進階搜尋

 
查詢範圍:「   」
顯示範圍:第筆 論文書目資料
顯示格式:全部欄位
共 8 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910434971
論文名稱(中文) 關廟層砂岩之力學特性
論文名稱(英文) none
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 91
學期 2
出版年 92
研究生(中文) 游有方
學號 n6690123
學位類別 碩士
語文別 中文
口試日期 2003-06-25
論文頁數 132頁
口試委員 口試委員-黃燦輝
指導教授-李德河
口試委員-廖志中
口試委員-陳昭旭
口試委員-鄭富書
關鍵字(中) 直接剪力
元素分析
電子顯微鏡
崩解耐久性
關廟層砂岩
關鍵字(英) mechanical behavior
slope stability analysis
soft rock
mudstone
psammite
sandstone
學科別分類
中文摘要 我國西南部麓山帶於嘉義及台南一帶主要出露之地層為二重溪層及六雙層等沉積層,此類沉積岩地層多為細至中粒砂岩、泥岩及其互層所組成。由於其成岩時間較短、膠結性不良以及遇水容易產生弱化、崩解、回漲等現象,導致抵抗外在環境侵蝕能力較差。
本文針對我國西南部地區出露於台南縣關廟鄉、龍崎鄉一帶,整合於南化泥岩之上之關廟層軟弱砂岩進行基本物理性質、電子顯微鏡(SEM)、元素分析(EDS)、消散耐久性試驗、超音波試驗、直接剪力試驗、單壓試驗、透水試驗、應變控制及不同應力路徑之三軸壓密不排水試驗。
由試驗結果顯示,此地區所取得之試體屬於ISRM (International Society of Rock Mechanics)所定義之軟弱岩石。乾燥之關廟層砂岩之單壓強度約為2 Mpa,且隨含水量之增加而驟降約80%。由崩解耐久性試驗之結果指出,關廟層砂岩極易受乾濕之循環而產生崩解。根據砂、泥岩互層直剪試驗的結果顯示,在飽和狀態下,砂、泥岩互層之尖峰及殘餘力學參數皆低於砂岩及泥岩。根據三軸透水試驗結果顯示其滲透係數約為5.92 ×10-5 cm/sec。
而根據不同應力路徑之三軸壓密不排水試驗得知當圍壓為增加之趨勢,試體之抗剪強度增加,且體積變化呈現剪縮性的趨勢。當總平均圍壓為減低之趨勢時,試體之抗剪強度降低,且體積變化趨勢呈現剪脹性之趨勢。
由試驗結果及驗證相關學者提出之破壞準則後,歸納出乾燥之關廟層砂岩之脆延性轉換壓力約介於7-8 MPa 之間。再輔以基本物性之結果及電子顯微鏡及元素分析之微觀的角度來描述關廟層之力學特性。
英文摘要 The purpose of this project is to study the mechanical properties of soft rocks such as sandstone、psammite and mudstone in southern Taiwan which was passed through by highway. A series of tests including triaxial test is be performed to study the mechanical behaviors for soft rocks with different contents. The investigation on the mechanical properties of sandstone in southern Taiwan use a series of tests including general physical test、uniaxial compressive test、derect shear test and tradition triaxial test. From the mechanical properties of rocks , we know that is the part of soft rock in ISRM (Internatopnal Society of Rock Mechanics). In the confine stress(σ3 ≒6.0Mpa) the fracture shows the brittle behavior , but by the increase of the confine stress the fracture shows the ductile behavior. In addition , the volume is compressed in advance then expansion in the low confine stress like the overconsolidation condition , the excess pore water pressure is right then negative. In the high confine stress , the volume is compressed like normal concolidation condition. Furthermore, the database of soft rocks in southern Taiwan will be established for slope stability analysis, and the observation of the slope along the highway will be used for feedback analysis.
論文目次 摘要.......................................................................................................Ⅰ
誌謝.......................................................................................................Ⅱ
目錄.......................................................................................................Ⅲ
表目錄...................................................................................................Ⅵ
圖目錄...................................................................................................Ⅷ
第一章緒論
1-1 研究動機與目的..............................................................1
1-2 研究流程.........................................................................2
第二章文獻回顧
2-1 軟弱岩石概述..................................................................3
2-1-1 軟弱岩石定義...........................................................3
2-1-2 軟弱岩石成因與種類...............................................5
2-1-3 軟弱岩石之力學及工程特性...................................6
2-2 台灣西南部地區地質概述..............................................9
2-2-1 台灣西南部軟弱岩層之分布...................................9
2-2-2 台灣西南部軟弱岩層之力學特性............................12
2-3 軟弱岩石強度影響因子..................................................13
2-3-1 圍壓對岩石之力學行為之影響...............................13
2-3-2 含水量對岩石之力學行為之影響............................16
IV
2-3-3 速率效應對岩石之力學行為之影響........................18
2-4 軟弱岩石之變形特性......................................................21
2-5 軟弱岩石之受剪行為......................................................23
2-6 軟弱岩石之滲透性質......................................................24
2-7 不同應力路徑對岩石力學性質之影響...........................30
2-8 軟弱岩石之三軸試驗系統..............................................30
2-8-1 軟弱岩石之三軸設備… … … … … … … … .. ..............30
2-8-2 軟弱岩石三軸試驗之方法… … … … … … ................32
2-9 軟弱岩石之破壞準則… … … … … … … … … ...................34
第三章試驗儀器與試驗規劃
3-1 試驗儀器.........................................................................39
3-1-1 超音波量測設備.......................................................39
3-1-2 掃描式電子顯微鏡...................................................40
3-1-3 崩解耐久性...............................................................40
3-1-4 直接剪力試驗機.......................................................41
3-1-5 載重試驗機(MTS)....................................................42
3-1-6 三軸試驗系統...........................................................45
3-2 試體來源與製作..............................................................50
3-2-1 試體來源..................................................................50
3-2-2 試體製作..................................................................53
3-3 試驗規劃與方法..............................................................54
3-3-1 基本物性試驗...........................................................54
3-3-2 電子顯微鏡及元素分析...........................................55
3-3-3 超音波試驗...............................................................55
3-3-4 崩解耐久性試驗.......................................................56
3-3-5 直接剪力試驗...........................................................57
3-3-6 單軸壓縮試驗...........................................................58
3-3-7 透水試驗..................................................................59
3-3-8 應變控制之三軸壓縮試驗.......................................61
3-3-9 不同應力路徑三軸壓密不排水試驗........................63
第四章試驗結果與討論......................................................................65
4-1 基本物性試驗結果..........................................................65
4-2 粒徑分析.........................................................................66
4-3 電子顯微鏡及元素分析..................................................67
4-4 超音波試驗......................................................................69
4-5 崩解耐久性試驗..............................................................70
4-6 直接剪力試驗結果..........................................................72
