, Vol. 17, 2259–2261, 2005.

[27] G. K. R. Senadeera, T. Kitamura, Y. Wada and S. Yanagida,”Photosensitization of nanocrystalline TiO2 films by a polymer with two carboxylic groups, poly(3-thiophenemalonic acid)”, Solar Energy Materials and Solar Cells, Vol. 88, 315–322, 2005.

[28] Y. Gu, K. Kumar, A. Lin, I. Read, M.B. Zimmt and D.H. Waldeck, “Studies into the character of electronic coupling in electron transfer reactions”, Journal of Photochemistry and Photobiology A : Chemistry, Vol. 105, 189-196, 1997.

[29] A. R. Noble-Luginbuhl and R. G. Nuzzo, “Assembly and characterization of SAMs formed by the adsorption of alkanethiols on zinc selenide substrates”, Langmuir, Vol. 17, 3937-3944, 2001.

[30] M. J. Hostetler, A. C. Templeton and R.W. Murray, “Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules”, Langmuir, Vol. 15, 3782-3789, 1999.

[31] J. Li, L. Zhu, Y. Wu, Y. Harima, A. Zhang and H. Tang, “Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization”, Polymer, Vol. 47, 7361-7367, 2006.

[32] G. K. R. Senadeera, T. Kitamura, Y. Wadab and S. Yanagida, “Enhanced photoresponses of polypyrrole on surface modified TiO2 with self-assembled monolayers”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 184, 234–239, 2006.

[33] T. Kondo and K. Uosaki, “Self-assembled monolayers (SAMs) with photo-functionalities”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 8, 1–17, 2007.

[34] A. Kathiravan, M. Chandramohan, R. Renganathan and S. Sekar, “Photoinduced electron transfer from phycoerythrin to colloidal metal semiconductor nanoparticles”, Spectrochimica Acta Part A, Vol. 72, 496-501, 2009.

[35] J. Livage, M. Henry and C. Sanchez, “Sol-gel chemistry of transition metal oxides”, Journal of Solid State Chemistry, Vol.18, 259-341, 1988.

[36] H. Shin, H. S. Jung, K. S. Hong and J. K. Lee, “Crystallization process of TiO2 nanoparticles in an acidic solution”, Chemistry Letters, Vol. 33, 1382-1383, 2004.

[37] N. Phonthammachai, T. Chairassameewong, E. Gulari, A. M. Jamieson and S. Wongkasemjit, “Structural and rheological aspect of mesoporous nanocrystalline TiO2 synthesized via sol-gel process”, Microporous and Mesoporous Materials, Vol. 66, 261-271, 2003.

[38] S. Mahshid, M. Askari and M. Sasani Ghamsari, “Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution”, Journal of Materials Processing Technology, Vol. 189, 296-300, 2007.

[39] X. Z. Ding, Z.Z. Qi and Y. Z. He, “Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a sol-gel process”, Journal of Materials Science Letters, Vol. 14, 21-22, 1995.

[40] D. Vorkapic and T. Matsoukas, “Effect of temperature and alcohols in the preparation of titanium from alkoxides”, The American Ceramic Society, Vol. 81, 2815-2820, 1998.

[41] R. J. Errington, J. Ridland, W. Clegg, R. A. Coxall and J. M. Sherwood, “β-diketonate derivatives of titanium alkoxides:X-ray crystal structures and solution dynamics of the binuclear complexes[{Ti(OR)3(dik)}2]”, Polyhedron, Vol. 17, 659-674, 1998.

[42] C. J Brinker and G. W. Scherer, “Sol-gel science: The physics and chemistry of sol-gel processing”, Academic press, 52-59 , 1990

[43] D. Banerjea and Z. Anorg,” Kinetics and mechanism of dissociation of metal chelates. V. Dissociation of tris-acetylacetonato-chromium(III). With 4 figures”, Allgemeine Chemie, Vol. 359, 305-312, 1968.

[44] K. Ishibashi, Y. Nosaka, K. Hashimoto and A. Fujishima, “Time-dependent behavior of active oxygen species formed on photoirradiated TiO2 films in air”, The Journal of Physical Chemistry B, Vol. 102, 2117-2120, 1998.

[45] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J. M. Herrmann,” Photocatalytic degradation pathway of methylene blue in water”, Applied Catalysis B: Environmental, Vol. 31, 145-157, 2001.

[46] J. D. Liao, H. J. Chen, C. W. Chang, S. M. Chiu and Z. S. Chen, “Thin-film photo-catalytic TiO2 phase prepared by magnetron sputtering deposition, plasma ion implantation and metal vapor vacuum arc source”, Thin Solid Films, Vol. 515, 176 -185, 2006.

[47] R. Yamada, H. Wano and K. Uosaki, “Effect of temperature on structure of the self-assembled monolayer of decanethiol on Au(111) surface”, Langmuir, Vol. 16, 5523, 2000

[48] M. Ohring, “Materials science of thin films-deposition and structure”, Academic press, 357-360, 2002.

[49] 林士廷,「有機發光二極體光源之偏極化研究」,國立成功大學光電科學與工程研究所,2004。

[50] G. Brocks and A. Tol, “Small band gap semiconducting polymers made from dye molecules: polysquaraines”, The Journal of Physical Chemistry, Vol. 100, 1838-1846, 1996

[51] 林育全、黃富駿、陳信宏、張文耀、蘇中源,「CO2雷射雕刻機」,國科會南區微系統微研究中心,1-27,2004。

[52] 汪建民主編,「材料分析」,中國材料科學學會,73-82,1998。

------------------------------------------------------------------------ 第 8 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915260405
論文名稱(中文) 單晶銳鈦礦奈米棒之光電極形態對染料敏化太陽能電池性能之影響
論文名稱(英文) Effect of photoelectrode morphology of single-crystalline anatase nanorods on the performance of dye-sensitized solar cells
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 施文琮
學號 n3696427
學位類別 碩士
語文別 英文
口試日期 2009-07-10
論文頁數 61頁
口試委員 口試委員-陳明
口試委員-何國川
指導教授-郭炳林
口試委員-吳季珍
口試委員-李玉郎
關鍵字(中) 銳鈦礦
二氧化鈦
單晶
奈米棒
染料敏化太陽能電池
熱穩定性
分散性
關鍵字(英) TiO2
nanorods
dye-sensitized solar cell
single-crystal
anatase
dispersity
thermal stability
學科別分類
中文摘要 本研究利用兩階段水熱反應合成出二氧化鈦,經由TEM、XRD、Raman、HR-TEM及BET鑑定下,可發現合成出的二氧化鈦為單晶的anatase奈米棒且具有相當的表面積。利用修改後的凝膠-溶膠法可製備更長的二氧化鈦奈米棒。二氧化鈦奈米棒具高分散性及無大的聚集體,所以可製造結構緊密且無裂痕的二氧化鈦薄膜。
以terpineol為基底的二氧化鈦奈米棒與P25漿料製成的電極,在染料敏化太陽能電池上可獲得相同的光電轉化效能(4.57 %)。由於奈米棒薄膜具有較佳的導電性及透明度,但也因此缺乏散射性,所以為了提高效能,添加適量的散射粒子(P25)與奈米棒混,其重量比分別為:25 wt% (P1/R3)、50 wt% (P1/R1)與75 wt% (P3/R1),可在P1/R3和P1/R1獲得更高轉化效能5.18 %和5.08 %。同時我們觀察到二氧化鈦奈米棒薄膜有良好熱穩定性,在經過550C燒結後依然保有其形態與單晶性。最後,改善電池組裝製程可提高P25的效率從4.57 %到4.88 %,二氧化鈦奈米棒甚至可達5.67 %。
英文摘要 The single-crystalline anatase TiO2 nanorods (NRs) have been synthesized by two steps in hydrothermal reaction and characterized by TEM, HR-TEM and BET. TiO2 NRs are also identified by Raman and XRD, presented only existence of anatase phase. Long TiO2 NRs (LNRs) also can be prepared by a modified gel-sol process. Monodispersed TiO2 NR particles exhibit high dispersity without large agglomerates, which result in a compact and crack-free TiO2 thin film.
The light-to-electricity of terpineol-based TiO2 pastes with TiO2 NRs and P25 electrodes in dye-sensitized solar cell is obtained the same conversion efficiency 4.57 %. Owing to TiO2 NRs have better conductivity, transparency but lack of scattering property; three different P25/NRs composites are prepared with 25 wt% (P1/R3), 50 wt% (P1/R1), and 75 wt% (P3/R1) NRs, respectively. Higher conversion efficiency of 5.18 % and 5.08 % are achieved by P1/R3 and P1/R1, respectively, due to cooperation of suitable combination of NRs and scattering particulate P25. We also observed that the TiO2 NR film have good thermal stability because of maintaining its morphology and single-crystalline phase even though after sintering at 550 ℃. Finally, an enhancement of efficiency from 4.57 % to 4.88 % and even 5.67 % for P25 and TiO2 NRs, respectively, results from an improved cell assembly procedure.
論文目次 摘要......................................................I
Abstract.................................................II
誌謝....................................................III
Table of Contents........................................IV
List of Tables..........................................VII
List of Figures........................................VIII