4-7 單軸壓縮試驗試驗結果..................................................82
4-8 三軸透水試驗結果..........................................................85
4-9 軸向應變控制之三軸壓縮試驗結果...............................86
4-9-1 乾燥關廟層試體之三軸壓縮試驗結果與討論........86
4-9-2 飽和關廟層試體之三軸壓縮試驗結果與討論........90
4-10 不同總應力路徑之下三軸壓密不排水試驗結果....... 102
4-10-1 乾燥砂岩試體之不同應力路徑三軸壓縮試驗.... 104
4-10-2 飽和砂岩試體之不同應力路徑三軸壓縮試驗.... 107
4-11 破壞準則… … … .......................................................... 113
4-11-1 建立關廟層砂岩之破壞準則................................. 113
4-11-2 相關破壞準則......................................................... 116
第五章結論與建議… … … … … … … … … … … … … … … … … … … ...119
5-1 結論… … … … … ............................................................ 126
5-2 建議… … … … … … … … … … … … … … … ..................... 127
參考文獻… … … … … … … … … … … … … … … … … … … … ................ 128
參考文獻 1.Barton, M. E., (1993), “Cohesive sands: The natural transition from
sands to sandstones”, Geotechnical Engineering of Hard Soil-Soft
Rocks, Anagnostopoulos et al. (end), 1993, Balkema, Rotterdam, ISBN
90 5410 3442, pp.367-374.
2.Bell, F. G. and Culshaw, M. G., (1993), “A survey of the geotechnical
properties of some relatively weak Triassic sandstone”, The
Engineering Geology of Weak Rock, Cripps et al. (eds), Balkema,
Rotterdam. ISBN 90 6191 1672, pp.139-148.
3.Chiu, H., Johnston I.W. and Donald I. B., (1983), “Appropriate
techniques for triaxial testing of saturated soft rock”, Int. J. Rock Mech.
Sci. and Geomech. Abstr., Vol.20, No.3, pp.107-120.
4.Dobereiner, L., De Freitas, M. H., (1986), “Geotechnical Properties of
Weak sandstones”, Geotechnique, Vol. 36, No.1, pp.79-94.
5.Donath, F. A., (1976), “Some Information Squeezed out of Rock”,
American Scientist, Vol.58,pp.54-72.
6.Heok, E. and Brown, E. T. (1980), “Underground Excavation in Rock”,
The Institution of Mining and Metallurgy, London.
7.Hight, D.W. and Higgins K.G.,(1995), “An approach to the prediction
of ground movements in engineering practice: Background and
application”, Pre-failure Deformation of Geomaterials, Shibuya,
Mitachi and Miura (eds), Balkema, Rotterdam, pp.909-945.
8.Johnston, I. W. and Chiu, H. K., (1984), “Strength of weathered melbou
me mudstone.”, Journal of Geotechnical Engineering, Vol. 110, no 7,
pp.177-183.
9.Johnston, I. W., (1993), “Soft Rock Engineering”, Comprehensive Rock
Engineering, ED.J.A. Hudson, Vol.1, pp.367-393.
10.Kim, Y. S., Tatsuoka, F. and Ochi, K., (1994), “Deformation
characteristics at small strains of sedimentary soft rocks by triaxial
compression tests”, Geotechnique, Vol.44-3, pp.461-478.
11.Ko, H. Y. and Scott, R. F., (1967), “Deformation of sand in shear”,
Journal of the Soil Mechanics and Foundation Divisions, ASCE, Vol.93,
No.Sm5, Proc. Paper 5470, pp.283-310.
12.Lade, P. V. (1994), “Rock Strength Criteria: The Theories and the
Evidence”, Comprehensive Rock Engineering: Principles, Practice &
Project,Pergamon Press Oxford, Ch. 11, pp.255-283.
13.Lin, M. L. and Hung, J. J., (1982), ”The Influence of Moisture Content
on Mechanical Properties of Some Sedimentary Rocks in Taiwan”,
proc, of Civil Eng., National Taiwan University, Taipei, Taiwan.
14.Lo presti D. C. F., Barla M., Barla G., Pallara, O., and Plescia A.,
(1998), “Development and use of a triaxial cell for soft rocks”,
Department of Structure Engineering, Politecnico di Torino, Italy.
15.Obert, L. and Duvall, W. I. (1967), Rock Mechanics and the Design of
structure in Rock, New York, Wiley, pp.650.
16.Oliverira, R., (1993), “Weak Rock Materials”, The Engineering
Geology of Weak Rock, Cripps et al. (eds.), Balkma, Rotterdam,
pp.5-15.
17.Perkins, R. D., Green, S. J., and Friedam, M. (1970), “Uniaxial Stress
Behavior of Porphynitic Tonalite at Strain Rates to 103 s-1”, Int. J. Rock
Mech. Min. Sci., Vol.7, pp.327-535.
18.Petley D., Jones M., Fan C. and Stafford C. ea al. (1993),
“Deformation and Fabric changes in weak fine-grained rocks during
high pressure consolidation and shear”, Geotechnical Engineering of
Hard Soil-Soft Rocks, Anagnostopoulos et al. (eds), Balkema,
Rotterdam, ISBN 90 51403443, pp.734-743.
20.Scholz, C. H. (1968a), “The frequency-Magnitude Relation of
Microfracturing in Rock and its Relation to Earthquakes”, Bulletin of
the Seismo- logical Society of America, Vol.58 No.1, pp.339-415.
21.Scholz, C. H. (1968b), “Microfracturing and the Inelastic Deformation
of Rock in Compression”, J. of Geophysical Research, Vol.73, No.4, pp.
1417-1432.
22.Scholz, C. H. (1968c), “Experimental Study of the Fracturing Process
in Brittle Rock”, J. of Geophysical Research, Vol.73, No.4, pp.
1447-1454.
23.Shibuya, S., Tatsuoka, F., Teachavorasin-skun, S., Kong, X. J., Abe, F.,
Kim, Y. S. and Park, C. S., (1992), “Elastic deformation properties of
geomaterials”, Soil and Foundation, Vol.32-3, pp.26-46.
24.Tatsuoka F. and Kohata Y., (1995), “Stiffness of hard soils and soft
rocks in engineering application”, Pre-failure Deformation of
Geomaterials, Shibuya, Mitachi and Miura (eds), Balkema, Rotterdam,
pp.947-1061.
25.Yoshinaka, R. and Yamabe, T., (1981), “Deformation Behavior of Soft
Rocks”, Weak Rock Soft Fractured and Weatherd Rock, Vol.1, Edited
by Koichi Akai and Masao Hayashi and Yuichi Nishimatsu, pp.87-92.
26. Yoshinaka R., Osada M. and Tran T. V., (1996), “Deformation
behavior of soft rocks during consolidation-undrained cyclic triaxial
testing”, Int. J. Rock Mech. Sci. and Geimech. Abstr., Vol.33, No.6,
pp.557-572.
27.林景民(2001), “軟弱岩石之應力應變行為與屈服行為”, 國立交通
大學土木工程研究所碩士論文.
28.林宏明(2000), “軟岩在不同環境及應力條件下之力學行為”, 國立
成功大學土木工程研究所碩士論文.
29.吳建宏(1998), “單軸應力狀態下木山層砂岩之破壞特性研究”, 國
立成功大學土木工程研究所碩士論文.
30.李德河、紀雲曜,”岩石試體之單壓強度特性研究”, 1992 岩盤工程研
討會論文集,第71-84 頁。
31.李德河、紀雲曜、謝文元,”不同溫度、壓力下泥岩之力學行為研究”,
1996 岩盤工程研討會論文集,第333-342 頁。
32.李怡德(1996), “軟弱砂岩弱化研究”, 國立台灣大學土木工程研究
所碩士論文.
33.耿文博(1981), “台南以東丘陵區之地質”, 經濟部中央地質調查所
彙刊, 第一號, pp.1-31.
34.國立成功大學公共工程研究中心,"龍崎鄉崎頂村兵仔舍地滑地地
質調查報告",台南縣龍崎鄉公所。
35.黃燦輝(1996), “軟弱岩石隧道問題研究(Ⅰ)”, 行政院國家科學委
員會專題研究計劃成果報告.
36.黃慧儀(1999), “軟弱砂岩之三軸試驗”, 國立交通大學土木工程研
究所碩士論文.
37.鄒子廉(1993), “台灣地區隧道地質災害模式之研究”, 國立中央大
學應用地質研究所碩士論文.
38.鄭富書、李怡德及黃燦輝(1996), “軟弱砂岩遇水軟化行為試驗研
究”,1996 岩盤工程論文集, 國立台灣大學, 台北, pp.373-382.
39.廖洪鈞、余文芳(1993), “徑向應力路徑對台北盆地沉泥質黏土強度行為之影響”, 中國土木水利工程學刊, 第五卷, 第三期.132
40.經濟部中央地質調查所,"龍崎兵仔舍滑崩災害",台灣山崩災害專輯,第125~131 頁。
41.蔡攀鰲(1996), “工程地質學”, 增訂四版。
42.赤井浩一(1993), ”General aspects of soft rock”,土基礎,第41 期,
第1~6 頁。(日文)