Chapter 1. Introduction...................................1
Chapter 2. Literature Review..............................7
2.1 Semiconductor Solar Cells...........................7
2.2 Dye-Sensitized Solar Cells..........................8
2.2.1 Working Principle of DSSC......................10
2.2.2 Structure and Materials of DSSC................12
2.2.2.1 Transparent Conduction Oxide Substrate.....12
2.2.2.2 Semiconductor Electrode....................12
2.2.2.3 Ru Complex Photosensitizer.................13
2.2.2.4 Redox Electrolyte..........................15
2.2.2.5 Counter Electrode..........................16
2.3 Titanium Dioxide...................................17
2.4 The Paste for Screen Printing......................20
Chapter 3. Experimental Section..........................21
3.1 Materials..........................................21
3.2 Produce of TiO2 Nanorod and Paste..................22
3.2.1 Preparation of TiO2 Nanorod....................22
3.2.2 Preparation of TiO2 Paste......................22
3.3 Fabrication of Dye-Sensitized Solar Cells..........23
3.3.1 Preparation of TiO2 Electrode..................23
3.3.2 Dye Adsorption of TiO2 Film....................23
3.3.3 Preparation of Electrolyte.....................24
3.3.4 Preparation of Counter Electrode...............24
3.3.5 Assembling Dye-Sensitized Solar Cells..........24
3.4 Characterization and Measurements..................25
3.4.1 Electron Microscopy............................25
3.4.2 Dynamic Light Scattering.......................26
3.4.3 X-ray Diffraction..............................26
3.4.4 Raman Spectroscopy.............................27
3.4.5 UV-visible Spectroscopy........................27
3.4.6 N2 Adsorption/Desorption Isotherm..............27
3.4.7 Photovoltaic Performance.......................28
Chapter 4. Results and Discussion........................30
4.1 Titania NRs and Paste..............................30
4.2 Photoelectrodes Based on P25/NRs Composites........36
4.3 DSSCs Based on P25/NRs Composites..................39
4.4 Thermal Stability of Anatase NR Films..............47
4.5 An Improved Cell Assembly Process..................50
Chapter 5. Conclusions...................................53
References...............................................54
參考文獻 [1]H. Scheer P. Sonnenstrategie, Alternative, "Worldwatch Institute report, state of the world; annual reports," W. W. Norton & Company, New York (1993).
[2]U.S. Census Bureau, "Statistical Abstract of the United States 2007," Washington, DC: U.S. Census Bureau (2007).
[3]D. Pimentel (ed.), "Biofuels, Solar and Wind as Renewable Energy Systems," Springer Science, B.V. (2008).
[4]www.eren.doe.gov/ erec/factsheets / eewindows.html, "Consumer energy information: EREC fact sheets. Retrieved October 20, 2002," U.S. Department of Energy (2000).
[5]"Energy efficiency and renewable energy network. Retrieved October 20, 2002," www.eren.doe.gov/stateenergy/tech solar.cfm?state=NY U.S. Department of Energy (2001).
[6]M. A. Green, "Third generation photovoltaics: Ultra-high conversion efficiency at low cost," Progress in Photovoltaics 9 (2), 123-135 (2001).
[7]P. Maycock, "Renewable Energy World," 86 (2005).
[8]K. W. J. Barnham, M. Mazzer, and B. Clive, "Resolving the energy crisis: nuclear or photovoltaics?," Nature Materials 5 (3), 161-164 (2006).
[9]B. O'Regan and M. Grtzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature 353 (6346), 737-740 (1991).
[10]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos, and M. Grtzel, "Conversion of light to electricity by cis-X2bis (2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes," Journal of the American Chemical Society 115 (14), 6382-6390 (1993).
[11]S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, and M. Grtzel, "Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells," Progress in Photovoltaics 15 (7), 603-612 (2007).
[12]P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, and M. Grtzel, "Enhance the performance of dye-sensitized solar cells by Co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals," Journal of Physical Chemistry B 107 (51), 14336-14341 (2003).
[13]S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S. M. Zakeeruddin, and M. Grtzel, "Photovoltaic characterization of dye-sensitized solar cells: Effect of device masking on conversion efficiency," Progress in Photovoltaics 14 (7), 589-601 (2006).
[14]A. J. Frank, N. Kopidakis, and J. van de Lagemaat, "Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties," Coordination Chemistry Reviews 248 (13-14), 1165-1179 (2004).
[15]L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, and F. Levy, "High mobility n-type charge carriers in large single crystals of anatase (TiO2)," Journal of Applied Physics 75 (1), 633-635 (1994).
[16]S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida, "Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells," Journal of Physical Chemistry B 106 (39), 10004-10010 (2002).
[17]A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, "Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells," Journal of Physical Chemistry B 104 (5), 949-958 (2000).
[18]T. Oekermann, D. Zhang, T. Yoshida, and H. Minoura, "Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization," Journal of Physical Chemistry B 108 (7), 2227-2235 (2004).
[19]A. Goetzberger, C. Hebling, and H. W. Schock, "Photovoltaic materials, history, status and outlook," Materials Science & Engineering R-Reports 40 (1), 1-46 (2003).
[20]L. Manna, E. C. Scher, and A. P. Alivisatos, "Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals," Journal of the American Chemical Society 122 (51), 12700-12706 (2000).
[21]M. Nirmal and L. Brus, "Luminescence photophysics in semiconductor nanocrystals," Accounts of Chemical Research 32 (5), 407-414 (1999).
[22]S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, "Photoluminescence from single semiconductor nanostructures," Advanced Materials 11 (15), 1243-1256 (1999).
[23]G. Schlichthorl, S. Y. Huang, J. Sprague, and A. J. Frank, "Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy," Journal of Physical Chemistry B 101 (41), 8141-8155 (1997).
[24]L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, and I. Uhlendorf, "Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy," Journal of Physical Chemistry B 101 (49), 10281-10289 (1997).
[25]M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grtzel, "Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell," Journal of Physical Chemistry B 107 (34), 8981-8987 (2003).
[26]M. Grtzel, "Dye-sensitized solar cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4 (2), 145-153 (2003).
[27]A. F. Nogueira, C. Longo, and M. A. De Paoli, "Polymers in dye sensitized solar cells: overview and perspectives," Coordination Chemistry Reviews 248 (13-14), 1455-1468 (2004).
[28]C. Longo and M. A. De Paoli, "Dye-sensitized solar cells: A successful combination of materials," Journal of the Brazilian Chemical Society 14 (6), 889-901 (2003).
[29]R. Argazzi, C. A. Bignozzi, T. A. Heimer, F. N. Castellano, and G. J. Meyer, "Enhanced Spectral Sensitivity from Ruthenium(II) Polypyridyl Based Photovoltaic Devices," Inorganic Chemistry 33 (25), 5741-5749 (1994).
[30]K. S. Finnie, J. R. Bartlett, and J. L. Woolfrey, "Vibrational spectroscopic study of the coordination of (2,2 '-bipyridyl-4,4 '-dicarboxylic acid)ruthenium(II) complexes to the surface of nanocrystalline titania," Langmuir 14 (10), 2744-2749 (1998).
[31]M. K. Nazeeruddin, M. Amirnasr, P. Comte, J. R. Mackay, A. J. McQuillan, R. Houriet, and M. Grtzel, "Adsorption studies of counterions carried by the sensitizer cis-dithiocyanato(2,2 '-bipyridyl-4,4 '-dicarboxylate) ruthenium(II) on nanocrystaline TiO2 films," Langmuir 16 (22), 8525-8528 (2000).
[32]K. Murakoshi, G. Kano, Y. Wada, S. Yanagida, H. Miyazaki, M. Matsumoto, and S. Murasawa, "Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell," Journal of Electroanalytical Chemistry 396 (1-2), 27-34 (1995).
[33]K. Sayama, H. Sugihara, and H. Arakawa, "Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye," Chemistry of Materials 10 (12), 3825-3832 (1998).
[34]A. Luque S. Hegedus, "Handbook of photovoltaic science and engineering," Wiley, 669 (2003).
[35]K. Kalyanasundaram and M. Grtzel, "Applications of functionalized transition metal complexes in photonic and optoelectronic devices," Coordination Chemistry Reviews 177, 347-414 (1998).
[36]G. Oskam, B. V. Bergeron, G. J. Meyer, and P. C. Searson, "Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells," Journal of Physical Chemistry B 105 (29), 6867-6873 (2001).
[37]Z. Kebede and S. E. Lindquist, "The obstructed diffusion of the I3- ion in mesoscopic TiO2 membranes," Solar Energy Materials and Solar Cells 51 (3-4), 291-303 (1998).
[38]Y. Liu, A. Hagfeldt, X. R. Xiao, and S. E. Lindquist, "Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell," Solar Energy Materials and Solar Cells 55 (3), 267-281 (1998).
[39]D. Kuciauskas, M. S. Freund, H. B. Gray, J. R. Winkler, and N. S. Lewis, "Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes," Journal of Physical Chemistry B 105 (2), 392-403 (2001).
[40]N. Papageorgiou, W. F. Maier, and M. Grtzel, "An iodine/triiodide reduction electrocatalyst for aqueous and organic media," Journal of the Electrochemical Society 144 (3), 876-884 (1997).
[41]H. Wang, C. T. Yip, K. Y. Cheung, A. B. Djurisic, M. H. Xie, Y. H. Leung, and W. K. Chan, "Titania-nanotube-array-based photovoltaic cells," Applied Physics Letters 89 (2), 3 (2006).
[42]S. J. Roh, R. S. Mane, S. K. Min, W. J. Lee, C. D. Lokhande, and S. H. Han, "Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells," Applied Physics Letters 89 (25), 3 (2006).
[43]Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, "Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell," Coordination Chemistry Reviews 248 (13-14), 1381-1389 (2004).
[44]S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S. Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki, and S. Yoshikawa, "Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure," Journal of Photochemistry and Photobiology A: Chemistry 164 (145), 145-151 (2004).
[45]J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, "TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells," Journal of Photochemistry and Photobiology a-Chemistry 180 (1-2), 184-188 (2006).
[46]Y. Chiba, A. Islam, R. Komiya, N. Koide, and L. Y. Han, "Conversion efficiency of 10.8% by a dye-sensitized solar cell using a TiO2 electrode with high haze," Applied Physics Letters 88 (22), 3 (2006).
[47]B. Tan and Y. Y. Wu, "Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites," Journal of Physical Chemistry B 110 (32), 15932-15938 (2006).
[48]I. C. Flores, J. N. de Freitas, C. Longo, M. A. De Paoli, H. Winnischofer, and A. F. Nogueira, "Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte," Journal of Photochemistry and Photobiology A: Chemistry 189 (2-3), 153-160 (2007).
[49]C. J. Lin, W. Y. Yu, and S. H. Chien, "Effect of anodic TiO2 powder as additive on electron transport properties in nanocrystalline TiO2 dye-sensitized solar cells," Applied Physics Letters 91 (23), 3 (2007).
[50]J. J. Wu, G. R. Chen, C. C. Lu, W. T. Wu, and J. S. Chen, "Performance and electron transport properties of TiO2 nanocomposite dye-sensitized solar cells," Nanotechnology 19 (10), 7 (2008).
[51]K. Asagoe, S. Ngamsinlapasathian, Y. Suzuki, and S. Yoshikawa, "Addition of TiO2 nanowires in different polymorphs for dye-sensitized solar cells," Central European Journal of Chemistry 5 (2), 605-619 (2007).
[52]U. Diebold, "The surface science of titanium dioxide," Surface Science Reports 48 (5-8), 53-229 (2003).
[53]M. Adachi, Y. Murata, J. Takao, J. T. Jiu, M. Sakamoto, and F. M. Wang, "Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism," Journal of the American Chemical Society 126 (45), 14943-14949 (2004).
[54]J. T. Jiu, S. Isoda, F. M. Wang, and M. Adachi, "Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film," Journal of Physical Chemistry B 110 (5), 2087-2092 (2006).
[55]W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, "Hybrid nanorod-polymer solar cells," Science 295 (5564), 2425-2427 (2002).
[56]P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Grtzel, D. D. C. Bradley, J. R. Durrant, and J. Nelson, "Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer," Journal of Physical Chemistry B 110 (15), 7635-7639 (2006).
[57]Y. F. Gao and M. Nagai, "Morphology evolution of ZnO thin films from aqueous solutions and their application to solar cells," Langmuir 22 (8), 3936-3940 (2006).
[58]S. Uchida, R. Chiba, M. Tomiha, N. Masaki, and M. Shirai, "Application of titania nanotubes to a dye-sensitized solar cell," Electrochemistry 70 (6), 418-420 (2002).
[59]D. S. Tsoukleris, I. M. Arabatzis, E. Chatzivasilogiou, A. I. Kontos, V. Belessi, M. C. Bernard, and P. Falaras, "2-Ethyl-1-hexanol based screen-printed titania thin films for dye-sensitized solar cells," Solar Energy 79 (4), 422-430 (2005).
[60]D. S. Zhang, S. Ito, Y. J. Wada, T. Kitamura, and S. Yanagida, "Nanocrystalline TiO2 electrodes prepared by water-medium screen printing technique," Chemistry Letters 30 (10), 1042-1043 (2001).
[61]T. L. Ma, T. Kida, M. Akiyama, K. Inoue, S. J. Tsunematsu, K. Yao, H. Noma, and E. Abe, "Preparation and properties of nanostructured TiO2 electrode by a polymer organic-medium screen-printing technique," Electrochemistry Communications 5 (4), 369-372 (2003).
[62]M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. G. Grtzel, "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers," Journal of the American Chemical Society 127 (48), 16835-16847 (2005).
[63]T. Sugimoto, X. P. Zhou, and A. Muramatsu, "Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 3. Formation process and size control," Journal of Colloid and Interface Science 259 (1), 43-52 (2003).
[64]T. Sugimoto, X. P. Zhou, and A. Muramatsu, "Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 4. Shape control," Journal of Colloid and Interface Science 259 (1), 53-61 (2003).
[65]W. R. Moser, "Advanced Catalysts and Nanostructured Materials," Academic Press (1996).
[66]M. Schiavello E. Pelizzetti, "Photochemical ConVersion and Storage of Solar energy," Springer (1991).
[67]J. Karch, R. Birringer, and H. Gleiter, "CERAMICS DUCTILE AT LOW-TEMPERATURE," Nature 330 (6148), 556-558 (1987).
[68]Y. F. Zhu, J. J. Shi, Z. Y. Zhang, C. Zhang, and X. R. Zhang, "Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide," Analytical Chemistry 74 (1), 120-124 (2002).
[69]B. L. Bischoff and M. A. Anderson, "Peptization Process in the Sol-Gel Preparation of Porous Anatase (TiO2)," Chemistry of Materials 7 (10), 1772-1778 (1995).
[70]J. Nelson, "Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes," Physical Review B 59 (23), 15374-15380 (1999).
[71]J. Nelson, S. A. Haque, D. R. Klug, and J. R. Durrant, "Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes," Physical Review B 63 (20), 9 (2001).
[72]P. D. Cozzoli, A. Kornowski, and H. Weller, "Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods," Journal of the American Chemical Society 125 (47), 14539-14548 (2003).
[73]A. S. Barnard and P. Zapol, "Predicting the energetics, phase stability, and morphology evolution of faceted and spherical anatase nanocrystals," Journal of Physical Chemistry B 108 (48), 18435-18440 (2004).
[74]L. Miao, S. Tanemura, S. Toh, K. Kaneko, and M. Tanemura, "Fabrication, characterization and Raman study of anatase TiO2 nanorods by a heating-sol-gel template process," Journal of Crystal Growth 264 (1-3), 246-252 (2004).
[75]R. L. Penn and J. F. Banfield, "Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania," Geochimica Et Cosmochimica Acta 63 (10), 1549-1557 (1999).
[76]J. D. Donnay D. Harker, "A new law of crystal morphology extending the Law of Bravais," American Mineralogist 22, 446-467 (1937).
[77]N. G. Park, J. van de Lagemaat, and A. J. Frank, "Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells," Journal of Physical Chemistry B 104 (38), 8989-8994 (2000).
[78]A. G. Agrios, I. Cesar, P. Comte, M. K. Nazeeruddin, and M. Gratzel, "Nanostructured composite films for dye-sensitized solar cells by electrostatic layer-by-layer deposition," Chemistry of Materials 18 (23), 5395-5397 (2006).
[79]C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, "Nanocrystalline titanium oxide electrodes for photovoltaic applications," Journal of the American Ceramic Society 80 (12), 3157-3171 (1997).
[80]S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, "Influence of scattering layers on efficiency of dye-sensitized solar cells," Solar Energy Materials and Solar Cells 90 (9), 1176-1188 (2006).
[81]T. Beppu, S. Yamaguchi, and S. Hayase, "Improvement of heat resistant properties of TiO2 nanowires and application to dye-sensitized solar cells," Japanese Journal of Applied Physics 46 (7A), 4307-4311 (2007).
[82]M. S. Dresselhaus, Y. M. Lin, O. Rabin, A. Jorio, A. G. Souza, M. A. Pimenta, R. Saito, G. G. Samsonidze, and G. Dresselhaus, "Nanowires and nanotubes," Materials Science and Engineering: C 23 (1-2), 129-140 (2003).
[83]G. Rothenberger, P. Comte, and M. Grtzel, "A contribution to the optical design of dye-sensitized nanocrystalline solar cells," Solar Energy Materials and Solar Cells 58 (3), 321-336 (1999).
[84]H. S. Jung, S. W. Lee, J. Y. Kim, K. S. Hong, Y. C. Lee, and K. H. Koh, "Correlation between dispersion properties of TiO2 colloidal sols and photoelectric characteristics of TiO2 films," Journal of Colloid and Interface Science 279 (2), 479-483 (2004).
[85]M. Adachi, T. Harada, and M. Harada, "Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/ tetraethoxysilane system," Langmuir 15 (21), 7097-7100 (1999).

------------------------------------------------------------------------ 第 9 筆 ---------------------------------------------------------------------
系統識別號 U0026-1008201014162600
論文名稱(中文) 利用陳化處理二氧化鈦/禾樂石複合光觸媒粉末之影響
論文名稱(英文) Effects of aging on TiO2/halloysite composite used as photocatalyst
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 陳建誌
學號 n4697118
學位類別 碩士
語文別 中文
口試日期 2010-06-30
論文頁數 79頁
口試委員 指導教授-黃紀嚴
口試委員-溫紹炳
口試委員-申永輝
關鍵字(中) 二氧化鈦
禾樂石
陳化處理
光觸媒
相轉換
關鍵字(英) TiO2
halloysite
aging
photocatalyst
anatase
phase transformation
學科別分類
中文摘要 摘要
光觸媒是一種藉由光產生光化學反應的物質,可分解多數的有害化學物質,對於提升環境淨化技術有相當大的助益。二氧化鈦因具有能隙大且無毒的特性,因而在光觸媒材料中被廣泛的使用,但二氧化鈦卻有低比表面積及熱穩定不佳的缺點,使其在發展上有所限制,如何改善其缺點則為現今學者研究的重點之一。
本研究利用陳化製程改進溶膠凝膠法製得的二氧化鈦/禾樂石複合粉末,複合粉末藉由異質成核機制,可以提高其比表面積,但卻無法有效解決二氧化鈦部分團聚的問題。透過陳化處理複合粉末,不僅可以控制二氧化鈦晶粒成長速率,並達到改善低比表面積及熱穩定不佳的目的。於商業應用上,二氧化鈦與禾樂石皆為白色粉末,較低價的禾樂石與二氧化鈦複合後可部分取代二氧化鈦,達到節省原料之效。
本研究將複合粉末利用XRD、BET、SEM等儀器推測其核為禾樂石,微小之二氧化鈦粒子披覆其上,藉由FTIR確認二氧化鈦與禾樂石接合情形,並發現經過陳化處理過的複合粉末具有較高的比表面積及熱穩定性。在光反應降解亞甲基藍測試方面,施以陳化處理之複合粉末具有超越未陳化處理之複合粉末之光催化效果,並超越市售P25光觸媒,主要原因為陳化製程能有效解決二氧化鈦部分團聚之問題,提升光反應之效能。
英文摘要 Abstract
TiO2 has the characteristics of large band gap and non-toxic, and therefore is extensively used as a photocatalyst material. Recent researches show that how to overcome the deficiencies to increase the activity of TiO2 due to its low surface area.
In this study, halloysite is used as substrate for loading TiO2 particles, which was prepared by sol-gel method. Aging treatment may modify the agglomeration and decrease crystallite size of TiO2.The transformation temperature of anatase-to-rutile phase was postponed because of heterogeneous nucleation mechanism and aging treatment. In commercial applications, more low-cost halloysite could partially replace the composite of TiO2 to reduce costs efficiency in raw materials.
The composite powders were characterized by XRD, BET, SEM and so on for assuming that halloysite is regarded as substrate and TiO2 is dispersed on it. The surface area increased from 24.65 m2/g to 32.217 m2/g at 750℃ after aging. The transformation temperature of anatase-to-rutile phase increased from 650℃ to 850℃. The result of FTIR confirmed the chemical bonding of Si-O-Ti, and found that aged composite powders with high specific surface area and thermal stability. The results of MB degradation showed the photoactivity of the aged composite was higher than which without aged composite.

論文目次 總目錄
摘要 I
Abstract II
致謝 III
總目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 3
第二章 理論基礎 4
2-1 禾樂石簡介 4
2-1-1 禾樂石結構 4
2-2 二氧化鈦簡介 6
2-2-1 二氧化鈦結構 6
2-2-2 光觸媒反應原理 10
2-2-3 二氧化鈦光催化機制 12
2-3 溶膠凝膠(sel-gel)法及鍵結模式 17
2-3-1 各式光觸媒的製備 17
2-3-2 溶膠凝膠法 20
2-3-3 影響溶膠凝膠法的因素 22
2-3-4 沉澱後的陳化處理 26
2-3-5 二氧化鈦/禾樂石複合粉末鍵結模式 27
2-3-6 關於TiO2相變動力學的前人研究 28
第三章 實驗方法與步驟 29
3-1 實驗藥品 29
3-2 實驗方式及流程 30
3-2-1 實驗方式簡述 30
3-2-2 起始膠體製備 31
3-2-3 熱處理條件 32
3-2-4 未陳化處理複合粉末製備 32
3-3 性質分析 35
3-3-1 物理性質分析 35
第四章 結果與討論 43
4-1 物理性質分析 44
4-1-1 熱行為分析 44
4-1-2 結晶相鑑定及結晶晶徑分析 47
4-1-3 粉末粒徑與比表面積分析 52
4-1-4 粉末表面鍵結 57
4-1-5 粉末型態與微結構觀察 59
4-2 光催化效能測試 67
第五章 結論與建議 74
參考文獻 75