------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911423587
論文名稱(中文) 深部含油層中菌種分離鑑定及其特性分析
論文名稱(英文) The Characterization and Identification of the Indigenous Bacteria Isolated from the Deep Oil-Bearing Formation
校院名稱 成功大學
系所名稱(中) 地球科學系專班
系所名稱(英) Department of Earth Sciences (on the job class)
學年度 93
學期 2
出版年 94
研究生(中文) 鄭文菁
學號 l4792116
學位類別 碩士
語文別 中文
口試日期 2005-06-16
論文頁數 82頁
口試委員 指導教授-簡錦樹
口試委員-何漣漪
口試委員-曾怡禎
口試委員-呂誌翼
關鍵字(中) 聚合酶連鎖反應
打鹿頁岩
含油層
特性分析
關鍵字(英) Polymerase Chain Reaction
Characterization
Oil-bearing formation
Talu sandstone
學科別分類
中文摘要 摘要

  台灣西北部油氣田產油氣層絕大部份於中新世地層內發現,其中以中新世打鹿頁岩所夾儲油氣砂岩的產量最為豐富。地層中的微生物對於自然界物質的轉化和循環有著極為重要的影響。本研究自苗栗地區打鹿頁岩油氣井表土、地表下3200 m深的含油泥漿及3386 m深的岩心共分離出18株菌株,經TEM(穿透式電子顯微鏡)及革蘭氏染色得知所分離出之微生物型態主要為桿菌與短桿菌,而且菌落外觀也不盡相同,其中包含十四株革蘭氏陰性菌及四株革蘭氏陽性菌。利用16S rDNA基因序列的分析與參考菌株,比較菌種的親緣關係,並輔以API微生物鑑定套組測試生化特性鑑定菌種。在三個地層中皆有發現格蘭氏陰性菌的存在但型態皆不相同。此外,本研究亦探討溫度、pH、鹽度對菌株的影響。溫度方面F21、F30、TG12、TG31、SN10等菌株分離株,在溫度90℃皆還能存活,其中TG31在溫度90℃時還能夠有很好的繁殖能力;pH值方面在測試酸耐受度F21、F22、F31、TG20、TG31、TG32等菌株分離株,在 pH11還能生長;鹽度方面以硫酸還原培養基培養之SR10、SR21、SR22、SR30等菌株分離株的耐受度以大於5%為最高。
英文摘要 Abstract
The deep oil-bearing Talu sandstone of the Miocene age was investigated for microbiological analyses in this study. A total of 18 bacterial strains were isolated from the surface soil and the downcore of 3380 m-deep Talu sandstone and 3200 m-deep drilling muds in an oil well of the Miaol area. When examined by transmission electron microscopey (TEM) and Gram’s stain, most of the bacterial isolates appeared to be rod-shaped or short rod-shaped. They also varied in the colonial morphology. The isolated strains were identified based on the bacterial phylogeny and the 16S rDNA gene sequence alignment with the reference strains in association with the biochemical assay using the API microbiology Kit. In the different depths (3200m and 3386m) of the downcore, all Gram-negative bacteria are not the same in morphology. The effects of the temperature, pH, and salinity on the growth of bacterial isolates were investigated. As for temperature, the FM21, FM30, TG12, TG31 and SN10 isolates could survive up to 90℃, in which TG31 could also be well reproducible at 90℃. As for pH, the FM21, FM22, FM31, TG20, TG31, and TG32 isolates could survive at pH11. As for salinity, the SR10, SR21, SR22, and SR30 isolates could survive up to 50‰.
論文目次 目 錄
摘要......................................................I
Abstract..................................................II
誌謝.....................................................III
目錄.....................................................IV
表目錄...................................................VI
圖目錄.................................................VIII
壹、緒論...................................................1
貳、文獻回顧...............................................3
2.1 石油有機成因學說....................................3
2.2 地質環境及沉積環境概況..............................5
2.3 細菌生態的研究......................................9
叄、實驗材料與方法........................................11
3.1 樣品來源...........................................11
3.2 培養基及相關試劑...................................11
3.3 器材...............................................13
3.4 儀器...............................................13
3.5 廠商細目...........................................14
3.6 菌種脫附...........................................15
3.7 培養基溶液的製備...................................15
3.8 DNA洋菜膠體電泳...................................20
3.9 聚合酶連鎖反應.....................................20
3.10 PCR產物DNA片段之回收與序列分析.................21
3.11穿透式電子顯微鏡(TEM)樣品製備......................22
3.12序列比對系統分析...................................22
3.13革蘭氏染色.........................................23
3.14細菌之溫度生理特性測試.............................23
3.15細菌之鹽度生理特性測試.............................23
3.16細菌之pH值耐受度生理特性測試.....................24
3.17 API 20 NE 生化反應................................24
肆、結果..................................................26
4.1 細菌的型態與特性...................................26
4.2 細菌的確認與親緣關係的比較.........................45
4.3細菌溫度之生理特性測試..............................49
4.4細菌鹽度生理特性測試................................51
4.5細菌酸鹼之生理特性測試..............................54
伍、討論..................................................57
5.1分離菌株與底質......................................57
5.2細菌生存環境........................................57
5.3菌株鑑定............................................58
陸、結論..................................................61
參考文獻.................................................62
參考文獻 方義杉,地心:石油與石化工業上山下海鑽井忙,中國石油公司石油通訊編輯委員會, 1996
王貴譽,革蘭氏陽性桿菌,微生物學(修訂第二版),171-173,1973
王孟群,實用微生物學實驗,九州出版社,1983
林良平,土壤微生物學,南山堂出版社,1987
林麗華及郭政隆,台灣西北部油氣之地化特性,探採研究彙報,第21號,286-303,1998
高櫻芬,高屏溪河口與近岸海域沉積物中石油衍生性有機化合物及重金屬含量分析研究,中山大學海洋環境及工程學系研究所碩士論文,1990
黃武良,石油-大自然孕育千萬年的珍藏,地球科學園地第十二期,地球科學文教基金會,1990
黃武良,黑金傳奇石油的來龍去脈,科學發展382期,2004
陳柏沅,澎湖群島根瘤菌之分類及特性分析,中興大學土壤環境科學系碩士論文,2003
陳振陽等,最新微生物學,匯華出版社,218-220,1996
梁書蓉,台灣母馬生殖道之菌相調查,中興大學土壤環境科學系碩士論文,2003
楊麗聲,細菌分類學,中國農業大學出版社,1997
楊耿明及丁信修,苗栗地區打鹿砂層地層架構和油氣儲集,探採研究彙報,第20號,157-175,1997
謝崇良,苗栗地區路地深部打鹿沙延地層延十中菌種之分離與鑑定,成功大學地球科學研究所碩士論文,2002
謝慧禎,石油系統之有機材料與熱成熟度特性探討,中央大學應用地質研究所碩士論文,2003
蘇勳璧,微生物學,藝軒出版社,87-91,1992

Aitken ,C.M. , Jones , D. M. , Larter ,S. R. , Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature ,431, 291–294 , 2004
Amy, P. S., Haldeman, D. L., Ringelberg, D., Hall, D. H. and Russell, C., omparison of identification systems for classification of bacteria isolated from water and endolithic habitats within the deep subsurface. Appl Environ Microbiol ,58, 3367-3373 , 1992
Audino, M., Grice, K., Alexander, R., Boreham, C. J., Kagi, R. I., Unusual distribution of monomethylalkanes in Botryococcus braunii–rich samples: origin and significance. Geochimica et Cosmochimica Acta 65, 1995-2006, 1992
Balkwill, D. L., umbers, diversity, and morphological characterization of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina. Geomicrobiol J, 7, 33-51, 1989
Balkwill, D. L., Fredrickson, J. K. and Thomas, J. M. , Vertical and horizontal variations in the physiological diversity of the aerobic chemoheterotrophic bacterial microflora in deep Southeast Coastal Plain subsurface sediments. Appl Environ Microbiol, 55,1058-1065, 1989
Bernard D. D., Pseudomomads and other nonfermenting bacilli. Microbiology, third edition, 675~676,1981
Blakemore, R. P., D. Maratea, and R. S. Wolfe, Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. Journal of Bacteriology, 140, 702-709,1979
Boivin-Jahns, V., Bianchi, A., Ruimy, R., Garcin, J., Daumas, S. and Christen, R. , Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. Appl Environ Microbiol,61, 3400-3406, 1995
Bodour, A.A., Wang,J.-M., Brusseau,M.L. and Maier,R.M., Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Environ Microbiol, 5, 888-895, 2003
Boone, D. R., Liu, Y., Zhao, Z.-J., Balkwill, D. L., Drake, G. R., Stevens, T. O. and Aldrich, H. C. Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol,45, 441-448, 1995
Brockman, F. J., Kieft, T. L., Fredrickson, J. K., Bjornstad, B. N., Li, S. W., Spangenberg, W. and Long, P. E., Microbiology of vadose zone paleosols in south-central Washington State. Microb Ecol, 23, 279-301, 1992
Chen, J., Bi, Y.; Zhang, J.; Li, S., Oil-source correlation in the Fulin basin, Shengli petroleum province, East China. Organic Geochemistry, 24, 931-940, 1996
Crocker, F. H., Fredrickson, J. K., White, D. C., Ringelberg D. B. and Balkwill, D. L., Phylogenetic and physiological diversity of Arthrobacter strains isolated from unconsolidated subsurface sediments. Environ Microbiol,146,1295-1310, 2000
Chunqing, J., Robert ,A.r, Robert I. K., Murray, Andrew P., Origin of perylene in ancient sediments and its geological significance. Organic Geochemistry ,31,1545-1559,2000
Edwin H.L., Glucose-nonfermeting Gram negative Bacteria. Nanual of Clinical Microbiology, fourth edition, 335~338, 1985
Ellis, L.; Singh, R.K., Alexander, Robert, K.,R.., Formation of isohexyl alkylaromatic hydrocarbons from aromatization-rearrangement of terpenoids in the sedimentary environment: A new class of biomarker. Geochimica et Cosmochimica Acta, 23, 4747-4763, 1996
Frankel, R. B., R. P. Blakemore, and R. S. Wolfe, Magnetite in freshwater magnetotactic bacteria. Science, 203, 1355-1356, 1979
Fredrickson, J. K., Balkwill, D. L., Zachara, J. M., Li, S. W., Brockman, F. J. and Simmons, M. A., Physiological testing and distribution of heterotrophic bacteria in deep Cretaceous sediments of the Atlantic Coastal Plain. Appl Environ Microbiol ,57, 402-411, 1991
Fredrickson, J. K., Brockman, F. J., Bjornstad, B. N. and 7 other authors, Microbiological characteristics of pristine and contaminated deep vadose sediments from an arid region. Geomicrobiol J ,11, 95–107, 1993
Fredrickson, J. K., McKinley, J. P., Nierzwicki-Bauer, S. A., White, D. C., Ringelberg, D. B., Rawson, S. A., Li, S., Brockman, F. J. and Bjornstad, B. N. , Microbial community structure and biogeochemistry of Miocene subsurface sediments: implications for long-term microbial survival. Mol Ecol, 4, 619-626, 1995
Ghiorse, W. C. and Wilson, J. T. , Microbial ecology of the terrestrial subsurface. Adv Appl Microbiol ,33, 107-272, 1988
Haq, B.U., Hardenbol, J., and Vail, P.R. , Chronology of fluctuation sea levels since the Triassic. Science, 235,1156-1167, 1987
Hunt, J.M., Petroleum geochemistry and geology, 2nd ed, New York., 1996
Hunt, J.M., Philp, R. P., Kvenvolden, K. A., Early developments in petroleum Geochemistry. Organic Geochemistry, 33, 1025-1052, 2002
Head, I. M., J. R. Saunders, R. W. Pickup. , Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol ,35, 1-12, 1998
HEAD I. , Martim D. J. and Stever. Larter Biological activity in the deep subsurface and the origin of heavy oil. Nature, 426, 344 – 352, 2003
Haldeman, D. L. and Amy, P. S., Bacterial heterogeneity in deep subsurface tunnels at Ranier Mesa, Nevada Test Site. Microb Ecol 25, 183-194, 1993
Haldeman, D. L., Amy, P. S., Ringelberg, D. and White, D. C. , Characterization of the microbiology within a 21 m3 section of rock from the deep subsurface. Microb Ecol 26, 145-159, 1993
Jensen, E.C., H.S. Schrader, B. Rieland, T.L. Thompson, K.W. Lee, K.W. Nickerson, and T.A. Kokjohn, Prevalence of broad-host-range lytic bacteriophages of sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol, 64(2), 575-580, 1998
Kimura, M., A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111-120, 1980
Kissin, Y. V., Catagenesis of light aromatic compounds in petroleum. Organic Geochemistry ,29(4), 947-962, 1998
Kieft, T. L., Amy, P. S., Brockman, F. J., Fredrickson, J. K., Bjornstad, B. N. and Rosacker, L. L.,Microbial abundance and activities in relation to water potential in the vadose zone of arid and semiarid sites. Microb Ecol, 26, 59-78, 1993
Kormas, K. A., D. C. Smith, V. Edgcomb, and A. Teske, Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiology Ecology, 45(2), 115-125, 2003
Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei, MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 17, 1244-1245, 2001
Little B. and Wagner P., An Overview of Microbiologically Influenced Corrosion of Metals and Alloys Used in the Storage of Nuclear Wastes. Can J Microbiol, 42, 367–374, 1996
Leu, J.-Y., C. P. McGovern-Traa, A. J. R. Porter, and W. A. Hamilton, The same species of sulfate-reducing Desulfomicrobium occur in different oil field environment in the North Sea. Letters in Appl Microbiol, 29, 246-252, 1999
Liu, S. V., J. Zhou, C. Zhang, D. R. Cole, M. Gajdarziska-Josifovska, and T. J. Phelps, Thermophyllic Fe(III)-reducing bacteria from the deep subsurface: The evolutionary implications. Science, 277, 1107-1109, 1997
Ioppolo-A., M , Alexander, R, K., R. I., Identification and origins of isopropylmethylphenols in crude oils. Organic Geochemistry, 22,815-823, 1994
Mann, S., N. H. C. Sparks, R. B. Frankel, D. A. Bazylinski, and H. W. Jannasch, Biomineralization of ferrimagnetic gregite (Fe3S4) and iron pyrite (FeS2) in a megnetotactic bacterium. Nature, 343, 259-261, 1990
Moldowan, J. M., Albrecht, p. and Philp, R. P., biological Markers in sediments and petroleum.Prentice Hall, Englewood Cliffs, NJ,410, 1992
Murry, R.G.E., D.J. Brenner, M.P. Brgant., Bacillus, Bergey’s Mannual of systentati Bacteriology., 21105-1120, 1984
Naanuma, T., Search for life in deep biospheres. Biol Sci Space, 17,310-317, 2003
Noel R. K., Gram-negative aerobic rods and cocci. Bergey’s Manual of Systematic Bacteriology, I, 361~370, 1984
Paters, K. E. and Moldown J. M., The biomarker Guide. Prentice Hall.EngleWood Cliffs, NJ,363,1993
Paul, E.A. and Clark, F.E., Soil Microbiology and Biochemistry, second ed. Academic Press, USA.,1996
Pedersen, K. and Ekendahl, S. , Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microb Ecol, 20, 37-52, 1990
Pedersen, K. and Ekendahl, S. , Assimilation of CO2 and introduced organic compounds by bacterial communities in groundwater from southeastern Sweden deep crystalline bedrock. Microb Ecol, 23, 1-14, 1992
Pedersen, K., Arlinger, J., Ekendahl, S. and Halbeck, L. , 16S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel of the spö hard rock laboratory, Sweden. FEMS Microbiol Ecol, 19, 249-262, 1996
Petri, R. and Imhoff, J. F., The relationship of nitrate reducing bacteria on the basis of narH gene sequences and comparison of narH and 16S rDNA based phylogeny. Syst Appl Microbiol, 23,47-57, 2000
Roselló-M. R, Amann R , The species concept for prokaryotes. FEMS Microbiol Rev, 25:39-67, 2001
Sarah, J. M., Stephen, J. R.,Venosa, A. D., Davis, G. A., Chang, Y. j., White, D. C., Microbial population changes during bioremediation of an experimental oil spil. Appl Environ Microbiol, 65,3566-3574, 1999
Salisbury, M. H., Shinohara, M., Richter, C., Available from: Ocean Drilling Program. Proc Init Repts , 195, 1-46
Stackebrandt, E. , Unifying phylogeny and phenotypic properties. In Balows, A. et al., (eds) The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn. New York: Springer,1992
Teske, A., C. Wawer, G. Muyzer, and N. B. Ramsing., Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol 62, 1405-1415, 1996
Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Research, 24, 4876-4882, 1997
Tyson, R. V., Sedimentary Organic Matter. Organic Facies and Palynofacies. Chapman and Hall., 1995
Torsvik, V., J. Goksøyr, and F. L. Daae., High diversity in DNA of soil bacteria. Appl Environ Microbiol, 56, 782-787, 1990
Woese, C. , Bacterial evolution. Microbiol Rev, 51, 221-271, 1987
Yamamoto,S. and Harayama,S., relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol, 48,813-819,1998