參考文獻 參考文獻
[1]A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238 (1972) 37-+.
[2]S.R. Levis, P.B. Deasy, Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm 243 (2002) 125-134.
[3]A. Singer, M. Zarei, F.M. Lange, K. Stahr, Halloysite characteristics and formation in the northern Golan Heights. Geoderma 123 (2004) 279-295.
[4]C. Klein, J. C.S. Hurlbut, Manual of mineralogy/21st ed., John Wiley & Sons, Inc., 1993.
[5]行政院文化建設委員會, 台灣大百科全書, in, 2007.
[6]X. Ma, W.J. Bruckard, R. Holmes, Effect of collector, pH and ionic strength on the cationic flotation of kaolinite. Int J Miner Process 93 (2009) 54-58.
[7]林佩蓉, 利用溶膠凝膠法製備二氧化鈦-活性碳複合粉末及光催化效果之研究. 國立成功大學資源工程研究所碩士論文 (2007).
[8]I. Bedja, P.V. Kamat, Capped Semiconductor Colloids - Synthesis and Photoelectrochemical Behavior of TiO2-Capped Sno2 Nanocrystallites. J Phys Chem-Us 99 (1995) 9182-9188.
[9]A. Giraudeau, F.-R.F. Fan, A.J. Bard, Semiconductor electrodes. 30. Spectral sensitization of the semiconductors titanium oxide (n-TiO2) and tungsten oxide (n-WO3) with metal phthalocyanines. Journal of the American Chemical Society 102 (1980) 5137–5142.
[10]R.W. Fessenden, P.V. Kamat, Rate Constants for Charge Injection from Excited Sensitizer into SnO2, ZnO, and TiO2 Semiconductor Nanocrystallites. J Phys Chem-Us 102 (1995) 12902–12906.
[11]P.D. Cozzoli, R. Comparelli, E. Fanizza, M.L. Curri, A. Agostiano, D. Laub, Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. Journal of the American Chemical Society 126 (2004) 3868-3879.
[12]N. Serpone, E. Pelizzetti, M. Gratzel, Photosensitization of Semiconductors with Transition-Metal Complexes - a Route to the Photoassisted Cleavage of Water. Coordin Chem Rev 64 (1985) 225-245.
[13]A. Mills, S. LeHunte, An overview of semiconductor photocatalysis. J Photoch Photobio A 108 (1997) 1-35.
[14]M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis. Chem Rev 95 (1995) 69-96.
[15]I. Willner, Photoswitchable biomaterials: En route to optobioelectronic systems. Accounts Chem Res 30 (1997) 347-356.
[16]白曛綾, 光觸媒技術控制都市空氣污染之應用, in, 2003.
[17]Y.M. Xu, W. Zheng, W.P. Liu, Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2. J Photoch Photobio A 122 (1999) 57-60.
[18]K.M. Reddy, S.V. Manorama, A.R. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys 78 (2003) 239-245.
[19]K. Nagaveni, M.S. Hegde, N. Ravishankar, G.N. Subbanna, G. Madras, Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20 (2004) 2900-2907.
[20]C.H. Hung, B.J. Marinas, Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films. Environ Sci Technol 31 (1997) 562-568.
[21]E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. Journal of the American Chemical Society 126 (2004) 7790-7791.
[22]K.J. Kim, K.D. Benkstein, J. van de Lagemaat, A.J. Frank, Characteristics of low-temperature annealed TiO2 films deposited by precipitation from hydrolyzed TiCl4 solutions. Chem Mater 14 (2002) 1042-1047.
[23]曹茂盛, 關長斌, 徐甲強, 奈米材料導論, 2002.
[24]李秉紘, 奈米二氧化鈦插層高嶺石/DMSO複合粉末製備光觸媒材料. 國立成功大學資源工程研究所碩士論文 (2008).
[25]楊子寬, 利用溶膠凝膠法製備TiO2-Al2O3粉末及對TiO2光催化效果影響之研究. 國立成功大學資源工程研究所碩士論文 (2006).
[26]R.S. Sonawane, S.G. Hegde, M.K. Dongare, Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating. Mater Chem Phys 77 (2003) 744-750.
[27]N. Kaliwoh, J.Y. Zhang, I.W. Boyd, Titanium dioxide films prepared by photo-induced sol-gel processing using 172 nm excimer lamps. Surf Coat Tech 125 (2000) 424-427.
[28]B.E. Yoldas, Hydrolysis of Titanium Alkoxide and Effects of Hydrolytic Polycondensation Parameters. J Mater Sci 21 (1986) 1087-1092.
[29]K.N.P. Kumar, J. Kumar, K. Keizer, Effect of Peptization on Densification and Phase-Transformation Behavior of Sol Gel-Derived Nanostructured Titania. J Am Ceram Soc 77 (1994) 1396-1400.
[30]S. Doeuff, M. Henry, C. Sanchez, J. Livage, Hydrolysis of Titanium Alkoxides - Modification of the Molecular Precursor by Acetic-Acid. J Non-Cryst Solids 89 (1987) 206-216.
[31]R. Aelion, A. Loebel, F. Eirich, Hydrolysis of Ethyl Silicate. Journal of the American Chemical Society 72 (1950) 5705-5712.
[32]吳炳佑, 含TiO2光催化膜之製備與性質. 國立中央大學化學工程研究所博士論文 (1995).
[33]H.Y. Ha, M.A. Anderson, Photocatalytic degradation of formic acid via metal-supported titania. J Environ Eng-Asce 122 (1996) 217-221.
[34]X.Z. Ding, Y.Z. He, Study of the room temperature ageing effect on structural evolution of gel-derived nanocrystalline titania powders. J Mater Sci Lett 15 (1996) 320-322.
[35]H.I. Hsiang, S.C. Lin, Effects of aging on nanocrystalline anatase-to-rutile phase transformation kinetics. Ceram Int 34 (2008) 557-561.
[36]M.N. Chong, V. Vimonses, S.M. Lei, B. Jin, C. Chow, C. Saint, Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst. Micropor Mesopor Mat 117 (2009) 233-242.
[37]D. Beydoun, R. Amal, Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst. Mat Sci Eng B-Solid 94 (2002) 71-81.
[38]Z.Z. Lu, M. Ren, H.B. Yin, A.L. Wang, C. Ge, Y.S. Zhang, L.B. Yu, T.S. Jiang, Preparation of nanosized anatase TiO2-coated kaolin composites and their pigmentary properties. Powder Technol 196 (2009) 122-125.
[39]M. Sabzi, S.M. Mirabedini, J. Zohuriaan-Mehr, M. Atai, Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog Org Coat 65 (2009) 222-228.
[40]E. Ukaji, T. Furusawa, M. Sato, N. Suzuki, The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter. Appl Surf Sci 254 (2007) 563-569.
[41]B.J. Ninness, D.W. Bousfield, C.P. Tripp, Formation of a thin TiO2 layer on the surfaces of silica and kaolin pigments through atomic layer deposition. Colloid Surface A 214 (2003) 195-204.
[42]C. Perego, R. Revel, O. Durupthy, S. Cassaignon, J.-P. Jolivet, Thermal stability of TiO2-anatase:Impact of nanoparticles morphology on kinetic phase transformation. Solid State Sci 12 (2009) 989-995.
[43]J.L. Hebrard, P. Nortier, M. Pijolat, M. Soustelle, Initial Sintering of Submicrometer Titania Anatase Powder. J Am Ceram Soc 73 (1990) 79-84.
[44]Y. Hu, H.L. Tsai, C.L. Huang, Effect of brookite phase on the anatase-rutile transition in titania nanoparticles. J Eur Ceram Soc 23 (2003) 691-696.
[45]許樹恩, 吳泰伯, X光繞射原理與材料結構分析, 1996.
[46]溫明璋, 奈米二氧化鈦粉體之製備與相轉換動力分析. 台灣大學化學工程研究所碩士論文 (2002).
[47]Y. Oguri, R.E. Riman, H.K. Bowen, Processing of Anatase Prepared from Hydrothermally Treated Alkoxy-Derived Hydrous Titania. J Mater Sci 23 (1988) 2897-2904.
[48]H.Z. Zhang, J.F. Banfield, New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles. Am Mineral 84 (1999) 528-535.
[49]H.J. Hofler, R.S. Averback, Grain-Growth in Nanocrystalline TiO2 and Its Relation to Vickers Hardness and Fracture-Toughness. Scripta Metall Mater 24 (1990) 2401-2406.
[50]S. Sivakumar, P.K. Pillai, P. Mukundan, K.G.K. Warrier, Sol-gel synthesis of nanosized anatase from titanyl sulfate. Mater Lett 57 (2002) 330-335.
[51]N. Uekawa, J. Kajiwara, K. Kakegawa, Y. Sasaki, Low temperature synthesis and characterization of porous anatase TiO2 nanoparticles. J Colloid Interf Sci 250 (2002) 285-290.
[52]D. Kibanova, M. Trejo, H. Destaillats, J. Cervini-Silva, Synthesis of hectorite-TiO2 and kaolinite-TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants. Appl Clay Sci 42 (2009) 563-568.
[53]Q.L. Cheng, C.Z. Li, V. Pavlinek, P. Saha, H.B. Wang, Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties. Appl Surf Sci 252 (2006) 4154-4160.
[54]Y.C. Ng, C.Y. Jei, M. Shamsuddin, Titanosilicate ETS-10 derived from rice husk ash. Micropor Mesopor Mat 122 (2009) 195-200.