------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200912085015
論文名稱(中文) 不排水環形剪力試驗探討關廟層砂岩之剪力行為
論文名稱(英文) Shearing Behavior of Kuan-Miao Sandstone under Undrained Ring Shear Test
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 陳柏穎
學號 n6693126
學位類別 碩士
語文別 中文
口試日期 2006-06-30
論文頁數 149頁
口試委員 口試委員-吳建弘
指導教授-李德河
口試委員-田永銘
口試委員-林宏明
口試委員-陳昭旭
關鍵字(中) 滑動面液化
超額孔隙水壓
環形剪力試驗
直接剪力試驗
關廟層砂岩
剪動帶
軟弱砂岩
關鍵字(英) Shear zone
Excess pore water pressure
Ring shear test
Soft sandstone
Direct shear test
Kuan-Miao sandstone
Sliding-surface Liquefaction
學科別分類
中文摘要 摘要
台灣位處西太平洋亞熱帶氣候區,雨季常受梅雨及颱風所帶來豐沛雨量的影響,其降雨的形式多為暴雨型態。同時在我國西南部軟岩區內之地層多由砂、泥(頁)岩及其互層所構成,每當豪雨時常見區內邊坡發生崩壞的災害。
由於軟岩邊坡的崩壞多屬淺層、突發性及速度快之破壞,為防止災害發生,首先應深入瞭解軟岩邊坡的破壞機制。因此本研究以軟弱的關廟層砂岩為試驗材料,在實驗室內探討快速受剪破壞下的軟弱砂岩之力學行為。ㄧ般模擬大地材料在受剪之際無法及時排出超額孔隙水壓多以快速的直接剪力試驗為之,然而直接剪力試驗儀受到儀器剪動量之限制,且無法固定剪斷面積,因此本研究將採用能提供單一方向大剪斷位移及具有固定剪斷面積功能之環形剪力試驗儀進行相關試驗。
根據試驗結果,氣乾與飽和狀態下的關廟層砂岩在環形剪力試驗所得之剪力強度參數皆小於由直接剪力試驗所求得者。¬此外,砂岩試體在連續的剪位移下,最終進入一穩定狀態,在此狀態時的剪力阻抗、試體高度與超額孔隙水壓都不再隨著剪位移的增加而明顯變化。另ㄧ方面,關廟層砂岩在飽和不排水快剪的條件下,當剪力阻抗達到尖峰強度後,砂岩試體受剪區域所形成的剪動帶開始因剪縮而激發超額孔隙水壓並使剪力阻抗大幅下降,當剪力阻抗與有效正向應力降至極低時,剪動帶上將呈現滑動面液化(Sliding-surface Liquefaction)的現象。


英文摘要 Abstract
Taiwan is located at the West Pacific Ocean area, and its climate is classified to be subtropical zone. Plum rain and typhoons bring plentiful rainfall significantly during the raining season. In addition, the formations located at the southwestern Taiwan are usually consisted of the interlayers of sandstone and mudstone. Thus, the weather and geologic conditions are the natural reasons to cause frequent landslides during the raining season on the southwestern Taiwan.
Most soft rock slope failure in Taiwan can be classified to be shallow, burst type and high speed failures. Understanding the failure mechanism of the soft rock slope can be essential to the disaster prevention. In this study, the mechanical behavior of the Kuan-Miao Sandstone under the rapid shear failure is investigated. The pore pressure generated under a shear displacement was usually studied by quick direct shear test. However, the limited shear displacement and the changing sheared area of the direct shear test equipments influence the shear parameters when the tests undergo large displacements. Hence, the ring shear, enabled the large displacement of specified direction and kept constant shear area, test equipment was conducted in this study.
The testing results show that smaller shear parameters come from the ring shear test than the one of the direct shear tests. Besides, all the sandstone samples demonstrate a steady state under large shear displacements. All of the shear resistance, the height of specimen, and pore water pressure has insignificant correlations with the increasing shear displacement when the specimen met the steady state. On the other hand, under the saturated, undrained conditions, the decreasing shear zone thickness of Kuan-Miao Sandstone with the increasing shear displacement, generating pore pressure, and significantly decreasing of shear resistance were observed after the shear resistance reached its peak value. When the shear resistance and the effective normal stress reduce very low level, the shear zone shows the “Sliding –surface Liquefaction” phenomenon.