------------------------------------------------------------------------ 第 10 筆 ---------------------------------------------------------------------
系統識別號 U0026-1204201118541300
論文名稱(中文) 染敏太陽能電池之二氧化鈦層結構與電子傳遞機制
論文名稱(英文) Structure and Electron Conveying Patterns of TiO2 Films in Dye-Sensitized Solar Cells
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 蕭博聰
學號 n3896110
學位類別 博士
語文別 英文
口試日期 2011-04-01
論文頁數 177頁
口試委員 指導教授-鄧熙聖
口試委員-何國川
口試委員-簡淑華
口試委員-刁維光
口試委員-楊明長
口試委員-郭炳林
口試委員-陳昭宇
關鍵字(中) 染料敏化太陽能電池
二氧化鈦
電子傳遞
結晶缺陷
銳鈦礦
X光吸收
Rietveld分析
水熱壓力
奈米管陣列
正面照光
電子收集效率
關鍵字(英) Dye-sensitized solar cells
Titanium dioxide
Electron transport
Crystal defect
Anatase
X-ray absorption fine structure spectroscopy
Rietveld refinement
Hydrothermal pressure
Nanotube arrays
Front illumination
Electron collecting efficiency
學科別分類
中文摘要 染敏太陽能電池的光電極是決定電池效能的關鍵元件。電極薄膜的形構必須具備高表面積與孔洞性結構之特性,高表面積提供更多染料分子的吸附,孔洞結構則使電解質易滲透其中進行反應。為了達此要求,電極薄膜通常是由奈米級的顆粒所堆疊而成。然而,顆粒間的晶界容易產生缺陷,不利電子傳遞,使得電子傳遞的速度降低,電子再結合機會上升。因此,如何有效分析薄膜缺陷以及探討缺陷對電子傳遞機制的改變,將提供未來改善電極薄膜的方向。
本論文探討二氧化鈦層的結構缺陷與電子傳遞機制,可分為四個主題:1.二氧化鈦奈米顆粒合成方式與燒結成膜對Ti4+周圍配位數之影響及作為光電極之應用;2.染敏太陽能電池中二氧化鈦奈米粒結晶層的電子傳遞特徵;3.結晶成長的水熱壓力對二氧化鈦顆粒結構與電子傳遞能力之影響;4.二氧化鈦一維奈米管陣列用於前照和背照式染敏太陽能電池的電子傳遞特徵。
第一部分,基於奈米結晶二氧化鈦奈米顆粒結晶層已被廣泛運用在光化學裝置的電子傳導層,此部分利用X光吸收光譜研究二氧化鈦anatase結晶相之奈米顆粒與其成膜後的晶格扭曲。二氧化鈦奈米顆粒經由titanate中間相脫水與溶膠-凝膠法合成,分別命名為AN和AN-br,其中AN為純anatase相,而AN-br除了anatase相外還包含brookite和rutile相。X光吸收光譜顯示這二種樣品在成膜前的Ti-O配位數相差不大,但透過燒結成膜後,Sol-Gel的Ti-O配位數有明顯的下降,表示晶格缺陷增加,不利於電子傳遞。此明顯的下降歸因於額外的結晶相(brookite和rutile)造成晶界處的晶格扭曲增加,也說明形成純結晶相的重要性。
在第二部分中,我們利用Rietveld分析X光繞射圖譜得知結晶結構資訊與結晶成分比例,目標物為AN與AN-br二氧化鈦奈米顆粒與奈米結晶膜。分析結果顯示AN-br的結晶含量為:71.8% anatase、27% brookite和1.2% rutile,以及較多的氧空缺於奈米結晶膜內(相較於AN所構成之薄膜),導致後續所製備電池的閉環電流與效率隨氧空缺增加而下降。我們亦發現結晶缺陷會形成trap state,使電子的傳遞機制分為trap-free與trap-limited的模式。進一步從交流阻抗分析儀發現trap-free的傳遞方式可延伸電子傳遞距離,增加電子收集效率。
第三部分改變壓力釜內殘餘體積控制結晶成長壓力並固定溫度為250 ºC,研究壓力對二氧化鈦顆粒的結構與電子傳遞特性之影響。電子穿透式顯微鏡和X光繞射圖譜顯示非結晶相二氧化鈦的比例隨合成壓力上升而增加,但Ti空缺率則是下降,這說明適當的合成壓力可獲得適合的結體結構。X光吸收光譜則顯示Ti-O的配位數隨壓力提升而增加,直至壓力達到100 bar才開始下降。因此,在100 bar下合成的二氧化鈦所製備的電池顯現最佳的效率。交流阻抗分析儀亦證實此壓力下合成的顆粒所構成的電極薄膜擁有最高的電子收集效率,說明合成壓力改變薄膜缺陷的多寡,決定最後的電池效率。
最後的部分,我們將一維二氧化鈦奈米管陣列取代奈米顆粒結晶膜作為染敏太陽能電池的光電極材料,奈米管的長度介於17至37 m間,此電池裝置適用於前面照光與背面照光的模式,其中由30 m的奈米管薄膜所製備的電池於前面照光的模式下產生最高的電池效率。儘管奈米管提供直接的電子傳遞路徑,電子的傳遞仍受限於缺陷的影響,這由於管壁內存在晶界結構。此外,不同的照光模式將改變電子傳遞的機制:正面照光下,電子的傳遞包括trap-free與trap-limited的模式;然而,背面照光使電子只能以trap-limited的模式傳遞。對於正面照光的電池而言,trap-free的傳遞模式決定電池的效率。交流阻抗分析儀發現奈米管陣列的薄膜既使長度為30 m仍擁有90%以上的電子收集效率,這歸因於奈米管具有較大尺寸的晶粒造成低密度的缺陷存在,也因此導致較廣泛的trap-free傳遞範圍以利於電子的傳遞。
英文摘要 The photoelectrode is a key component determining the efficiency in dye-sensitized solar cells. A film for photoelectrode must have the high surface area and a mesoporous structure. The high surface area can improve dye adsorption and mesoporous structure allows electrolyte penetration to react. Based on these comments, a mesoporous film usually constructed by nanoparticles. However, crystal defects form at the inter-particles, which retard electron transport rate and increase the probability of electron recombination. Thus, how to characterize defects in the film and investigate the influence of defects on electron transport mechanism will provide a knowlegde to develop an advanced electrode.
This dissertation includes four parts: 1. Coordination of Ti4+ sites in nanocrystalline TiO2 films used for photoinduced electron conduction: Influence of nanoparticles synthesis and thermal necking; 2. Electron transport patterns in TiO2 nanocrystalline films of dye-sensitized solar cells; 3. Influence of hydrothermal pressure during crystallization on the structure and electron-conveying ability of TiO2 colloids for dye-sensitized solar cells; 4. Electron transport patterns in TiO2 nanotube arrays based dye-sensitized solar cells under frontside and backside illuminations.
In the first part, we subjected the lattice disorder of TiO2 nanoparticles and the resulting nanocrystalline films to analysis by X-ray absorption fine structure spectroscopy (XAFS). The TiO2 nanoparticles were synthesized from dehydration of a titanate and from a conventional sol-gel method. Although both specimens had similar first shell Ti4+ coordination numbers of ca. 5.7, the AN TiO2 was shown to be phase-pure anatase and the AN-br TiO2 contained a minute amount of brookite impurity. After nanoparticles necking into films, the former TiO2 exhibited a negligible decrease in the coordination number whereas the latter showed a significant decrease to a value of ca. 4.9. As a result, the AN film was more efficient than the AN-br one in transmitting electrons injected from a photoexcited dye. We have demonstrated that synthesis of phase-pure nanoparticles is essentially important in fabricating films with minimal degree of lattice disorder.
The second part reports synthesis and characterization of nanoparticles for fabricating the TiO2 nanocrystalline films used in dye-sensitized solar cells: phase-pure anatase nanoparticles from a titanate-directed route, and brookite (27%) and rutile (1.2%)-containing anatase nanoparticles from a sol-gel route. After nanoparticle-necking into films, XRD pattern simulation shows that the defect density of the anatase (AN) films is less than that of the brookite/rutile-containing anatase (AN-br) films. The defect states in the AN-br films lower the short circuit current and conversion efficiency of the resulting solar cells. Intensity-modulated photocurrent/photovoltage spectroscopic (IMPS/IMVS) analysis demonstrates that electron transport in trap-free and trap-limited diffusion modes, and shows that the defects serve as electron trap state to retard both electron transport and recombination. Electrochemical impedance spectroscopy (EIS) analysis shows that the trap-free mode extends the electron diffusion length in TiO2 films and its contribution magnitude governs the electron collecting efficiency.
The third part synthesizes TiO2 anatase colloids at 250 ºC under varying pressures of 57120 bar by adjusting the residual volume in the autoclaving chamber. Transmission electron microscopy and X-ray diffraction analyses showed that the amorphous phase content of TiO2 powders and films obtained from calcining the colloids increased with the pressure during crystallization, while the Ti vacancy in the crystalline phase decreased. This illustrated a trade-off between lattice distortion and vacancy reduction as a result of an increase in pressure during crystallization. XAFS spectroscopic analysis showed that the coordination number of the Ti4+ sites in the TiO2 increased with the pressure during crystallization to reach a maximum value at 100 bar and then decreased with further increases in pressure. A dye-sensitized solar cell assembled with a TiO2 film from 100bar synthesis exhibited the highest solar energy conversion efficiency. EIS analysis showed that the 100bar film had the highest charge collection efficiency for photogenerated electrons. From these results, we concluded that TiO2 crystallization pressure affects the density of defect in the produced TiO2 films, and therefore the electron-conveying performance in DSSCs.
In the final part, TiO2 nanotube arrays (NTA), of 1737 m in thickness, detached from anodic oxidized Ti foils were used as photo-anodes for dye-sensitized solar cells (DSSCs). Photovoltaic measurements under frontside and backside illumination showed that frontside illumination geometry provided better cell performance than backside illumination did. A cell assembled with 30 m thick NTA film produced the greatest photocurrent and light conversion efficiency. Despite an advantageous architecture for electron transport, electron trapping remained a limiting factor for both illumination geometries, due to the presence of crystal grains in the NTA walls. IMPS analysis showed that electron transport in the front illuminated cells comprises both trap-free and trap-limited diffusion modes, whereas electrons in the back illuminated cells travel only by trap-limited diffusion. The trap-free diffusion mechanism determines front illuminated cell performance. EIS analysis showed the front illuminated NTA based DSSCs have a charge collection efficiency of better than 90%, even at 30 m NTA film thickness. Large crystal size results in low trap state density in the NTA film, and this effect may result in a more extensive trap-free diffusion zone in the films, which facilitates charge collection.
論文目次 中文摘要...I
Abstract...III
Acknowledgement...VI
Contents...VII
List of Figures...XII
List of Tables...XXII
Symbols...XXIII
Chapter 1 Introduction...1
1-1 Solar Energy...1
1-1-1 Overview...1
1-1-2 Photovoltaics and Its Applications...3
1-2 Dye-Sensitized Solar Cell...6
1-2-1 Origin and Components of the DSSC...6
1-2-2 Operating Principles of the DSSC...8
1-3 Motive of Study and Scope...10
Chapter 2 Literature Survey and Theoretical Technology...12
2-1 Solar Spectrum...12
2-2 Semiconductor Electrochemistry and Photoelectrochemistry...15
2-2-1 Definition of Semiconductors...15
2-2-2 Fermi Level...17
2-2-3 Semiconductor-electrolyte Interface at Equilibrium...19
2-3 Incident Photon to Current Efficiency (IPCE)...21
2-4 Titanium Dioxide Crystal Structure...23
2-5 Electron Transport and Defects...25
2-5-1 Recombination...25
2-5-2 Crystal Defect in Titania...28
2-5-3 Trapping/Detrapping Process...29
2-6 TiO2 Nanotube Arrays...31
2-6-1 The Mechanism of Nanotube Formation...31
2-6-2 The Application of Dye-Sensitized Solar Cell...34
Chapter 3 Experimental Techniques and Relevant Theories...35
3-1 Chemicals, Materials and Instruments...35
3-1-1 Chemicals and Materials...35
3-1-2 Instruments...39
3-2 Structure Characterizations by X-ray Techniques...40
3-2-1 X-ray Diffraction Patterns with Rietveld Refinement...40
3-2-2 X-ray Absorption Spectroscopy...43
3-3 Electron Transport Measurements by Frequency Domain Techniques...46
3-3-1 Intensity-modulated Photocurrent/Photovoltage Spectroscopy...46
3-3-2 Electrical Impedance Spectroscopy...49
References...52
Chapter 4 Coordination of Ti4+ Sites in Nanocrystalline TiO2 Films Used for Photoinduced Electron Conduction: Influence of Nanoparticles Synthesis and Thermal Necking...59
4-1 Introduction...59
4-2 Experimental Section...60
4-2-1 The Preparation of Titanium Dioxide Nanoparticles and Films...60
4-2-2 Characterization of Crystal Structure...63
4-2-3 Cell Assembly...63
4-2-4 Characterization of Electron Transport Properties...64
4-3 Results and Discussion...64
4-3-1 Structural Variation for Titanate-directed AN TiO2...64
4-3-2 Structural Comparison of AN and AN-br TiO2...67
4-3-3 Characterization of Chemical Environment of Ti4+ ions...71
4-3-4 Intensity-modulated Photocurrent Spectroscopic Analysis of DSSCs...76
4-4 Conclusion...80
References...81
Chapter 5 Electron Transport Patterns in TiO2 Nanocrystalline Films of Dye-Sensitized Solar Cells...85
5-1 Introduction...85
5-2 Experimental Section...87
5-2-1 The Preparation of Titanium Dioxide Nanoparticles and Films and Characterization of Crystal Structure...87
5-2-2 Cell Assembly and I-V Characterization...88
5-2-3 Characterization of Electron Transport Properties...89
5-3 Rsult and Discussion...90
5-3-1 Crystal structural analysis of AN and AN-br TiO2...90
5-3-2 Photovoltaic Performance of DSSCs based on AN and AN-br Films...95
5-3-3 Effect of Film Thickness on Electron Transport Behaviors...97
5-3-4 Electrochemical Impedance Spectroscopic Analysis of DSSCs...104
5-4 Conclusion...108
References...109
Chapter 6 Influence of Hydrothermal Pressure during Crystallization on the Structure and Electron-Conveying Ability of TiO2 Colloids for Dye-Sensitized Solar Cells 114
6-1 Introduction...114
6-2 Experimental Section...117
6-2-1 The Preparation of Titanium Dioxide Nanoparticles and Films...117
6-2-2 Characterization of Crystal Structure...119
6-2-3 Cell Assembly and I-V Characterization...120
6-3 Result and Discussion...120
6-3-1 Structure Variation with Hydrothermal Crystallization Pressure...120
6-3-2 Optimizing the Cell Preformance by Tuning Crystal Structure...129
6-3-3 Electrochemical Impedance Spectroscopic Analysis of DSSCs...132
6-4 Conclusion...136
References...137
Chapter 7 Electron Transport Patterns in TiO2 Nanotube Arrays-Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations...141
7-1 Introduction...141
7-2 Experimental Section...144
7-2-1 The Preparation of TiO2 Nanotube Arrays...144
7-2-2 Cell Assembly Using TiO2 NTA Electrode...145
7-2-3 Characterization of Crystal Structure and Electron Transport Properties...146
7-3 Result and Discussion...147
7-3-1 Structural Characterization of the TiO2 Nanotube Arrays...147
7-3-2 Photovoltaic Performance of Dye-Sensitized Solar Cells with TiO2 NTA photo-electrodes under Frontside and Backside Illuminations...149
7-3-3 Influence of Illumination Orientations on Electron Transport...152
7-3-4 Electron Transport Patterns in the Front-Illuminated TiO2 NTA Photo-electrodes...158
7-4 Conclusion...163
References...164
Chapter 8 Conclusion and Future Prospects...168
Appendix...170
Curriculum Vitae...175
參考文獻 Chapter 1~3
1. E. Claussen, V. A. Cochran, and D. P. Davis, Climate Change: Science, Strategies, & Solutions, University of Michigan, 2001, pp. 373.
2. J. T. Kiehl and K. E. Trenberth, Bull. Amer. Met. Soc., 1997, 78, 197.
3. http://en.wikipedia.org/wiki/Solar_energy.
4. http://en.wikipedia.org/wiki/P-n_junction.
5. http://www.nrel.gov/ (National Renewable Energy Laboratory Web).
6. A. E. Becquerel, C. R. Acad. Sci., 1839, 9, 561.
7. B. O’Regan and M. Grätzel, Nature, 1991, 353, 737.
8. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, J. R. Durrant, J. Am. Chem. Soc., 2005, 127, 3456.
9. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, J. Electroanal. Chem., 2004, 570, 257.
10. A. Kay and M. Grätzel, Sol. Mater. Sol. Cell, 1996, 44, 99.
11. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam, M. Grätzel, Electrochem. Soc., 1996, 143, 3099.
12. K. E. Lee, C. Charbonneau, G. Shan, G. P. Demopoulos, R. Gauvin, JOM, 2009, 61, 52.
13. J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R.. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Petterson, T. Gruszecki, J. Walter, K. Skupien, G. E. Tulloch, Prog. Photovolt: Res. Appl., 2007, 15, 1.
14. N.-G. Park, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B, 2000, 104, 8989.
15. G. Schlichthörl, N. G. Park, and A. J. Frank, J. Phys. Chem. B, 1999, 103, 782.
16. L. M. Peter and K. G. U. Wijayantha, Electrochem. Commun., 1999, 1, 576.
17. M. Quintana, T. Edvinsson, A. Hagfeldt, and G. Boschloo, J. Phys. Chem. C, 2007, 111, 1035.
18. M. F. Naylor and K. C. Farmer, Sun damage and prevention, The Electronic Textbook of Dermatology.
19. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Climate Change 2001: The Scientific Basis book, Cambridge University Press, New York, 2001.
20. http://en.wikipedia.org/wiki/N-type_semiconductor.
21. C. Kittel and H. Kroemer, Thermal Physics (2nd Edition), W. H. Freeman, pp. 357.
22. B. G. Streetman and S. Banerjee, Solid State Electronic Devices, PEARSON, Chapter 3.
23. S. Licht, Semiconductor Electrodes and Photoelectrochemistry, WILEY-VCH, pp. 292.
24. S. Licht, Semiconductor Electrodes and Photoelectrochemistry, WILEY-VCH, pp. 9.
25. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, J. Am. Chem. Soc., 1993, 115, 6382.
26. J. van de Lagemaat, N. -G. Park, and A. J. Frank, J. Phys. Chem. B, 2000, 104, 2044.
27. N. -G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, A. J. Frank, J. Phys. Chem. B, 1999, 103, 3308.
28. J. Ferber, J. Luther, Sol. Energy Mater. Sol. Cells, 1998, 54, 265.
29. G. Rothenberger, P. Comte, M. Grätzel, Sol. Energy Mater. Sol. Cells, 1999, 53, 321.
30. R. Grunwald and H. Tributsch, J. Phys. Chem. B, 1997, 101, 2564.
31. G. Schlichthörl, S. Y. Huang, J. Sprague, A. J. Frank, J. Phys. Chem. B, 1997, 101, 8141.
32. M. Grätzel, Acc. Chem. Res., 2009, 42, 1788.
33. M. R. Hoffman, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 1995, 95, 69.
34. V. F. Stone Jr. and R. J. Davis, Chem. Mater., 1998, 10, 1468.
35. Y. Ishikawa, Y. Matsumoto, Y. Nishida, S. Taniguchi, and J. Watanabe, J. Am. Chem. Soc., 2003, 125, 6558.
36. W. Zhao, W. Ma, C. Chen, J. Zhao, and Z. Shuai, J. Am. Chem. Soc., 2004, 126, 4782.
37. M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, and Z. Zhang, J. Mol. Catal. A, 2004, 217, 203.
38. Z.-S. Wang, T. Yamaguchi, H. Sugihara, and H. Arakawa, Langmuir, 2005, 21, 4272.
39. M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer, and M. Grätzel, Inorg. Chem., 1999, 38, 6298.
40. M. Adachi, Y. Murata, J.Takao, J. Jinting, M. Sakamoto, and F. Wang, J. Am. Chem. Soc., 2004, 126, 14943.
41. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, Nano Lett., 2007, 7, 69.
42. Y. M. Xu, X. M. Fang, and Z. G. Zhang, Appl. Surf. Sci., 2009, 255, 8743.
43. C. K. Lee, M. D. Lyu,; S. S. Liu, and H. C. Chen, J. Taiwan Inst. Chem. Engrs., 2009, 40, 463.
44. X. Bokhimi, A. Morales, M. Aguilar, J. A. Toledo-Antonio, and F. Pedraza, Int. J. Hydrogen Energy, 2001, 26, 1279.
45. X. Bokhimi, A. Morales, O. Novaro, T. López, O. Chimal, M. Asomoza, and R. Gómez, J. Solid State Chem., 1999, 144, 349.
46. M. Gotic, M. Ivanda, A. Sekulic, S. Music, S. Popovic, A. Turkovic, and K. Furic, Mater. Lett., 1996, 28, 225.
47. P. T. Hsiao and H. S. Teng, J. Am. Ceram. Soc., 2009, 92, 888.
48. I. Djerdj, A. M. Tonejc, M. Bijelić, V. Vraneša, and A. Turković, Vacuum, 2005, 80, 371.
49. D. Ulrike, Surf. Sci. Rep., 2003, 48, 53.
50. A. Hagfeldt, S. E. Lindquist, and M. Grätzel, Sol. Energy Mater. Sol. Cells, 1994, 32, 245.
51. A. Hagfeldt and M. Grätzel, Chem. Rev., 1995, 95, 49.
52. A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, K. G. U. Wijayantha, J. Phys. Chem. B, 2000, 104, 949.
53. N. W. Duffy, L. M. Peter, R. M. G. Rajapakse, and K. G. U. Wijayantha, J. Phys. Chem. B, 2000, 104, 8916.
54. S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, J. Phys. Chem. B,1997, 101, 2576.
55. L. Peter, J. Electroanal. Chem., 2007, 599, 233.
56. M. Grätzel, J. Photochem. Photobio. A, 2004, 164, 3.
57. M. Casarin, C. Maccato, and A. Vittadini, J. Phys. Chem. B, 1998, 102, 10745.
58. S. P. Bates, G. Kresse, and M. J. Gillan, Surf. Sci., 1997, 385, 386.
59. N. Umesaki, M. Tatsumisago, and T. Minami, Mater. Trans., 1995, 36, 828.
60. H. Hidaka, N. Iwamoto, N. Umesaki, T. Fukunaga, and K. Suzuki, J. Mater. Sci., 1985, 20, 2497.
61. H. Yamanaka, K. Nakahata, and R. Terai, J. Non-Crystal. Sol., 1987, 95-96, 405.
62. F. Marumo, Y. Tabira, T. Mabuchi, and H. Morikawa, In Dynamic Process of Material Transport and Transformation in the Earth’s Interior, Terra Sci. Publ. Co., pp. 53.
63. C. Zaldo, J. Galan Vioque, L. E. Bausa, and J. Garcia Sole, Phys. Stat. Sol. A, 1991, 127, 335.
64. I. N. Martyanov, S. Uma, S. Rodriques, and K. J. Klabunde, Chem. Commun., 2004, 2476.
65. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, J. Mol. Catal. A Chem., 2000, 161, 205.
66. K. P. Wang and H. S. Teng, Appl. Phys. Lett., 2007, 91, 173102.
67. J. Bisquert, A. Zaban, M. Greenshtein, and I. Mora-Seró, J. Am. Chem. Soc., 2004, 126, 13550.
68. T. Oekermann, D. Zhang, T. Yoshida, and H. Minoura, J. Phys. Chem. B, 2004, 108, 2227.
69. S. Nakada, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, J. Phys. Chem. B, 2003, 107, 8607.
70. T. Dittrich, E. A. Lebedev, J. Weidmann, Phys. Status Solidi A, 1998, 165, R5
71. K. Schwarzburg and F. Willig, Appl. Phys. Lett., 1991, 58, 2520.
72. F. Cao, G. Oskam, G. J. Meyer, and P. C. Searson, J. Phys. Chem., 1996, 100, 17021.
73. P. E. de Jongh and D. Vanmaekelbergh, Phys. Rev. Lett., 1996, 77, 3427.
74. A. Kambili, A. B. Walker, F. L. Qiu, A. C. Fisher, A. D. Savin, and L. M. Peter, Phys. E, 2002, 14, 203.
75. A. B. F. Martinson, J. E. McGarrah, M. O. K. Parpia, and J. T. Hupp, Phys. Chem. Chem. Phys., 2006, 8, 4655.
76. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, Sol. Energy Mater. Sol. Cells, 2006, 90, 2011.
77. V. P. Parkhutik and V. I. Shershulsky, J. Phys. D: Appl. Phys., 1992, 25, 1258.
78. D. D. Macdonald, J. Electrochem. Soc., 1993, 140, L27.
79. J. Siejka and C. Ortega, J. Electrochem. Soc.: Solid State Sci. Technol., 1977, 124, 883.
80. G. E. Thompson, Thin Solid Films, 1997, 297, 192.
81. Y. T. Sul, C. B. Johansson, Y. Jeong, and T. Albrektsson, Med. Eng. Phys., 2001, 23, 329.
82. S. Chen, M. Paulose, C. Ruan, G. K. Mor, O. K. Varghese, D. Kouzoudis, and C. A. Grimes, J. Photochem. Photobiol., 2006, 177, 177.
83. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett., 2005, 5, 191.
84. Q. Y. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, J. Mater. Res., 2005, 20, 230.
85. J. H. Park, S. Kim, and O. O. Park, Appl. Phys. Lett., 2006, 89, 163106.
86. K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, and C. A. Grimes, Nanotechnology, 2007, 18, 065707.
87. M. G. Kang, N. G. Park, K. S. Ryu, S. H. Chang, and K. J. Kim, Sol. Energy Mater. Sol. Cells, 2006, 90, 574.
88. S. Ito, N. C. Ha, G. Rothenberger, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, and M. Grätzel, Chem. Commun., 2006, 4004.
89. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett., 2006, 6, 215.
90. C. J. Lin, W. Y. Yu, and S. H. Chien, J. Mater. Chem., 2010, 20, 1073.
91. J. H. Park, T. W. Lee, and M. G. Kang, Chem. Commun., 2008, 2867.
92. http://serc.carleton.edu/18400.
93. H. M. Rietveld, J. Appl. Cryst., 1969, 2, 65.
94. S. J. Kalita, S. Qiu, and S. Verma, Mater. Chem. Phys., 2008, 109, 392.
95. L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louër, and P. Scardi, J. Appl. Cryst., 1999, 32, 36.
96. D. L. Bish and S. A. Howard, J. Appl. Cryst., 1988, 21, 86.
97. D. L. Bish and J. B. Post, Am. Min., 1993, 78, 932.
98. B. H. Toby, J. Appl. Cryst., 2001, 34, 210.
99. C. C. Hu, C. C. Tsai, and H. S. Teng, J. Am. Ceram. Soc., 2009, 92, 460.
100. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, Prentice Hill, Upper Saddle River, New Jersey, 3rd ed., 2001.
101. http://cars.uchicago.edu/xafs/.
102. V. Luca, S. Djajanti, and R. F. Howe, J. Phys. Chem. B, 1998, 102, 10650.
103. E. A. Stern, M. Newville, B. Ravel, Y. Yacoby, and D. Haskel, Phys. B, 1995, 208, 117.
104. L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, and G. Redmond, J. Phys. Chem. B, 1997, 101, 10281.
105. L. M. Peter, D. Vanmaekelbergh, in: R. C. Alkire, D. M. Kolb (Eds.), Advances in Electrochemical Science and Engineering, vol. 6, Wiley Interscience, New York, 1999, pp. 77.
106. S. Södergren, A. Hagfeldt, J. Olsson, and S. E. Lindquist, J. Phys. Chem., 1994, 95, 5522.
107. L. M. Peter and K. G. U. Wijayantha, Electrochim. Acta, 2000, 45, 4543.
108. D. Vanmaekelbergh and P. E. de Jongh, Phys. Rev. B, 2000, 61, 4699.
109. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, Electrochim. Acta, 2002, 47, 4213.
110. J. Bisquert, J. Phys. Chem. B, 2002, 106, 325.
111. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, and P. R. Bueno, J. Electroanal. Chem., 1999, 475, 152.

Chapter 4
1. M. R. Hoffman, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 1995, 95, 69.
2. V. F. Stone Jr. and R. J. Davis, Chem. Mater., 1998, 10, 1468.
3. Y. Ishikawa, Y. Matsumoto, Y. Nishida, S. Taniguchi, and J. Watanabe, J. Am. Chem. Soc., 2003, 125, 6558.
4. W. Zhao, W. Ma, C. Chen, J. Zhao, and Z. Shuai, J. Am. Chem. Soc., 2004, 126, 4782.
5. M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, and Z. Zhang, J. Mol. Catal. A, 2004, 217, 203.
6. I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc., 2006, 128, 2385.
7. C. F. Chi, Y. L. Lee, and H. S. Weng, Nanotechnology, 2008, 19, 125704.
8. B. O’Regan and M. Grätzel, Nature, 1991, 353, 737.
9. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, J. Am. Chem. Soc., 1993, 115, 6382.
10. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, J. Am. Ceram. Soc., 1997, 81,3157.
11. L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, and I. Uhlendor, J. Phys. Chem. B, 1997, 101, 10281.
12. M. Grätzel, J. Photochem. Photobiol. C, 2003, 4, 145.
13. A. J. Frank, N. Kopidakis, and J. van de Lagemaat, Coord. Chem. Rev., 2004, 248, 1165.
14. J. Bisquert, A. Zaban, M. Greenshtein, and I. Mora-Seró, J. Am. Chem. Soc., 2004, 126, 13550.
15. H. Shibata, T. Ogura, T. Mukai, T. Ohkubo, H. Sakai, and M. Abe, J. Am. Chem. Soc., 2005, 127, 16396.
16. P. I. Gouma and M. J. Mills, J. Am. Ceram. Soc., 2001, 84, 619.
17. G. Schlichthörl, N. G. Park, and A. J. Frank, J. Phys. Chem. B, 1999, 103, 782.
18. L. M. Peter and K. G. U. Wijayantha, Electrochem. Commun., 1999, 1, 576.
19. M. Quintana, T. Edvinsson, A. Hagfeldt, and G. Boschloo, J. Phys. Chem. C, 2007, 111, 1035.
20. C. A. Grimes, J. Mat. Chem., 2007, 17, 1451.
21. K. Shankar, J. Bandara, M. Paulose, H. Weitasch, O. K. Varghese, G. K. Mor, T. J. LaTempa, M. Thelakkat, and C. A. Grimes, Nano Lett., 2008, 8, 1654.
22. S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, J. Phys. Chem. B, 1997, 101, 2576.
23. M. Grätzel, J. Sol–gel Sci. Technol., 2001, 22, 7.
24. M. Grätzel, J. Photochem. Photobiol. A, 2004, 164, 3.
25. J. N. Nian, S. A. Chen, C. C. Tsai, and H. S. Teng, J. Phys. Chem. B, 2006, 110, 25817.
26. C. C. Tsai and H. S. Teng, Chem. Mater., 2006, 18, 367.
27. J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, and Z. Zhang, Dalton Tans., 2003, 3898.
28. R. Ma, Y. Bando, and T. Sasaki, Chem. Phys. Lett., 2003, 380, 577.
29. D. V. Bavykin, V. N. Parmon, A. A. Lapkin, and F. C. Walsh, J. Mater. Chem., 2004, 14, 3370.
30. D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, Adv. Mater., 2006, 18, 2807.
31. C. C. Tsai and H. S. Teng, Langmuir, 2008, 24, 3434.
32. E. A. Stern, M. Newville, B. Ravel, Y. Yacoby, and D. Haskel, Physica B, 1995, 208, 117.
33. H. Y. Zhu, Y. Lan, X. P. Gao, S. P. Ringer, Z. F. Zheng, D. Y. Song, and J. C. Zhao, J. Am. Chem. Soc., 2005, 127, 6730.
34. Z. Y. Wu, G. Ouvrard, P. Gressier, and C. R. Natoli, Phys. Rev. B, 1997, 55, 10382.
35. F. Farges, Am. Mineral., 1997, 82, 44.
36. F. Farges, G. E. Brown Jr., and J. J. Rehr, Geochim. Cosmochim. Acta, 1996, 60, 3023.
37. V. Luca, S. Djajanti, and R. F. Howe, J. Phys. Chem. B, 1998, 102, 10650.
38. L. X. Chen, T. Rajh, Z. Wang, and M. C. Thurnauer, J. Phys. Chem. B, 1997, 101, 10688.
39. H. Yamashita, Y. Ichihashi, M. Anpo, M. Hashimoto, C. Louis, and M. Che, J. Phys. Chem., 1996, 100, 16041.
40. F. Chen, T. Zhao, Y. Y. Fei, H. Lu, Z. Chen, G. Yang, and X. D. Zhu, Appl. Phys. Lett., 2002, 80, 2889.
41. X. D. Zhu, Y. Y. Fei, H. B. Lu, and G. Z. Yang, Appl. Phys. Lett., 2005, 87, 051903.
42. R. F. Klie and N. D. Browning, Appl. Phys. Lett., 2000, 77, 3737.
43. S. H. Szczepankiewicz, J. A. Moss, and M. R. Hoffmann, J. Phys. Chem. B, 2002, 106, 2922.
44. K. H. Chang, C. C. Hu, and C. Y. Chou, Chem. Mater., 2007, 19, 2112.
45. P. Salvador, M. G. Hidalgo, A. Zaban, and J. Bisquert, J. Phys. Chem. B, 2005, 109, 15915.
46. L. M. Peter, J. Phys. Chem. C, 2007, 111, 6601.
47. J. Krüger, R. Plass, M. Grätzel, P. J. Cameron, and L. M. Peter, J. Phys. Chem. B, 2003, 107, 7536.
48. D. Vanmaekelbergh and P. E. de Jongh, Phys. Rev. B, 2000, 61, 4699.
49. L. M. Peter and K. G. U. Wijayantha, Electrochimica Acta, 2000, 45, 4543.

Chapter 5
1. B. O’Regan and M. Grätzel, Nature, 1991, 353, 737.
2. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, J. Am. Ceram. Soc., 1997, 80, 3157.
3. M. Grätzel, J. Photochem. Photobiol. C: Photochem. Rev., 2003, 4, 145.
4. J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, and G. E. Tulloch, Prog. Photovolt: Res. Appl., 2007, 15, 1.
5. M. Adachi, Y. Murata, J. Takao, J. Jinting, M. Sakamoto, and F. Wang, J. Am. Chem. Soc., 2004, 126, 14943.
6. K. H. Ko, Y. C. Lee, and Y. J. Jung, J. Colloid Interface Sci., 2005, 283, 482.
7. Q. Wang, Z. Zhang, S. M. Zakeeruddin, and M. Grätzel, J. Phys. Chem. C, 2008, 112, 7084.
8. S. Ngamsinlapasathian, S. Sakuikhaemaruethai, S. Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki, and S. Yoshikawa, J. Photochem. Photobio. A: Chem., 2004, 164, 145.
9. M. J. Cass, A. B. Walker, D. Martinez, and L. M. Peter, J. Phys. Chem. B, 2005, 109, 5100.
10. T. Oekermann, D. Zhang, T. Yoshida, and H. Minoura, J. Phys. Chem. B, 2004, 108, 2227.
11. S. Nakada, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, J. Phys. Chem. B, 2003, 107, 8607.
12. K. P. Wang and H. S. Teng, Appl. Phys. Lett., 2007, 91, 173102.
13. T. Dittrich, E. A. Lebedev, and J. Weidmann, Phys. Status Solidi A, 1998, 165, R5.
14. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, J. Am. Chem. Soc., 1993, 115, 6382.
15. Z.-S. Wang, T. Yamaguchi, H. Sugihara, and H. Arakawa, Langmuir, 2005, 21, 4272.
16. M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer, and M. Grätzel, Inorg. Chem., 1999, 38, 6298.
17. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, Nano Lett., 2007, 7, 69.
18. Y. M. Xu, X. M. Fang, and Z. G. Zhang, Appl. Surf. Sci., 2009, 255, 8743.
19. C. K. Lee, M. D. Lyu, S. S. Liu, and H. C. Chen, J. Taiwan Inst. Chem. Engrs., 2009, 40, 463.
20. X. Bokhimi, A. Morales, M. Aguilar, J. A. Toledo-Antonio, and F. Pedraza, Int. J. Hydrogen Energy, 2001, 26, 1279.
21. N. G. Park, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B, 2000, 104, 8989.
22. X. Bokhimi, A. Morales, O. Novaro, T. López, O. Chimal, M. Asomoza, and R. Gómez, J. Solid State Chem., 1999, 144, 349.
23. M. Gotic, M. Ivanda, A. Sekulic, S. Music, S. Popovic, A. Turkovic, and K. Furic, Mater. Lett., 1996, 28, 225.
24. P. T. Hsiao and H. S. Teng, J. Am. Ceram. Soc., 2009, 92, 888.
25. I. Djerdj, A. M. Tonejc, M. Bijelić, V. Vraneša, and A. Turković, Vacuum, 2005, 80, 371.
26. A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, J. Phys. Chem. B, 2000, 104, 949.
27. G. Schlichthörl, N. G. Park, and A. J. Frank, J. Phys. Chem. B, 1999, 103, 782.
28. L. Peter, J. Electroanal. Chem., 2007, 599, 233.
29. J. Nelson, Phys. Rev. B, 1999, 59, 15374.
30. G. Schlichthörl, S. Y. Huang, J. Sprague, and A. J. Frank, J. Phys. Chem. B, 1997, 101, 8141.
31. T. Oekermann, D. Schlettwein, and N. I. Jaeger, J. Phys. Chem. B, 2001, 105, 9524.
32. X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, Crit. Rev. Solid State Mater. Sci., 2009, 34, 190.
33. Y. Li, C. H. Ye, X. S. Fang, L. Yang, Y. H. Xiao, and L. D. Zhang, Nanotechnol., 2005, 16, 501.
34. P. T. Hsiao, K. P. Wang, C. W. Cheng, and H. S. Teng, J. Photochem. Photobiol. A: Chem, 2007, 188, 19.
35. C. C. Tsai and H. S. Teng, Chem. Mater., 2006, 18, 367.
36. J. N. Nian, S. A. Chen, C. C. Tsai, and H. S. Teng, J. Phys. Chem. B, 2006, 110, 25817.
37. B. H. Toby, J. Appl. Cryst., 2001, 34, 210.
38. L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louër, and P. Scardi, J. Appl. Cryst., 1999, 32, 36.
39. C. C. Hu, C. C. Tsai, and H. S. Teng, J. Am. Ceram. Soc., 2009, 92, 460.
40. S. J. Kalita, S. Qiu, and S. Verma, Mater. Chem. Phys., 2008, 109, 392.
41. J. A. Wang, R. Limas-Ballesteros, T. López, A. Moreno, R. Gómez, O. Novaro, and X. Bokhimi, J. Phys. Chem. B, 2001, 105, 9692.
42. D. T. Cromer and K. Herrington, J. Am. Chem. Soc., 1955, 77, 4708.
43. V. W. Baur, Acta Crystallogr., 1961, 14, 214.
44. L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, and I. Uhlendorf, J. Phys. Chem. B, 1997, 101, 10281.
45. G. Franco, J. Gehring, L. M. Peter, E. A. Ponomarev, and I. Uhlendorf, J. Phys. Chem., 1999, 103, 692.
46. J. Krüger, R. Plass, M. Grätzel, P. J. Cameron, and L. M. Peter, J. Phys. Chem. B, 2003, 107, 7536.
47. D. Vanmaekelbergh and P. E. de Jongh, Phys. Rev. B, 2000, 61, 4699.
48. L. M. Peter and K. G. U. Wijayantha, Electrochem. Commun., 1999, 1, 576.
49. L. M. Peter and K. G. U. Wijayantha, Electrochim. Acta, 2000, 45, 4543.
50. A. J. Frank, N. Kopidakis, and J. van de Lagemaat, Coordi. Chem. Rev., 2004, 248, 1165.
51. J. Bisquert, A. Zaban, M. Greenshtein, and I. More-Seró, J. Am. Chem. Soc., 2004, 126, 13550.
52. N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B, 2003, 107, 11307.
53. J. Nelson, S. A. Haque, D. R. Klug, and J. R. Durrant, Phys. Rev. B, 2001, 63, 205321.
54. F. Febregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, and M. Grätzel, J. Phys. Chem. C, 2007, 111, 6550.
55. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, J. Phys. Chem. B, 2006, 110, 13872.
56. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, Electrochim. Acta, 2002, 47, 4213.
57. J. Bisquert, J. Phys. Chem. B, 2002, 106, 325.
58. K. P. Wang and H. S. Teng, Phys. Chem. Chem. Phys., 2009, 11, 9489.
59. J. Bisquert, Phys. Chem. Chem. Phys., 2003, 5, 5360.
60. Q. Wang, S. Ito, M. Grätzel, F. Febregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, and H. Imai, J. Phys. Chem. B, 2006, 110, 25210.
61. J. van de Lagemaat, N.-G. Park, and A. J. Frank, J. Phys. Chem. B, 2000, 104, 2044.

Chapter 6
1. B. O’Regan and M. Grätzel, Nature, 1991, 353, 737.
2. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, J. Am. Chem. Soc., 2004, 126, 14943.
3. K. P. Wang and H. S. Teng, Phys. Chem. Chem. Phys., 2009, 11, 9489.
4. T. L. Li and H. S. Teng, J. Mater. Chem., 2010, 20, 3656.
5. S. Banerjee, S. K. Mohapatra, P. P. Das, and M. Misra, Chem. Mater., 2008, 20, 6784.
6. T. Sawatsuk, A. Chindaduang, C. Sae-Kung, S. Pratontep, and G. Tumcharern, Diamond Relat. Mater., 2009, 18, 524.
7. X. M. Fang, Z. G. Zhang, Q. L. Chen, H. B. Ji, and X. N. Gao, J. Solid State Chem., 2007, 180, 1325.
8. Y. S. Chaudhary, D. Chinthalapelly, U. M. Bhat, P. K. Nayak, and D. Khushalani, J. Mater. Chem., 2008, 18, 3636.
9. P. P. Bidaye, D. Khushalani, and J. B. Fernandes, Catal. Lett., 2010, 134, 169.
10. Q. Chen, D. Xu, Z. Wu, and Z. Liu, Nanotechnol., 2008, 19, 365708.
11. C. C. Wang and J. Y. Ying, Chem. Mater., 1999, 11, 3113.
12. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, J. Am. Ceram. Soc., 1997, 80, 3157.
13. A. Testino, I. R. Bellobono, V. Buscaglia, C. Canevali, M. D’Arienzo, S. Polizzi, R. Scotti, and F. Morazzoni, J. Am. Chem. Soc., 2007, 129, 3564.
14. C. C. Tsai and H. S. Teng, Chem. Mater., 2004, 16, 4352.
15. H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, and S. Yanagida, J. Mater. Chem., 2001, 11, 1694.
16. J. Das, F. S. Freitas, I. R. Evans, A. F. Nogueira, and D. Khushalani, J. Mater. Chem., 2010, 20, 4425.
17. M. J. Cass, A. B. Walker, D. Martinez, and L. M. Peter, J. Phys. Chem. B, 2005, 109, 5100.
18. S. Nakada, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, J. Phys. Chem. B, 2003, 107, 8607.
19. K. P. Wang and H. S. Teng, Appl. Phys. Lett., 2007, 91, 173102.
20. P. T. Hsiao, K. P. Wang, C. W. Cheng, and H. S. Teng, J. Photochem. Photobiol. A: Chem, 2007, 188, 19.
21. Y. M. Xu, X. M. Fang, and Z. G. Zhang, Appl. Surf. Sci., 2009, 255, 8743.
22. T. Kurata, Y. Mori, S. Isoda, J. T. Jiu, K. Tsuchiya, F. Uchida, and M. Adachi, Curr. Nanosci., 2010, 6, 269.
23. C. K. Lee, M. D. Lyu, S. S. Liu, and H. C. Chen, J. Taiwan Inst. Chem. Engrs., 2009, 40, 463.
24. S. H. Lim, N. Phonthammachai, T. Liu, and T. J. White, J. Appl. Cryst., 2008, 41, 1009.
25. S. H. Lim, C. Ritter, Y. Ping, M. Schreyer, and T. J. White, J. Appl. Cryst., 2009, 42, 917.
26. T. M. Paronyan, A. M. Kechiantz, and M. C. Lin, Nanotechnol., 2008, 19, 115201.
27. D. S. Zhang, T. Yoshida, and H. Minoura, Adv. Mater., 2003, 15, 814.
28. X. Orlhac, C. Fillet, P. Deniard, A. M. Dulac, and R. Brec, J. Appl. Cryst., 2001, 34, 114.
29. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, Thin Solid Films, 2008, 516, 4613.
30. H. M. Rietveld, J. Appl. Cryst., 1969, 2, 65.
31. L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louër, and P. Scardi, J. Appl. Cryst., 1999, 32, 36.
32. B. H. Toby, J. Appl. Cryst., 2001, 34, 210.
33. E. A. Stern, M. Newville, B. Ravel, Y. Yacoby, and D. Haskel, Phys. B, 1995, 208, 117.
34. S. H. Lim, C. Ferraris, M. Schreyer, K. Shih, J. O. Leckie, and T. J. White, J. Solid State Chem., 2007, 180, 2905.
35. T. J. Bastow, A. F. Moodie, M. E. Smith, and H. J. Whitfield, J. Mater. Chem., 1993, 3, 697.
36. I. E. N. Grey and C. Wilson, J. Solid State Chem., 2007, 180, 707.
37. P. T. Hsiao and H. S. Teng, J. Am. Ceram. Soc., 2009, 92, 888.
38. V. Luca, S. Djajanti, and R. F. Howe, J. Phys. Chem. B, 1998, 102, 10650.
39. Z. Y. Wu, G. Ouvrard, P. Gressier, and C. R. Natoli, Phys. Rev., 1997, B55, 10382.
40. J. C. Parlebas, M. A. Khan, T. Uozumi, K. Okada, and A. Kotani, J. Electron Spectrosc. Relat. Phenom., 1995, 71, 117.
41. B. Pillep, M. Fröba, M. L. F. Phillips, J. Wong, G. D. Stucky, and P. Behrens, Solid State Commum., 1997, 103, 203.
42. D. M. Pickup, E. A. A. Neel, R. M. Moss, K. M. Wetherall, P. Guerry, M. E. Smith, J. C. Knowles, and R. J. Newport, J. Mater.Sci.: Mater. Med., 2008, 19, 1681.
43. P. T. Hsiao, Y. L. Tung, and H. S. Teng, J. Phys. Chem. C, 2010, 114, 6762.
44. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, Electrochim. Acta, 2002, 47, 4213.
45. F. Febregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, and M. Grätzel, J. Phys. Chem. C, 2007, 111, 6550.
46. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, J. Phys. Chem. B, 2006, 110, 13872.
47. J. Bisquert, J. Phys. Chem. B, 2002, 106, 325.
48. F. Frbregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, Sol. Energy Mater. Sol. Cells, 2005, 87, 117.
49. W. C. Mackrodt, E. A. Simson, and N. M. Harrison, Surf. Sci., 1997, 384, 192.
50. P. T. Hsiao and H. S. Teng, J. Taiwan Inst. Chem. Engrs., 2010, 41, 676.
51. J. Bisquert, Phys. Chem. Chem. Phys., 2003, 5, 5360.
52. N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B, 2003, 107, 11307.
53. Q. Wang, S. Ito, M. Grätzel, F. Febregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, and H. Imai, J. Phys. Chem. B, 2006, 110, 25210.
54. J. van de Lagemaat, N.-G. Park, and A. J. Frank, J. Phys. Chem. B, 2000, 104, 2044.