論文目次 目錄
摘要 I
誌謝 V
目錄 VII
表目錄 XI
圖目錄 XIII
符號 XIX

第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究內容與流程 2
1-3 本文內容概要 3

第二章 文獻回顧 5
2-1 採樣地地質概述 5
2-1-1台灣西部麓山帶軟弱岩層之分布 5
2-1-2關廟層砂岩之地質特性 5
2-1-3軟弱砂岩之滲透性質 7
2-2 軟岩概述 8
2-2-1軟弱岩石定義 8
2-2-2軟弱岩石成因與種類 9
2-2-3軟岩之力學與工程特性 11
2-3 軟弱砂岩之力學行為 14
2-4 Mohr-Coulomb破壞準則 16
2-5 殘餘剪力強度與穩定狀態 17
2-5-1殘餘剪力強度 17
2-5-2穩定狀態(Steady state) 19
2-6 邊坡滑動面液化與剪動帶破壞理論 21
2-6-1邊坡滑動面液化 21
2-6-2剪動帶破壞理論 21
2-7 剪力試驗法 23
2-7-1直接剪力試驗 23
2-7-2反覆直接剪力試驗 24
2-7-3環形剪力試驗 24

第三章 環形剪力試驗儀的發展與改良 29
3-1 不同的環形剪力試驗儀 32
3-2 本研究環形剪力試驗儀之改良 37
3-2-1廖正傑(2004)環形剪力試驗儀改良 37
3-2-2吳俊賢(2005)環形剪力試驗儀改良 37
3-2-3本研究(2006)環形剪力試驗儀改良 38
3-3 環形剪力試驗儀改良後之測試 42
3-4 環狀試體之受力情形與尺寸條件 45
3-4-1環形試體之受力情形 45
3-4-2環形試體的尺寸條件 47

第四章 試驗規劃與試驗儀器、材料 49
4-1 試驗規劃 49
4-1-1物理性質試驗 49
4-1-2直接剪力試驗 50
4-1-3反覆直接剪力試驗 50
4-1-4環形剪力試驗 51
4-1-5不排水環形剪力試驗試體飽和度檢驗 54
4-2 試驗儀器 55
4-2-1實體顯微鏡 55
4-2-2直接剪力試驗機 56
4-2-3環形剪力試驗系統 56
4-3 試驗材料與試體製作 62
4-3-1材料地質背景 62
4-3-2試體製作 64

第五章 試驗結果與討論 65
5-1 基本物性試驗結果 65
5-2 直接剪力試驗 66
5-2-1直接剪力試驗結果 66
5-2-2反覆直接剪力試驗結果 68
5-2-3直接剪力試驗綜合討論 73
5-3 環形剪力試驗 75
5-3-1氣乾環形剪力試驗結果 75
5-3-2飽和不排水環形剪力試驗結果 93
5-3-3環形剪力試驗綜合討論 117
5-4 粒徑分析與實體顯微鏡影像分析 121
5-4-1粒徑分析結果 121
5-4-2實體顯微鏡拍攝結果 123
5-5 綜合討論 128
5-5-1含水量 128
5-5-2穩定狀態 128
5-5-3剪力強度參數 130
5-5-4 關廟層砂岩破壞模式 135
5-5-4飽和不排水環形剪力試驗超額孔隙水壓發展歷程 136

第六章 結論與建議 139
6-1結論 139
6-2建議 140
參考文獻 143
自述 149

表目錄
表2-1 台南以東丘陵區之地質(耿文溥,1981) 6
表2-2 關廟層砂岩三軸透水試驗結果(游有方,2003) 7
表2-3 環形剪力試驗所得之殘餘摩擦角
(Hungr, O. & Morgenstern, N. R., 1984) 25
表3-1 水密性測試失敗原因及處理對策 42
表3-2 不同正向應力下各參數計算式(Bishop,1971) 46
表3-3 本研究採用的環狀試體尺寸 47
表3-4 國內外各學者所使用的環狀試體尺寸 48
表4-1 本研究規劃之試驗項目 49
表4-2 實體顯微鏡性能諸元 55
表5-1 關廟層砂岩原狀試樣之基本物性試驗結果 65
表5-2 關廟層砂岩單一直接剪力試驗結果 66
表5-3反覆直接剪力試驗第11次之殘餘剪力強度參數 68
表5-4 氣乾狀態反覆剪動次數與殘餘摩擦角 71
表5-5 浸水飽和狀態反覆剪動次數與殘餘摩擦角 72
表5-6 DR試驗結果 76
表5-7 DR試驗試體進入穩定狀態所需之剪位移 89
表5-8 飽和度檢驗 93
表5-9 SR試驗結果 108
表5-10 SR試驗試體進入穩定狀態所需之剪位移 109
表5-11 臨界狀態點的有效應力狀態 116
表5-12 環形剪力試驗之有效剪力強度參數 117
表5-13 進入穩定狀態之剪位移量比較,(單位:mm) 119
表5-14 飽和砂岩試體進入穩定狀態之剪位移量比較,(單位:mm) 128
表5-15(a) 直接剪力試驗與環形剪力試驗所得之剪力強度參數 131
表5-15(b) 飽和不排水環形剪力試驗所得之剪力強度參數 131
表5-16 關廟層砂岩相關直接剪力試驗結果 133
表5-17 關廟層砂岩相關環形剪力試驗結果 134
表5-18 SR-200試驗特徵值 138