Chapter 7
1. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, and M. Grätzel, ACS NANO, 2008, 2, 1113.
2. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano. Lett., 2006, 6, 215.
3. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, Sol. Energy Mater. Sol. Cells, 2006, 90, 2011.
4. J. Das, F. S. Freitas, I. R. Evans, A. F. Nogueira, and D. Khushalani, J. Mater. Chem., 2010, 20, 4425.
5. C. J. Lin, W. Y. Yu, Y. T. Lu, and S. H. Chien, Chem. Commun., 2008, 6031.
6. Q. Chen, D. Xu, Z. Wu, and Z. Liu, Nanotechnol., 2008, 19, 365708.
7. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater., 2005, 4, 455.
8. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, Nano. Lett., 2007, 7, 69.
9. J. Jiu, S. Isoda, F. Wang, and M. Adachi, J. Phys. Chem. B, 2006, 110, 2087.
10. S. Ito, N. C. Ha, G. Rothenberger, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, and M. Grätzel, Chem. Commun., 2006, 4004.
11. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, and M. Grätzel, ACS Nano, 2008, 2, 1113.
12. K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, and C. A. Grime, Nanotechnol., 2007, 18, 065707.
13. Y. M. Xu, X. M. Fang, and Z. G. Zhang, Appl. Surf. Sci., 2009, 255, 8743.
14. O. K. Varghese, M. Paulose, and C. A. Grimes, Nat. Nanotechnol., 2009, 4, 592.
15. C. J. Lin, W. Y. Yu, and S. H. Chien, J. Mater. Chem., 2010, 20, 1073.
16. Q. Chen and D. Xu, J. Phys. Chem. C, 2009, 113, 6310.
17. K. Shankar, G. K. Mor, M. Paulose, O. K. Varghese, and C. A. Grimes, J. Non-Cryst. Solids, 2008, 354, 2767.
18. J. H. Park, T. W. Lee, and M. G. Kang, Chem. commun., 2008, 2867.
19. J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, and A. B. Walker, J. Am. Chem. Soc., 2008, 130, 13364.
20. K. Zhu, T. B. Vinzant, N. R. Neale, and A. J. Frank, Nano. Lett., 2007, 7, 3739.
21. P. T. Hsiao, Y. L. Tung, and H. S. Teng, J. Phys. Chem. C, 2010, 114, 6762.
22. P. T. Hsiao, K. P. Wang, C. W. Cheng, and H. S. Teng, J. Photochem. Photobiol. A: Chem, 2007, 188, 19.
23. P. T. Hsiao and H. S. Teng, J. Am. Ceram. Soc., 2009, 92, 888.
24. S. Ito, C. Peter, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel, Prog. Photovolt: Res. Appl., 2007, 15, 603.
25. J. G. Chen, C. Y. Chen, C. G. Wu, C. Y. Lin, Y. H. Lai, C. C. Wang, H. W. Chen, R. Vittal, and K. C. Ho, J. Mater. Chem., 2010, 20, 7201.
26. K. Zhu, N. R. Neale, A. F. Halverson, J. Y. Kim, and A. J. Frank, J. Phys. Chem. C, 2010, 114, 13433.
27. G. Franco, J. Gehring, L. M. Peter, E. A. Ponomarev, and I. Uhlendorf, J. Phys. Chem., 1999, 103, 692.
28. J. Krüger, R. Plass, M. Grätzel, P. J. Cameron, and L. M. Peter, J. Phys. Chem. B, 2003, 107, 7536.
29. A. J. Frank, N. Kopidakis, and J. van de Lagemaat, Coordi. Chem. Rev., 2004, 248, 1165.
30. D. Vanmaekelbergh and P. E. de Jongh, Phys. Rev. B, 2000, 61, 4699.
31. K. P. Wang and H. S. Teng, Phys. Chem. Chem. Phys., 2009, 11, 9489.
32. K. P. Wang and H. S. Teng, Appl. Phys. Lett., 2007, 91, 173102.
33. J. Krüger, R. Plass, M. Grätzel, P. J. Cameron, and L. M. Peter, J. Phys. Chem. B, 2003, 107, 7536.
34. J. Bisquert, J. Phys. Chem. B, 2002, 106, 325.
35. F. Frbregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, Sol. Energy Mater. Sol. Cells, 2005, 87, 117.
36. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, Electrochim. Acta, 2002, 47, 4213.
37. F. Febregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, and M. Grätzel, J. Phys. Chem. C, 2007, 111, 6550.
38. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, J. Phys. Chem. B, 2006, 110, 13872.
39. J. Bisquert, Phys. Chem. Chem. Phys., 2003, 5, 5360.
40. Q. Wang, S. Ito, M. Grätzel, F. Febregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, and H. Imai, J. Phys. Chem. B, 2006, 110, 25210.
41. J. van de Lagemaat, N.-G. Park, and A. J. Frank, J. Phys. Chem. B, 2000, 104, 2044.
42. W. H. Howie, F. Claeyssens, H. Miura, and L. M. Peter, J. Am. Chem. Soc., 2008, 130, 1367.
43. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, J. Am. Chem. Soc., 1993, 115, 6382.

------------------------------------------------------------------------ 第 11 筆 ---------------------------------------------------------------------
系統識別號 U0026-1507201116273900
論文名稱(中文) 具有極快電子擴散速率和優越光散射效應的新穎介孔洞二氧化鈦球珠應用於低溫可撓式染料敏化太陽能電池
論文名稱(英文) Novel mesoporous TiO2 beads having ultra-fast electron diffusion rates and excellent light scattering effects for use in low temperature flexible dye-sensitized solar cells
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 柯淳仁
學號 n56984157
學位類別 碩士
語文別 中文
口試日期 2011-06-30
論文頁數 173頁
口試委員 指導教授-丁志明
口試委員-許聯崇
口試委員-鄧熙聖
口試委員-李玉郎
口試委員-陳昭宇
關鍵字(中) 介孔洞
二氧化鈦球珠
可撓式染料敏化太陽能電池
銳鈦礦
方向性鍵結
電子擴散
光散射
溶膠凝膠
水熱
關鍵字(英) mesoporous
TiO2 bead
flexible dye-sensitized solar cell
anatase
oriented attachment
electron diffusion
light scattering
sol-gel
hydrothermal
學科別分類
中文摘要 在我們的研究中,我們率先將介孔洞(mesoporous)二氧化鈦球珠(TiO2 bead)引入低溫可撓式染料敏化太陽能電池(flexible dye-sensitized solar cell)中。二氧化鈦球珠的銳鈦礦(anatase)相和晶粒間方向性鍵結(oriented attachment)的存在,使電子有極快的電子擴散(electron diffusion)速率。此外,具次微米大小的二氧化鈦球珠導致優越的光散射(light scattering)效應。結合上述兩項優點,二氧化鈦球珠被期望用來得到高效率的染料敏化太陽能電池。在我們的努力下,成功得到約5%或超過5%的效率,分別藉由二氧化鈦球珠做為完整的光電極或散射層。與商業用粉末P25來做為比較,P25電池的最佳效率僅達4.3%。
本研究分為兩部分,一為二氧化鈦球珠的特性分析,另一為其應用於可撓式染料敏化太陽能電池,第一部分連結製程參數與二氧化鈦球珠的特性。我們使用新穎的二階段法來製備二氧化鈦球珠,包括溶膠凝膠(sol-gel)法及水熱(hydrothermal)法。在第一階段調整六甲基四胺的含量,在第二階段則調整水熱溫度,以獲得不同結晶性、表面氧空缺濃度及球珠尺寸。我們使用多種分析來評估可撓式染料敏化太陽能電池,包括電化學分析及光學分析。我們率先證實球珠尺寸對電池表現有顯著的影響,尤其是對光收集及電子注入效率。此外,我們證實二氧化鈦球珠的品質像是結晶度及表面氧空缺濃度,會影響電子擴散及存活時間,故得到不同的載子收集效率。因此我們建議使用500奈米尺寸、結晶性佳及氧空缺濃度低的二氧化鈦球珠做為光電極。750奈米的二氧化鈦球珠擁有較多的背向散射,適合做為散射層。總而言之,我們連結各項分析,並且提供獨特的見解以指出嶄新的方向,使添加新穎介孔洞二氧化鈦球珠的可撓式染料敏化電池未來能獲得極高的效率。
英文摘要 In our research, we firstly introduced mesoporous TiO2 beads into low temperature flexible dye-sensitized solar cells (FDSCs). The pure anatase phase of TiO2 beads and the existence of oriented attachment between grains in TiO2 beads enable the ultra-fast electron diffusion rates. Additionally, TiO2 beads with submicron-meter sizes cause excellent light scattering effects. Combining with these two advantages, the high efficiencies are expected by the use of TiO2 beads in DSCs. In our efforts, we successfully obtained the high cell efficiencies around or over 5% by using TiO2 beads as the whole photoanode or scattering layer, respectively. Comparing with commerial P25 powders, the optimum cell efficiency of P25 cell is 4.3%.
This study mainly divided into two parts, one is the characterization for TiO2 beads, another is its applications in FDSCs. The fisrt part correlates preparation parameters with the characteristic of TiO2 beads. We use a novel two-step method to prepare TiO2 beads involving sol-gel process and hydrothermal method. By adjusting the amount of hexamine in fisrt step and the hydrothermal temperature in second step, the TiO2 beads with various crystallinities, suface oxygen vacancy concentrations and sizes are obtained. We used every kind of analyses to evaluate the FDSCs including electrochemical and optical analysis. We fisrtly demonstrated that the sizes of TiO2 beads strongly affect the cell performances, especially for light-harvesting efficiency and electron-injection efficiency. Moreover, we demonstrated that the quality of TiO2 beads like crystallinity and surface oxygen vacancy concentrations affect the electron diffusion time and electon lifetime, resulting in different charge-collection efficiency. Therefore, we suggested that the use of TiO2 beads with 500 nm-sized, better crystallinity and less oxygen vacancies is more proper for photoanodes. The 750 nm-sized TiO2 beads having more back scattering is suitable for use as the scattering layer. To sum up, we correlated various analyses and provided distinctive understanding to indicate a brand-new direction to reach ultrahigh efficiency for FDSCs by using the novel mesoporous TiO2 beads.
論文目次 摘要 I
Abstract III
誌謝 IV
目錄 V
表目錄 X
圖目錄 XIII
符號 XXI
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目標 4
第二章 染料敏化太陽能電池 7
2.1 染料敏化太陽能電池發展概況 8
2.2 染料敏化太陽能電池基本原理 9
2.3 染料敏化太陽能電池基本構造 11
2.3.1 基板 11
2.3.2 氧化物緻密層 13
2.3.3 光電極 14
2.3.4 染料 16
2.3.5 電解質 19
2.3.6 對電極 21
2.4 總結 23
第三章 染料敏化太陽能電池分析技術 24
3.1 效率量測 24
3.2 UV-visible spectroscopy 25
3.3 光電轉換效率 27
3.4 電化學阻抗分析 29
3.5 IMPS/VS (intensity modulated photocurrent / photovoltage spectroscopy) 34
3.6 總結 37
第四章 介孔洞二氧化鈦球珠及光電極製備 38
4.1 二氧化鈦 38
4.2 二氧化鈦粉末之製備 40
4.2.1 溶膠凝膠法 40
4.2.2 水熱法 42
4.3 介孔洞二氧化鈦球珠 45
4.4 光電極製備 47
4.5 文獻回顧總結及研究構想 49
第五章 實驗方法及分析儀器原理 51
5.1 實驗目標與設計 51
5.2 實驗流程 52
5.3 特性分析方法及原理 57
5.3.1 粉末及薄膜結晶結構分析 57
5.3.2 粉末及薄膜形態分析與微結構分析 58
5.3.3 X光吸收分析 59
5.3.4 化學鍵結分析 60
5.3.5 比表面積分析 61
5.3.6 光學分析 61
5.3.7 FDSC表現分析 61
第六章 結果與討論 63
6.1 介孔洞二氧化鈦球珠粉末及薄膜之特性分析 63
6.1.1 粉末及薄膜結晶結構分析 64
6.1.2 粉末及薄膜形態分析與微結構分析 75
6.1.3 拉曼分析及X光吸收分析 89
6.1.4 化學鍵結分析 93
6.1.5 熱重分析及傅立葉轉換紅外線分析 102
6.1.6 比表面積分析 105
6.1.7 薄膜光學分析 107
6.1.8 總結 108
6.2 介孔洞二氧化鈦球珠應用於可撓式染料敏化太陽能電池之探討 109
6.2.1 介孔洞二氧化鈦球珠用於散射層對FDSC表現之影響 109
6.2.2 純介孔洞二氧化鈦球珠光電極對FDSC表現之影響 127
6.2.3 混合介孔洞二氧化鈦球珠與P25光電極對FDSC表現之影響 141
6.2.4 總結 146
第七章 結論 147
第八章 未來展望 149
第九章 參考文獻 151
附錄 164
附錄一 DSC表現之基本探討 164
三軸滾筒製程對漿料及DSC表現之影響 164
不同濺鍍時間的Pt對電極對DSC表現之影響 167
不同批次的N719對DSC表現之影響 168
介孔洞二氧化鈦球珠對DSC表現的影響 170
附錄二 172
自述 173
參考文獻 [1] N. S. Lewis, "Toward cost-effective solar energy use," Science, 315 (5813), 798-801, 2007.
[2] B. Oregan and M. Grätzel, "A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS," Nature, 353 (6346), 737-740, 1991.
[3] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, "Solar cell efficiency tables (version 31)," Progress in Photovoltaics, 16 (1), 61-67, 2008.
[4] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, "Solar cell efficiency tables (version 36)," Progress in Photovoltaics, 18 (5), 346-352, 2010.
[5] D. H. Chen, F. Z. Huang, Y. B. Cheng and R. A. Caruso, "Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells," Advanced Materials, 21 (21), 2206-+, 2009.
[6] Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N. G. Park, K. Kim and W. I. Lee, "Formation of Highly Efficient Dye-Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO2 Spheres," Advanced Materials, 21 (36), 3668-+, 2009.
[7] J. Ferber and J. Luther, "Computer simulations of light scattering and absorption in dye-sensitized solar cells," Solar Energy Materials and Solar Cells, 54 (1-4), 265-275, 1998.
[8] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho and M. Grätzel, "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers," Journal of the American Chemical Society, 127 (48), 16835-16847, 2005.
[9] C. Y. Chen, M. K. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, "Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells," Acs Nano, 3 (10), 3103-3109, 2009.
[10] H. X. Wang, H. Li, B. F. Xue, Z. X. Wang, Q. B. Meng and L. Q. Chen, "Solid-state composite electrolyte Lil/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cells," Journal of the American Chemical Society, 127 (17), 6394-6401, 2005.
[11] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Grätzel, "A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte," Nature Materials, 2 (6), 402-407, 2003.
[12] G. L. Zhang, H. Bala, Y. M. Cheng, D. Shi, X. J. Lv, Q. J. Yu and P. Wang, "High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary pi-conjugated spacer," Chemical Communications, (16), 2198-2200, 2009.
[13] M. K. Wang, A. M. Anghel, B. Marsan, N. L. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin and M. Grätzel, "CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells," Journal of the American Chemical Society, 131 (44), 15976-+, 2009.
[14] D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles and I. Riess, "Nature of photovoltaic action in dye-sensitized solar cells," Journal of Physical Chemistry B, 104 (9), 2053-2059, 2000.
[15] M. Grätzel, "Solar energy conversion by dye-sensitized photovoltaic cells," Inorganic Chemistry, 44 (20), 6841-6851, 2005.
[16] P. M. Sommeling, B. C. O'Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon and J. A. M. van Roosmalen, "Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells," Journal of Physical Chemistry B, 110 (39), 19191-19197, 2006.
[17] J. Xia, N. Masaki, K. Jiang and S. Yanagida, "Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells," Journal of Physical Chemistry B, 110 (50), 25222-25228, 2006.
[18] H. Yu, S. Q. Zhang, H. J. Zhao, G. Will and P. R. Liu, "An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells," Electrochimica Acta, 54 (4), 1319-1324, 2009.
[19] K. M. Lee, S. J. Wu, C. Y. Chen, C. G. Wu, M. Ikegami, K. Miyoshi, T. Miyasaka and K. C. Ho, "Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer," Journal of Materials Chemistry, 19 (28), 5009-5015, 2009.
[20] A. L. Linsebigler, G. Q. Lu and J. T. Yates, "PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS," Chemical Reviews, 95 (3), 735-758, 1995.
[21] J. J. Wu, G. R. Chen, H. H. Yang, C. H. Ku and J. Y. Lai, "Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells," Applied Physics Letters, 90 (21), 2007.
[22] A. B. F. Martinson, J. W. Elam, J. T. Hupp and M. J. Pellin, "ZnO nanotube based dye-sensitized solar cells," Nano Letters, 7 (8), 2183-2187, 2007.
[23] C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong and J. X. Wang, "Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode," Applied Physics Letters, 90 (26), 2007.
[24] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos and M. Grätzel, "CONVERSION OF LIGHT TO ELECTRICITY BY CIS-X2BIS(2,2'-BIPYRIDYL-4,4'-DICARBOXYLATE)RUTHENIUM(II) CHARGE-TRANSFER SENSITIZERS (X = CL-, BR-, I-, CN-, AND SCN-) ON NANOCRYSTALLINE TIO2 ELECTRODES," Journal of the American Chemical Society, 115 (14), 6382-6390, 1993.
[25] M. K. Nazeeruddin, P. Pechy and M. Grätzel, "Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex," Chemical Communications, (18), 1705-1706, 1997.
[26] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer and M. Grätzel, "Acid-base equilibria of (2,2 '-bipyridyl-4,4 '-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania," Inorganic Chemistry, 38 (26), 6298-6305, 1999.
[27] P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, "High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte," Chemical Communications, (24), 2972-2973, 2002.
[28] S. Ardo and G. J. Meyer, "Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces," Chemical Society Reviews, 38 (1), 115-164, 2009.
[29] A. Mishra, M. K. R. Fischer and P. Bauerle, "Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules," Angewandte Chemie-International Edition, 48 (14), 2474-2499, 2009.
[30] A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo and H. Pettersson, "Dye-Sensitized Solar Cells," Chemical Reviews, 110 (11), 6595-6663, 2010.
[31] W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, "Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine," Journal of Physical Chemistry B, 105 (51), 12809-12815, 2001.
[32] J. H. Wu, S. Hao, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fang, S. Yin and T. Sato, "A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells," Advanced Functional Materials, 17 (15), 2645-2652, 2007.
[33] G. P. Smestad, S. Spiekermann, J. Kowalik, C. D. Grant, A. M. Schwartzberg, J. Zhang, L. M. Tolbert and E. Moons, "A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices," Solar Energy Materials and Solar Cells, 76 (1), 85-105, 2003.
[34] K. Tennakone, G. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha and P. M. Sirimanne, "A DYE-SENSITIZED NANO-POROUS SOLID-STATE PHOTOVOLTAIC CELL," Semiconductor Science and Technology, 10 (12), 1689-1693, 1995.
[35] V. P. S. Perera and K. Tennakone, "Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector," Solar Energy Materials and Solar Cells, 79 (2), 249-255, 2003.
[36] B. O'Regan, F. Lenzmann, R. Muis and J. Wienke, "A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and CuSCN: Analysis of pore filling and IV characteristics," Chemistry of Materials, 14 (12), 5023-5029, 2002.
[37] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Grätzel, "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies," Nature, 395 (6702), 583-585, 1998.
[38] J. Kruger, R. Plass, M. Grätzel and H. J. Matthieu, "Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4 '-dicarboxy-2,2 ' bipyridine)-bis(isothiocyanato) ruthenium(II)," Applied Physics Letters, 81 (2), 367-369, 2002.
[39] T. Kitamura, M. Maitani, M. Matsuda, Y. Wada and S. Yanagida, "Improved solid-state dye solar cells with polypyrrole using a carbon-based counter electrode," Chemistry Letters, (10), 1054-1055, 2001.
[40] B. Li, L. D. Wang, B. N. Kang, P. Wang and Y. Qiu, "Review of recent progress in solid-state dye-sensitized solar cells," Solar Energy Materials and Solar Cells, 90 (5), 549-573, 2006.
[41] Z. Huang, X. H. Liu, K. X. Li, D. M. Li, Y. H. Luo, H. Li, W. B. Song, L. Q. Chen and Q. B. Meng, "Application of carbon materials as counter electrodes of dye-sensitized solar cells," Electrochemistry Communications, 9 (4), 596-598, 2007.
[42] W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, "Efficient Dye-Sensitized Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes," Acs Applied Materials & Interfaces, 1 (6), 1145-1149, 2009.
[43] Q. H. Li, J. H. Wu, Q. W. Tang, Z. Lan, P. J. Li, J. M. Lin and L. Q. Fan, "Application of microporous polyaniline counter electrode for dye-sensitized solar cells," Electrochemistry Communications, 10 (9), 1299-1302, 2008.
[44] T. N. Murakami and M. Grätzel, "Counter electrodes for DSC: Application of functional materials as catalysts," Inorganica Chimica Acta, 361 (3), 572-580, 2008.
[45] Y. Tachibana, K. Hara, K. Sayama and H. Arakawa, "Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells," Chemistry of Materials, 14 (6), 2527-2535, 2002.
[46] M. Grätzel, "Mesoscopic solar cells for electricity and hydrogen production from sunlight," Chemistry Letters, 34 (1), 8-13, 2005.
[47] M. Adachi, M. Sakamoto, J. T. Jiu, Y. Ogata and S. Isoda, "Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy," Journal of Physical Chemistry B, 110 (28), 13872-13880, 2006.
[48] J. Bisquert, "Theory of the impedance of electron diffusion and recombination in a thin layer," Journal of Physical Chemistry B, 106 (2), 325-333, 2002.
[49] R. Kern, R. Sastrawan, J. Ferber, R. Stangl and J. Luther, "Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions," Electrochimica Acta, 47 (26), 4213-4225, 2002.
[50] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, "Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy," Journal of Physical Chemistry B, 101 (49), 10281-10289, 1997.
[51] P. T. Hsiao, Y. L. Tung and H. S. Teng, "Electron Transport Patterns in TiO2 Nanocrystalline Films of Dye-Sensitized Solar Cells," Journal of Physical Chemistry C, 114 (14), 6762-6769, 2010.
[52] L. M. Peter and K. G. U. Wijayantha, "Electron transport and back reaction in dye sensitised nanocrystalline photovoltaic cells," Electrochimica Acta, 45 (28), 4543-4551, 2000.
[53] N. G. Park, J. van de Lagemaat and A. J. Frank, "Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells," Journal of Physical Chemistry B, 104 (38), 8989-8994, 2000.
[54] A. Zaban, S. T. Aruna, S. Tirosh, B. A. Gregg and Y. Mastai, "The effect of the preparation condition of TiO2 colloids on their surface structures," Journal of Physical Chemistry B, 104 (17), 4130-4133, 2000.
[55] S. Hore, E. Palomares, H. Smit, N. J. Bakker, P. Comte, P. Liska, K. R. Thampi, J. M. Kroon, A. Hinsch and J. R. Durrant, "Acid versus base peptization of mesoporous nanocrystalline TiO2 films: functional studies in dye sensitized solar cellst," Journal of Materials Chemistry, 15 (3), 412-418, 2005.
[56] M. Zukalova, A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska and M. Grätzel, "Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells," Nano Letters, 5 (9), 1789-1792, 2005.
[57] J. M. Macak, H. Tsuchiya and P. Schmuki, "High-aspect-ratio TiO2 nanotubes by anodization of titanium," Angewandte Chemie-International Edition, 44 (14), 2100-2102, 2005.
[58] J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki and A. B. Walker, "Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping, and transfer of electrons," Journal of the American Chemical Society, 130 (40), 13364-13372, 2008.
[59] K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O. K. Varghese, G. K. Mor, T. J. LaTempa, M. Thelakkat and C. A. Grimes, "Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye," Nano Letters, 8 (6), 1654-1659, 2008.
[60] C. C. Wang and J. Y. Ying, "Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals," Chemistry of Materials, 11 (11), 3113-3120, 1999.
[61] X. Chen and S. S. Mao, "Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications," Chemical Reviews, 107 (7), 2891-2959, 2007.
[62] G. Oskam, A. Nellore, R. L. Penn and P. C. Searson, "The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio," Journal of Physical Chemistry B, 107 (8), 1734-1738, 2003.
[63] T. Sugimoto, X. P. Zhou and A. Muramatsu, "Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 4. Shape control," Journal of Colloid and Interface Science, 259 (1), 53-61, 2003.
[64] K. Yanagisawa and J. Ovenstone, "Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature," Journal of Physical Chemistry B, 103 (37), 7781-7787, 1999.
[65] S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim and W. I. Lee, "Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films," Chemistry of Materials, 15 (17), 3326-3331, 2003.
[66] H. M. Cheng, J. M. Ma, Z. G. Zhao and L. M. Qi, "HYDROTHERMAL PREPARATION OF UNIFORM NANOSIZE RUTILE AND ANATASE PARTICLES," Chemistry of Materials, 7 (4), 663-671, 1995.
[67] Q. Huang and L. Gao, "A simple route for the synthesis of rutile TiO2 nanorods," Chemistry Letters, 32 (7), 638-639, 2003.
[68] Q. H. Zhang, L. A. Gao, J. Sun and S. Zheng, "Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals," Chemistry Letters, (2), 226-227, 2002.
[69] C. C. Tsai and H. S. Teng, "Regulation of the physical characteristics of Titania nanotube aggregates synthesized from hydrothermal treatment," Chemistry of Materials, 16 (22), 4352-4358, 2004.
[70] C. S. Kim, B. K. Moon, J. H. Park, B. C. Choi and H. J. Seo, "Solvotherinal synthesis of nanocrystalline TiO2 in toluene with surfactant," Journal of Crystal Growth, 257 (3-4), 309-315, 2003.
[71] X. Wang, J. Zhuang, Q. Peng and Y. D. Li, "A general strategy for nanocrystal synthesis," Nature, 437 (7055), 121-124, 2005.
[72] W. Shao, F. Gu, C. Z. Li and M. K. Lu, "Interfacial Confined Formation of Mesoporous Spherical TiO2 Nanostructures with Improved Photoelectric Conversion Efficiency," Inorganic Chemistry, 49 (12), 5453-5459, 2010.
[73] F. Z. Huang, D. H. Chen, X. L. Zhang, R. A. Caruso and Y. B. Cheng, "Dual-Function Scattering Layer of Submicrometer-Sized Mesoporous TiO2 Beads for High-Efficiency Dye-Sensitized Solar Cells," Advanced Functional Materials, 20 (8), 1301-1305, 2010.
[74] W. G. Yang, F. R. Wan, Q. W. Chen, J. J. Li and D. S. Xu, "Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells," Journal of Materials Chemistry, 20 (14), 2870-2876, 2010.
[75] S. R. Gajjela, K. Ananthanarayanan, C. Yap, M. Grätzel and P. Balaya, "Synthesis of mesoporous titanium dioxide by soft template based approach: characterization and application in dye-sensitized solar cells," Energy & Environmental Science, 3 (6), 838-845, 2010.
[76] S. H. Jang, Y. J. Kim, H. J. Kim and W. I. Lee, "Low-temperature formation of efficient dye-sensitized electrodes employing nanoporous TiO2 spheres," Electrochemistry Communications, 12 (10), 1283-1286, 2010.
[77] H. Lindstrom, A. Holmberg, E. Magnusson, S. E. Lindquist, L. Malmqvist and A. Hagfeldt, "A new method for manufacturing nanostructured electrodes on plastic substrates," Nano Letters, 1 (2), 97-100, 2001.
[78] M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda and G. Nelles, "Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers," Nature Materials, 4 (8), 607-611, 2005.
[79] Y. Kijitori, M. Ikegami and T. Miyasaka, "Highly efficient plastic dye-sensitized photoelectrodes prepared by low-temperature binder-free coating of mesoscopic titania pastes," Chemistry Letters, 36 (1), 190-191, 2007.
[80] J. H. Park, Y. Jun, H. G. Yun, S. Y. Lee and M. G. Kang, "Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate," Journal of the Electrochemical Society, 155 (7), F145-F149, 2008.
[81] T. Yamaguchi, N. Tobe, D. Matsumoto and H. Arakawa, "Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes," Chemical Communications, (45), 4767-4769, 2007.
[82] T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai and H. Arakawa, "Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%," Solar Energy Materials and Solar Cells, 94 (5), 812-816, 2010.
[83] T. Miyasaka and Y. Kijitori, "Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers," Journal of the Electrochemical Society, 151 (11), A1767-A1773, 2004.
[84] W. J. Wiscombe, "IMPROVED MIE SCATTERING ALGORITHMS," Applied Optics, 19 (9), 1505-1509, 1980.
[85] S. Eiden-Assmann, J. Widoniak and G. Maret, "Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles," Chemistry of Materials, 16 (1), 6-11, 2004.
[86] D. H. Chen, L. Cao, F. Z. Huang, P. Imperia, Y. B. Cheng and R. A. Caruso, "Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm)," Journal of the American Chemical Society, 132 (12), 4438-4444, 2010.
[87] H. Z. Zhang and J. F. Banfield, "Thermodynamic analysis of phase stability of nanocrystalline titania," Journal of Materials Chemistry, 8 (9), 2073-2076, 1998.
[88] J. F. Banfield, S. A. Welch, H. Z. Zhang, T. T. Ebert and R. L. Penn, "Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products," Science, 289 (5480), 751-754, 2000.
[89] M. Lazzeri, A. Vittadini and A. Selloni, "Structure and energetics of stoichiometric TiO2 anatase surfaces (vol 63, art no 155409, 2001)," Physical Review B, 65 (11), 2002.
[90] M. E. Labib and R. Williams, "THE USE OF ZETA-POTENTIAL MEASUREMENTS IN ORGANIC-SOLVENTS TO DETERMINE THE DONOR-ACCEPTOR PROPERTIES OF SOLID-SURFACES," Journal of Colloid and Interface Science, 97 (2), 356-366, 1984.
[91] B. J. Kirby and E. F. Hasselbrink, "Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations," Electrophoresis, 25 (2), 187-202, 2004.
[92] T. Ohsaka, F. Izumi and Y. Fujiki, "RAMAN-SPECTRUM OF ANATASE, TIO2," Journal of Raman Spectroscopy, 7 (6), 321-324, 1978.
[93] S. K. Gupta, R. Desai, P. K. Jha, S. Sahoo and D. Kirin, "Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence," Journal of Raman Spectroscopy, 41 (3), 350-355, 2010.
[94] V. Swamy, A. Kuznetsov, L. S. Dubrovinsky, R. A. Caruso, D. G. Shchukin and B. C. Muddle, "Finite-size and pressure effects on the Raman spectrum nanocrystalline anatse TiO2," Physical Review B, 71 (18), 2005.
[95] D. Bersani, P. P. Lottici and X. Z. Ding, "Phonon confinement effects in the Raman scattering by TiO2 nanocrystals," Applied Physics Letters, 72 (1), 73-75, 1998.
[96] X. B. Chen, Y. B. Lou, A. C. S. Samia, C. Burda and J. L. Gole, "Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder," Advanced Functional Materials, 15 (1), 41-49, 2005.
[97] S. O. Kucheyev, T. van Buuren, T. F. Baumann, J. H. Satcher, T. M. Willey, R. W. Meulenberg, T. E. Felter, J. F. Poco, S. A. Gammon and L. J. Terminello, "Electronic structure of titania aerogels from soft x-ray absorption spectroscopy," Physical Review B, 69 (24), 2004.
[98] F. M. F. Degroot, J. Faber, J. J. M. Michiels, M. T. Czyzyk, M. Abbate and J. C. Fuggle, "OXYGEN 1S X-RAY-ABSORPTION OF TETRAVALENT TITANIUM-OXIDES - A COMPARISON WITH SINGLE-PARTICLE CALCULATIONS," Physical Review B, 48 (4), 2074-2080, 1993.
[99] L. Soriano, M. Abbate, J. Vogel, J. C. Fuggle, A. Fernandez, A. R. Gonzalezelipe, M. Sacchi and J. M. Sanz, "CHEMICAL-CHANGES INDUCED BY SPUTTERING IN TIO2 AND SOME SELECTED TITANATES AS OBSERVED BY X-RAY-ABSORPTION SPECTROSCOPY," Surface Science, 290 (3), 427-435, 1993.
[100] V. S. Lusvardi, M. A. Barteau, J. G. Chen, J. Eng, B. Fruhberger and A. Teplyakov, "An NEXAFS investigation of the reduction and reoxidation of TiO2(001)," Surface Science, 397 (1-3), 237-250, 1998.
[101] C. Trapalis, V. Kozhukharov, B. Samuneva and P. Stefanov, "SOL-GEL PROCESSING OF TITANIUM-CONTAINING THIN COATINGS .2. XPS STUDIES," Journal of Materials Science, 28 (5), 1276-1282, 1993.
[102] J. G. Yu, X. J. Zhao and Q. N. Zhao, "Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method," Materials Chemistry and Physics, 69 (1-3), 25-29, 2001.
[103] J. Pouilleau, D. Devilliers, H. Groult and P. Marcus, "Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy," Journal of Materials Science, 32 (21), 5645-5651, 1997.
[104] H. Jensen, A. Soloviev, Z. S. Li and E. G. Sogaard, "XPS and FTIR investigation of the surface properties of different prepared titania nano-powders," Applied Surface Science, 246 (1-3), 239-249, 2005.
[105] P. M. Kumar, S. Badrinarayanan and M. Sastry, "Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states," Thin Solid Films, 358 (1-2), 122-130, 2000.
[106] N. C. Saha and H. G. Tompkins, "TITANIUM NITRIDE OXIDATION CHEMISTRY - AN X-RAY PHOTOELECTRON-SPECTROSCOPY STUDY," Journal of Applied Physics, 72 (7), 3072-3079, 1992.
[107] T. C. Jagadale, S. P. Takale, R. S. Sonawane, H. M. Joshi, S. I. Patil, B. B. Kale and S. B. Ogale, "N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method," Journal of Physical Chemistry C, 112 (37), 14595-14602, 2008.
[108] M. Sathish, B. Viswanathan, R. P. Viswanath and C. S. Gopinath, "Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst," Chemistry of Materials, 17 (25), 6349-6353, 2005.
[109] H. J. Tian, L. H. Hu, C. N. Zhang, W. Q. Liu, Y. Huang, L. Mo, L. Guo, J. Sheng and S. Y. Dai, "Retarded Charge Recombination in Dye-Sensitized Nitrogen-Doped TiO2 Solar Cells," Journal of Physical Chemistry C, 114 (3), 1627-1632, 2010.
[110] J. G. Yu, X. J. Zhao, J. C. Du and W. M. Chen, "Preparation, microstructure and photocatalytic activity of the porous TiO2 anatase coating by sol-gel processing," Journal of Sol-Gel Science and Technology, 17 (2), 163-171, 2000.
[111] R. Bleta, P. Alphonse and L. Lorenzato, "Nanoparticle Route for the Preparation in Aqueous Medium of Mesoporous TiO2 with Controlled Porosity and Crystalline Framework," Journal of Physical Chemistry C, 114 (5), 2039-2048, 2010.
[112] C. Deng, P. F. James and P. V. Wright, "Poly(tetraethylene glycol malonate) titanium oxide hybrid materials by sol-gel methods," Journal of Materials Chemistry, 8 (1), 153-159, 1998.
[113] K. D. Benkstein, N. Kopidakis, J. van de Lagemaat and A. J. Frank, "Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells," Journal of Physical Chemistry B, 107 (31), 7759-7767, 2003.
[114] V. Stengl, V. Houskova, S. Bakardjieva and N. Murafa, "Photocatalytic Activity of Boron-Modified Titania under UV and Visible-Light Illumination," Acs Applied Materials & Interfaces, 2 (2), 575-580, 2010.
[115] J. van de Lagemaat, N. G. Park and A. J. Frank, "Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques," Journal of Physical Chemistry B, 104 (9), 2044-2052, 2000.
[116] D. Vanmaekelbergh and P. E. de Jongh, "Electron transport in disordered semiconductors studied by a small harmonic modulation of the steady state," Physical Review B, 61 (7), 4699-4704, 2000.
[117] A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker and K. G. U. Wijayantha, "Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells," Journal of Physical Chemistry B, 104 (5), 949-958, 2000.
[118] N. W. Duffy, L. M. Peter, R. M. G. Rajapakse and K. G. U. Wijayantha, "Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells," Journal of Physical Chemistry B, 104 (38), 8916-8919, 2000.
[119] N. Kopidakis, K. D. Benkstein, J. van de Lagemaat and A. J. Frank, "Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells," Journal of Physical Chemistry B, 107 (41), 11307-11315, 2003.
[120] A. J. Frank, N. Kopidakis and J. van de Lagemaat, "Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties," Coordination Chemistry Reviews, 248 (13-14), 1165-1179, 2004.
[121] W. Gopel, G. Rocker and R. Feierabend, "INTRINSIC DEFECTS OF TIO2(110) - INTERACTION WITH CHEMISORBED O2, H-2, CO, AND CO2," Physical Review B, 28 (6), 3427-3438, 1983.
[122] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Grätzel, "Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell," Journal of Physical Chemistry B, 107 (34), 8981-8987, 2003.
[123] V. Thavasi, V. Renugopalakrishnan, R. Jose and S. Ramakrishna, "Controlled electron injection and transport at materials interfaces in dye sensitized solar cells," Materials Science & Engineering R-Reports, 63 (3), 81-99, 2009.
[124] J. J. Lee, G. M. Coia and N. S. Lewis, "Current density versus potential characteristics of dye-sensitized nanostructured semiconductor photoelectrodes. 2. Simulations," Journal of Physical Chemistry B, 108 (17), 5282-5293, 2004.
[125] J. Kruger, R. Plass, M. Grätzel, P. J. Cameron and L. M. Peter, "Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy," Journal of Physical Chemistry B, 107 (31), 7536-7539, 2003.