圖目錄
圖1-1 研究流程圖 2
圖2-1 不同岩體強度分類法(Bieniawski, 1984) 9
圖2-2 I.S.R.M.建議之大地材料分級圖(I.S.R.M, 1993) 9
圖2-3 軟岩成因圖(Dobereiner and De Freitas, 1986) 10
圖2-4 軟弱砂岩應力應變關係圖(Bell and Culchaw, 1993) 14
圖2-5 土壤受剪,剪力面的顆粒組構(Skemptom and Petley, 1967) 18
圖2-6 黏土排水剪力行為(Skempton, 1964) 18
圖2-7不同節理面角度之尖峰與殘餘強度(Adachi and Hyashi, 1981) 19
圖2-8 剪動帶顆粒破碎過程(Sassa, 2003) 20
圖2-9 液化與滑動面液化(Sassa, 1996) 21
圖2-10 試驗前後粒徑分佈曲線(Sassa, 2003) 22
圖2-11 定體積直接剪力試驗結果(Taylor, 1952) 23
圖2-12 定體積直接剪力試驗結果(Bjerrum and Landva, 1966) 23
圖2-13 反覆直接剪力試驗之剪應力與位移圖(Head, 1994) 24
圖2-14 環形剪力試驗與直接剪力試驗比較(Stark and Contreras, 1992) 26
圖2-15 碎指數(IB值)之定義(Bishop, 1967) 26
圖2-16 鬆砂試驗結果(Sassa, 2002) 27
圖2-17 緊砂試驗結果(Sassa, 2002) 27
圖2-18 不同初始剪應力試驗結果(Sassa, 2002) 27
圖2-19 不同初始正向應力試驗結果(Sassa, 2002) 27
圖3-1(a) 正向加載的圓柱及圓盤試體與側向加載的中空圓柱試體 30
圖3-1(b) 無側向圍束環與有分離式圍束環的中空環形試體 31
圖3-2 環形剪力試驗儀剖面圖(Bishop et al., 1971) 33
圖3-3 環形剪力試驗儀剖面圖(Bromhead, 1979) 33
圖3-4(a) 環形剪力試驗儀剖面圖(Kamai, 1998) 34
圖3-4(b) 導電棒設置與試驗結果(Kamai, 1998) 34
圖3-5(a) DPRI-5環形剪力試驗儀剖面圖(Sassa, 1996) 35
圖3-5(b) DPRI-7環形剪力試驗系統(Sassa, 2002) 36
圖3-6 環形剪力試驗盒剖面圖(廖正傑,2004) 37
圖3-7 環形剪力試驗盒剖面圖(吳俊賢,2005) 38
圖3-8 壓克力外環 39
圖3-9(a) 軸桿長度變更前 40
圖3-9(b) 軸桿長度變更後 40
圖3-10 水路變更後之環形剪力試驗盒 41
圖3-11 環形剪力試驗盒水密性測試結果 43
圖3-12 壓克力外罩磨擦扭矩 44
圖4-1 直接剪力試驗流程圖 51
圖4-2 環形剪力試驗流程圖 53
圖4-3 實體顯微鏡與光源供應機 55
圖4-4 直接剪力試驗機 56
圖4-5 環形剪力試驗系統架構圖 56
圖4-6 環形剪力試驗系統示意圖 57
圖4-7 MTS458控制單元 58
圖4-8 環形剪力試驗儀上盤 59
圖4-9 環形剪力試驗儀下盤 60
圖4-10(a) 水壓供給系統示意圖 60
圖4-10(b) 水壓供給系統實景圖 61
圖4-11 伺服馬達與控制面板 61
圖4-12 龍崎及關廟一帶地形圖
(改繪自中央地調所台南以東丘陵區地質圖,耿文溥1966-1968) 62
圖4-13(a) 縣道182號22.5k處 62
圖4-13(b) 採樣邊坡 62
圖4-14 關廟層柱狀剖面圖(耿文溥) 63
圖4-15(a) 試體製作流程 64
圖4-15(b) 鑽取試體 64
圖4-15(c) 試體初步切割 64
圖5-1 直接剪力試驗剪力強度參數
(A)氣乾狀態、(B)浸水飽和狀態 67
圖5-2 氣乾反覆直接剪力試驗第11次之殘餘剪力強度參數 68
圖5-3 氣乾狀態反覆直接剪力試驗應力位移圖 69
圖5-4 浸水飽和狀態反覆直接剪力試驗應力位移圖 70
圖5-5 氣乾狀態反覆剪動次數與殘餘摩擦角變化 71
圖5-6 浸水飽和狀態反覆剪動次數與殘餘摩擦角變化 72
圖5-7(a) 氣乾狀態試驗後 74
圖5-7(b) 浸水飽和狀態試驗後 74
圖5-8(A) DR-100a試驗曲線(卡氏座標) 77
圖5-8(B) DR-100a試驗曲線(半對數座標) 78
圖5-9(A) DR-200a試驗曲線(卡氏座標) 79
圖5-9(B) DR-200a試驗曲線(半對數座標) 80
圖5-10(A) DR-400a試驗曲線(卡氏座標) 81
圖5-10(B) DR-400a試驗曲線(半對數座標) 82
圖5-11(A) DR-100b試驗曲線(卡氏座標) 83
圖5-11(B) DR-100b試驗曲線(半對數座標) 84
圖5-12(A) DR-200b試驗曲線(卡氏座標) 85
圖5-12(B) DR-200b試驗曲線(半對數座標) 86
圖5-13(A) DR-400b試驗曲線(卡氏座標) 87
圖5-13(B) DR-400b試驗曲線(半對數座標) 88
圖5-14 DR試驗剪力強度參數 89
圖5-15(A) DRa剪應力與剪位移 91
圖5-15(B) DRa試體高度變化與剪位移 91
圖5-16(A) DRb剪應力與剪位移 92
圖5-16(B) DRb試體高度變化與剪位移 92
圖5-17(A) SR-100試驗曲線(卡氏座標) 94
圖5-17(B) SR-100試驗曲線(半對數座標) 95
圖5-18(A) SR-170試驗曲線(卡氏座標) 96
圖5-18(B) SR-170試驗曲線(半對數座標) 97
圖5-19(A) SR-200試驗曲線(卡氏座標) 98
圖5-19(B) SR-200試驗曲線(半對數座標) 99
圖5-20(A) SR-230試驗曲線(卡氏座標) 100
圖5-20(B) SR-230試驗曲線(半對數座標) 101
圖5-21(A) SR-300試驗曲線(卡氏座標) 102
圖5-21(B) SR-300試驗曲線(半對數座標) 103
圖5-22(A) SR-400a試驗曲線(卡氏座標) 104
圖5-22(B) SR-400a試驗曲線(半對數座標) 105
圖5-23(A) SR-400b試驗曲線(卡氏座標) 106
圖5-23(B) SR-400b試驗曲線(半對數座標) 107
圖5-24 SR試驗之剪力強度參數(總應力分析) 110
圖5-25 SR試驗之剪力強度參數(有效應力分析) 110
圖5-26 SR-100應力路徑 111
圖5-27 SR-170應力路徑 111
圖5-28 SR-200應力路徑 112
圖5-29 SR-230應力路徑 112
圖5-30 SR-300應力路徑 113
圖5-31 SR-400a應力路徑 113
圖5-32 SR-400b應力路徑 114
圖5-33 應力比與剪位移關係圖 114
圖5-34 SR-230的臨界狀態點 115
圖5-35 SR試驗之臨界破壞線 116
圖5-36 有效應力路徑與破壞線 118
圖5-37(a) DR試驗剪動面與剪動帶粉末 120
圖5-37(b) DR試驗剪動面與擦痕 120
圖5-38(a) SR試驗剪動面與滑動面液化 120
圖5-38(b) SR試驗剪動面 120
圖5-39 飽和不排水環形剪力試驗形成之剪動帶 121
圖5-40 原始岩塊及剪動帶顆粒粒徑分佈曲線
(A)氣乾狀態、(B)浸水飽和狀態 122
圖5-41 剪動帶縱剖面圖(吳俊賢,2005) 123
圖5-42 剪動前關廟層砂岩顆粒 124
圖5-43 DR試驗剪動帶之砂岩顆粒(n=100 kPa) 124
圖5-44 DR試驗剪動帶之砂岩顆粒(n=200 kPa) 125
圖5-45 DR試驗剪動帶之砂岩顆粒(n=400 kPa) 125
圖5-46 SR試驗剪動帶之砂岩顆粒(n0=100 kPa) 126
圖5-47 SR試驗剪動帶之砂岩顆粒(n0=200 kPa) 126
圖5-48 SR試驗剪動帶之砂岩顆粒(n0=400 kPa) 127
圖5-49 正向應力400kPa下的應力位移曲線比較 130
圖5-50剪動帶粒徑分佈曲線比較(n0=400 kPa) 135
圖5-51 SR-200超額孔隙水壓發展階段圖 137
圖5-52 SR-200有效應力發展歷程 138
參考文獻 參考文獻
1.Anayi, J. T., Boyce, J. R., and Roger, C. D. F., “Modified Bromhead Ring Shear Apparatus,” Geotechnical Testing Journal, GTJODJ, Vol.12 NO.2 pp.171-173, 1989.
2.Anderson, W. F. and Hammoud, F., “Effect of Testing Procedure in Ring Shear Tests,” Geotechnical Testing Journal, GTJODJ, Vol.11, NO.3, pp.204-207, 1988.
3.Bell, F.G. and Culshaw M.G. “A survey of the geotechnical properties of some relatively weak Triassic sandstone,” The Engineering Geology of Weak Rock, Cripps et al. (eds), Balkema, Rotterdam, ISBN 90 6191 1672, pp.139-148, 1993.
4.Bieniawski, Z. T. “Mechanics Design in Mining and Tunnrling,” Balkema, Rotterdam, 1984.
5.Bishop, A. W., Green, G. E., Garaga, V. K., Andresen, A., and Brown, J. D., “A New Ring Shear Apparatus and its Application to the Measurement of Residual Strength,” Geotechnique, Vol.21, NO.4, pp.273-328,1971.
6.Bjerrum, L. and Landva, A., “Direct Simple Shear Test on Norwegian Quick Clay,” Geotechnique, Vol.16, NO.1 pp.1-20, 1966.
7.Brown, E. T. (Ed.) “Rock Characterization,” Testing and Monitoring: ISRM Suggested Methods. Pergamon Press, Oxford, 1981.
8.Dyvik, R., Berre, T., Lacasse, S., and Raadim, B., “Comparison of Truly Undrained and Constant Volume Direct Simple Shear Tests,” Geotechnique, Vol.37, NO.1, pp.3-10, 1987.
9.Dobereuiner, L., De Freitas, M. H., “Geotechnial properties of weak sandstones,” Geotechnique, Vol.36, NO.1, pp.79-94, 1986.
10.Head, K. H., “Manual of Soil Laboratory Testing,” Vol.2: Permeability, Shear Strength and Compressibility Tests, 2ed, Pentech press, London, 1994.
11.Hight, D.W., Gens, A. and Sumes, M. J., “The Development of a New Hollow Cylinder Apparatus for Investigating the Effect of Principal Stress Rotation in Soils,” Geotechnique, Vol.33, No.4, pp.335-383, 1983.
12.Hungr, O. and Morgenster, N. R., “High velocity ring shear tests on sand,” Geotechnique, Vol.34, NO.3, pp.415-421, 1984.