------------------------------------------------------------------------ 第 12 筆 ---------------------------------------------------------------------
系統識別號 U0026-2307201211193000
論文名稱(中文) 以微波溶熱法製備奈米級二氧化鈦及其光催化性質研究
論文名稱(英文) Synthesis of anatase nanoparticles by microwave-assisted solvothermal processes and their photocatalytic performances
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 戴妤娟
學號 n46991217
學位類別 碩士
語文別 中文
口試日期 2012-06-18
論文頁數 95頁
口試委員 指導教授-吳毓純
口試委員-丁志明
口試委員-吳宛玉
口試委員-陳昭宇
關鍵字(中) 二氧化鈦
溶膠凝膠
微波
溶熱法
關鍵字(英) anatase
sol-gel
microwave
solvothermal reaction
學科別分類
中文摘要 以微波溶熱法可使溶膠凝膠法獲得的非晶質二氧化鈦在反應溫度220℃下,僅需三十分鐘即可合成奈米尺寸分散性良好的銳鈦礦相二氧化鈦。當溫度過低時,晶粒結晶性較差;而持溫時間的延長和溶熱壓力的增加對於晶粒大小並無助益。另外,隨著水解速率的增高,二氧化鈦的晶粒大小有變小的情形,但水解速率過低則無結晶相產生;當前驅物起始濃度變高對二氧化鈦的大小形體無差異,但可增加二氧化鈦的產率,若起始濃度過低則使二氧化鈦結晶性變差。改變不同的溶劑導致立體阻隔效應不同,進而控制了晶粒大小,另外發現二氧化鈦的形狀可經由簡單的置換不同溶劑進行改變。另外,本研究利用醋酸作為螯合劑控制晶粒形狀可生成棒狀二氧化鈦晶粒。
  最後,將合成的銳鈦礦相二氧化鈦進行光催化活性的測試後,發現以正丙醇作為溶劑合成之樣品因具有結晶性良好、高比表面積、可見光吸收面積大和{001}氧化反應位置較多,故表現出最佳的光催化效能。
英文摘要 In this study, a novel and facile method is developed to synthesizeTiO2nanocrystals via microwave-assisted solvothermal reaction route. Sol-gel processusing titanium isopropoxide as precursorsprepared with different solvents and hydrolysis rates are adapted to controlled the particle size and shape of TiO2nanocrystals. Well dispersed TiO2nanoparticlesin anatase phase can be obtained using the current method under 220ºC in 30 minutes. Severalexperimental parameters are found to influence the properties of nanoparticles. First-of-all, the temperature over 220 ºC is necessary to induce the crystallization of anatasenanocrystals under microwave-assisted solvothermal reaction;however the pressure (between 180 to 250 psi)and reaction time(over 15 minutes)do not show obvious effect on the variation of crystal morphology or size. In addition, a higher hydrolysis rate (H2O/Ti = 6.6) to the precursor solution generally results in smaller nanoparticles in comparison with that obtained from a lower hydrolysis rate (H2O/Ti = 3.3). Nevertheless, a crystallization is not carried out if the hydrolysis rate is too low (H2O/Ti = 1.6). The increaseof the concentration of the precursor solution does not change the resulting nanoparticlessize; however is advantageous to increase yield of product. In parallel, the solvothermal reaction undergo with different solvents allows to control not only the size but also the crystal shape due to the steric hindrance effect from the solvent. Finally,using acetic acid as chelating agent to thetitanium isopropoxide induces an anisotropic crystal growth and finally leads to rod-like anatase nanoparticles.
The photocatalytic performances of the anatase nanoparticles synthesized in the current work, that all exhibit different crystal shapes and sizes, are examined by observing the degradation rate of methylene blue in water under the radiation of Xeon lamp. It is found that the anatase nanoparticles obtained by using n-propanol as solvent, showa best photocatalytic activity because of its well crystalline, high specific surface area and its wide optical range in visible light. Moreover, its preferred development of crystalline shape in {001} facet also provides more oxidization sites and is beneficial to enhance the photocatalytic activity.
論文目次 中文摘要 I
Abstract II
致謝 IV
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
第二章 文獻回顧與理論基礎 3
2.1 奈米粒子特性 3
2.2 二氧化鈦晶體結構 6
2.3 二氧化鈦合成方法 9
2.3.1 溶膠凝膠法 9
2.3.2 溶熱法 14
2.4 二氧化鈦晶粒成核成長機制 15
2.5 微波合成技術 20
2.5.1 微波加熱原理 20
2.5.2 微波加熱應用 23
2.5.3 實驗裝置 24
2.6 二氧化鈦光觸媒反應 25
2.6.1 光催化反應機制 26
2.6.2 亞甲基藍光降解反應 29
第三章 實驗方法與步驟 31
3.1 實驗藥品 31
3.2 實驗流程 32
3.2.1 製備TiO2起始溶液 32
3.2.2 微波溶熱製備 TiO2粉末 32
3.2 特性分析 34
3.3.1 X-ray 粉末繞射分析 34
3.3.2 晶粒粒徑分析 35
3.3.3 穿透式電子顯微鏡 36
3.3.4 紫外-可見光光譜儀 36
3.3.5 傅立葉轉換紅外線光譜儀分析 37
3.3.6 比表面積測定 38
3.4 光催化活性測試 39
3.4.1 背景實驗步驟 39
第四章 結果與討論 41
4.1 微波溶熱參數設定 41
4.1.1 溫度之影響 41
4.1.2 持溫時間之影響 45
4.1.3 不同填充量產生的壓力之影響 47
4.2 製程參數對微波合成二氧化鈦粒子之影響 50
4.2.1 水解速率之影響 50
4.2.2 前驅物起始濃度之影響 53
4.2.3 不同溶劑之影響 57
4.2.3.1 一級醇類溶劑 57
4.2.3.2 二級醇類溶劑 61
4.2.3.3 結構異構物醇類溶劑 64
4.2.3.4 溶劑影響討論 66
4.2.3.5 不同形狀形成 70
4.2.4 醋酸的添加於二氧化鈦形貌之影響討論 73
4.3 光催化反應活性測試 80
4.3.1 背景實驗 80
4.3.2 二氧化鈦結晶性與晶粒大小對於光催化活性之影響 83
4.3.3 二氧化鈦晶體形貌對於光催化活性之影響 87
第五章 結論 91
參考文獻 93
參考文獻 1. 呂世源,科學發展,359 (2002) 4-7。
2. 王崇人,科學發展,354 (2002)。
3. 工研院工業材料研究所,材料奈米技術專刊,臺北;經濟部技術處 (2001)。
4. 謝秉勳,奈米級光觸媒之製備及光催化活性測定,國立臺灣大學環境工程學研究所,中華民國90年6月。
5. A. L. Linsebigler, G. Lu, J. T. Yates, Chemical Reviews, 95 (1995) 738-758.
6. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara,Advanced Materials, 11(1999)1307.
7. Y. Yu, D. S. Xu, Applied Catalysis B, 73 (2007) 166.
8. K. Kakiuchi, E. Hosono, H. Imai, T. Kiura, S. Fujihara, Journal of Crystal Growth, 293 (2006) 541.
9. 陳富亮,最新奈米光觸媒應用技術,林斯頓國際,(2003)46-47。
10. J. Livage, M. Henry, C. Sanchez, Progress in Solid State Chemistry, 18 (1988)259.
11. B. E. Yoldas*, Journal of Materials Science, 21 (1986) 1087-1092.
12. K. Kamiya, K. Tanimoto, T. Yoko, Journal of Materials Science Letters, 5 (1986) 402.
13. 張天益,利用溶膠-凝膠法製備鋯鈦酸鉛陶瓷塊材與薄膜之研究,國立成功大學材料工程研究所,中華民國96年6月。
14. C. Sanchez, J. Livage, M. henry, F. Babonneau, Journal of Non-Crystalline Solids, 100 (1988) 65-76.
15. F. Cot, A. Larbot, G. Nabias, L. Cot, Journal of European Ceramic Society, 18 (1998) 2175-2181.
16. S. Doeuff, M. Henry, C. Sanchez, J. Livage, Journal of Nano-Crystalline Solids, 89 (1987) 206-216.
17. S. Sakka, K. Kamiya, Journal of Nano-Crystalline Solids, 42 (1980) 403.
18. S. Komarneni, R. K. Rajha, H. Katsuki, Materials Chemistry and Physics, 60 (1999) 50-54.
19. W. J. Dawson, American Ceramic Society Bulletin, 67 (1988)1673-1678.
20. V. K. LaMer, R. H. Dinegar, Journal of American Chemical Society, 72 (1950) 4847.
21. T.Sugimoto, Journal of Colloid and Interface Science, 309 (2007) 106-118.
22. T. Sugimoto, Advanced in Colloid and Interface Science,28 (1987) 65.
23. J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, Angrew,Angewandte Chemie (International Edition). 46 (2007) 4630-4660.
24. 游佩青,類均值條件下奈米θ-Al2O3微粒之晶粒成長現象觀察,國立成功大學資源工程研究所,中華民國97年6月。
25. P. W. Voorhees, Journal of Statistical Physics, 38 (1985) 1-2.
26. D. Fairhurst, R. W. Lee, Drug Delivery Tech., 8 (2008).
27. C. Ribeiro, C. M. Barrado, E. R. Camargo, E. Longo, E. R. Leite, Chemistry - A European Journal 15 (2009) 2217-2222.
28. A. S. Barnard, P. Zapol, Journal of Physical Chemistry B, 108 (2004) 18435-18440.
29. Y. W. Jun, M. F. Casula, J. H. Sim, S. Y. Kim, J. Cheon, A. P. Alivisatos, Journal of American Chemical Society, 125 (2003) 15981-15985.
30. R. L. Penn, J. F. Banfield, Geochimica ET Cosmochimica Acta, 63 (1999) 1549-1557.
31. Y. W. Jun, J. S. Choi, J. Cheon*, Angewandte Chemie International Edition 45 (2006) 3414-3439.
32. H. Zhan, X.Yang, C. Wang, C. Liang, M. Wu*, Journal of Physical Chemistry C, 114 (2010)14461-14466.
33. G. J. Wilson, A. S. Matijasevich, D. R. G. Mitchell, J. C. Schulz, G. D. Will*, Langmuir, 22 (2006) 2016-2027.
34. 張育誠,研究微波加熱技術在奈米材料之合成、自組裝級分解機構,國立清華大學原子科學系碩士班,中華民國92年6月。
35. 蘇裕勝,利用液相組合式合成法合成苯并米雜環分子庫,國立東華大學化學研究所,中華民國92年6月。
36. 紀柏亨、楊末雄、孫毓璋,微波消化之方法與應用,Chemistry, 56 (1998) 269-284.
37. J. A. Ayllon, A. M. Piero,L. Saadoun, E. Vigil, X. Domenech, J. Peral, Journal of Material Chemistry, 10 (2000) 1911-1914.
38. M. Grätzel, Nature, 414 (2001) 338-344.
39. T. Ohno, K. Sarudawa, M. Matsumura, New Journal of Chemistry, 26 (2002) 1167.
40. A.Furube, T. Asahi, H. Masuhara, H. Yamashita, M. Anpo, Journal of Physical Chemistry B, 103 (1999) 3120-3127.
41. J. Macak, M. Zlamal, J. Krysa, P. Schmuki*, Small, 3 (2007) 300-304.
42. J. Wu, X. Lü, L. Zhang, F. Huang, F. Xu, European Journal of Inorganic Chemistry (2009) 2789-2795.
43. M. Xie, L. Jing*, J.Zhou, J. Lin, H. Fu*, Journal of Hazardous materials, 176 (2010) 139-145.
44. G. J. Wilson, A. S. Matijasevich, D. R. G. Mitchell, J. C. Schulz, G. D. Will*, Langmuir, 22 (2006) 2016-2027.
45. L. J. Bellamy, Infrared Spectra of Complicated Molecules, Science Press, Beijing, (1975) pp. 5-29.
46. L. J. Bellamy, Infrared Spectra of Complicated Molecules, Science Press, Beijing, (1975) pp. 107-127.
47. M. Wang, T. He, Y. Pan, W. Liao, S. Zhang, W. Du, Materials Chemistry and Physics, 130 (2011) 1294-1299.
48. C. Wang, Z. X. Deng, G. Zhang, S. Fan, Y. Li*, Powder technology, 125 (2002) 39-44.
49. A. Mahyar, A. R. Amani-Ghadim, Micro & Nano Letters 6 (2011) 244-248.
50. X. Zhao , W. Jin , J. Cai , J. Ye , Z. Li , Y. Ma , J. Xie , L. Qi*, Advanced Functional Materials, 21 (2011) 3554-3563.
51. Y. Zhao*, J. Liu, L. Shi∗, S. Yuan, J. Fang, Z. Wang, M. Zhang, applied catalysis B: Environmental, 103 (2011) 436-443.
52. G. Melcarne, L. D. Marco, E. Carlino, F. Martina, M. Manca, R. Cingolani, G. Gigli, G. Ciccarella*, Journal of Materials Chemistry, 20 (2010) 7248-7254.
53. S. Doeuff, M. Henry, C. Sanchez, J. Livage, Journal of Nano-Crystalline Solids 89 (1987) 206-216.
54. P. D. Cozzoli, A. Kornowski, H. Weller*, Journal of American Chemical Society, 125 (2003) 14539-14548.

 


如您有疑問,請聯絡圖書館
聯絡電話:(06)2757575#65773
聯絡E-mail:etds@email.ncku.edu.tw