13.Johnston, I. W., “Soft Rock Engineering,” Comprehensive Rock Engineering, ED. J. A. Hudson, Vol.1, pp.367-393, 1993.
14.Kamai, T., “Monitoring the process of ground failure in repeated landslides and associated stability assessments,” Engineering Geology, Vol.50, pp.71-84, 1998.
15.Okada, Y. and Sassa, K. and Fukuoka, H. “Liquefaction and the Steady State of Weathered Granitic Sands Obtained by Undrained Ring Shear Tests:A Fundamental Study of the Mechanism of Liquefaction Landslides,” Natural Disaster Science, Vol.22, pp75-85, 2000.
16.Okada, Y. and Sassa, K. and Fukuoka, H. “Shear Resistance of Sands under Undrained Condition and Potential for Rapid Flow Phenomena by Means of Ring Shear Tests,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., NO.45 B, 2002.
17.Oliveira, R. “Weak Rock Materials,” The Engineering Geology of Weak Rock, Cropps et al. (eds.), Balkma, Rotterdam, ISBN 90 6191 1672, pp.5-15,1993.
18.Poulos, J. “The steady state deformation,” ASCE Journal of Geotechnical Engineering Division, Vol.107, NO.GT5, pp.553-562, 1981.
19.Sadda, A. S. and Townsend, F. C., “State of the Art Laboratory Strength Testing of Soils,” Laboratory Shear Strength of Soil, ASTM STP740, R. N. Young and F. C. Townsend, Eds., Aerican Society for Testing and Materials, pp.7-77, 1981.
20.Sassa, K. “The mechanism of debris flows,” Proc. of XI Int’l Conference on Soil Mechanics and Foundation Engineering, San Francisco, Vol.3, pp.1173-1176, 1985.
21.Sassa, K. “Special lecture:Geotechnical model for the motion of landslides,” Proc. 5th ISL, “Landslides,” A.A. Balkema/Rotterdam, pp.37-55, 1988.
22.Sassa, K., H. Fukuoka, J. H. Lee & D. X. Zhang, “Measurement of the apparent friction angle during rapid loading by the high-speed high-stress ring shear apparatus-Interprettion of the relationship between landslide volume and the apparent friction during motion,” Landslides, Bell(ed.), Balkma, Rotterdam, ISBN 905410032X, pp.545-552, 1991.
23.Sassa, K. “Access to the dynamics of landslides during earthquakes by a new cyclic loading high-speed ring shear apparatus,” Landslides, Bell(ed.), Balkma, Rotterdam, ISBN 905410032X, pp.1919-1937, 1995.
24.Sassa, K. “Prediction of earthquake induced landslides,” Special Lecture, the 7th International Symposium on Landslides, Trondheim, 1996, In: Landslides, Rotterdam: Balkema, Vol.1, pp.115-132, 1996.
25.Sassa, K. and Fukuoka, H. “The Evolution of Sliding-Flow Structure under the Undrained Shearing in the Ring Shear Tests,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., NO.46 B, 2003.
26.Skempton, A. W., “Long-term stability of clay slopes,” Geotechnique, Vol.14, NO.2, pp.75-101, 1964.
27.Skemptonm A. W. and Petly, D. J., “The Strength along Structural Discontinuities in Stiff Clays,” Proc. Geotechnical Conf. Oslo2, pp.29-46, 1967a.
28.Skempton, A. W., “Residual strength of clays in landslides, folded strata and the laboratory,” Geotechnique, Vol.35, NO.1, pp.3-18, 1985.
29.Stark, T. D. and Vettel, J. J., “Bromhead Ring Shear Test Procedure,” Geotechnical Testing Journal, GTJODJ, Vol.15, NO.1, pp.24-32, 1992.
30.Stark, T. D. and Contreras, I. A., “Constant Volume Ring Shear Apparatus,” Geotechnical Testing Journal, GTJODJ, Vol.19, NO.1, pp.3-11, 1996.
31.Taylor, D. W., “A Direct Shear Tests With Drainage Control,” Symposium on Direct Shear Testing of Soils, ASTM STP 131, pp.63-74, 1952.
32.Tika, T. E. and Hutchinson, J. N., “Ring shear test on soil from the vaiont landslide slip surface,” Geotechnique, Vol.49, NO.1, pp.59-74, 1999.
33.Wafid, M., Sassa, K. and Fukuoka, H., “The Evolution of Sliding-Flow Structure under the Undrained Shearing in the Ring Shear Tests,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., NO.46 B, 2003.
34.Wang, G. and Sassa, K. “Ring-Shear Tests on Sliding Surface Liquefaction Behavior of Sandy Soils,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., NO.41 B-1, 1998.
35.Wang, G. and Sassa, K. “Fluidzation Behavior of sands Based on Ring Shear Tests-Effects of Grain Size and Fine-Particle Content,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., NO.43 B-1, 2000.
36.Wang, G. and Sassa, K. and Tada T. “Experimental Study no the Shearing Behavior of Saturated Sandy Silts Based on Ring Shear Tests,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., NO.44 B-1, 2001.
37.Wang, G. and Sassa, K. “Post-failure mobility of saturated sands in undrained load-controlled ring shear tests,” Canadian Geotechnical Journal, Vol.39, NO.4, pp.821-837, 2002.
38.Wang, G. and Sassa, K., “Pore-pressure generation and movement of rainfall-induced landslides:effects of grain size and fine-particle content,” Engineering Geology, Vol.69, pp.109-125, 2003.
39.Wang, G. and Sassa, K. and Fukuoka, H., “Downslope volume enlargement of a debris slide-debris flow in the 1999 Hiroshima, Japan, rainstorm,” Engineering Geology, Vol.69, pp.309-330, 2003.
40.李怡德,「軟弱砂岩弱化研究」,國立台灣大學土木工程研究所碩士論文,指導教授 黃燦輝、鄭富書,1996。
41.李程遠,「多功能剪力試驗系統之研發-扭剪部分」,國立交通大學土木工程研究所碩士論文,指導教授 潘以文、廖志中,2003。
42.吳建宏,「單軸應力狀態下木山層砂岩之破壞特性研究」,國立成功大學土木工程研究所碩士論文,指導教授 李德河、潘國樑,1998。。
43.杜振成,「影像處理方法運用於岩石節理面強度預估之初步研究」,國立成功大學土木工程研究所碩士論文,指導教授 李德河,2000。
44.吳俊賢,「利用環形剪力試驗儀探討南部軟岩殘餘強度特性」,國立成功大學土木工程研究所碩士論文,指導教授 李德河,2005。
45.耿文溥,「台南以東丘陵區之地質」,經濟部中央地質調查所彙刊,第一號,pp.1-31,1981。
46.卿建業,「人工軟弱岩石承載行為研究」,國立台灣大學土木工程研究所碩士論文,指導教授 鄭富書,1995。
47.國立成功大學公共工程研究中心,「龍崎鄉崎頂村兵仔舍地滑地地質調查報告」,台南縣龍崎鄉公所,1999。
48.黃惠儀,「軟弱砂岩之三軸試驗」,國立交通大學土木工程研究所碩士論文,指導教授 黃安斌,1999。
49.游有方,「關廟層砂岩之力學特性」,國立成功大學土木工程研究所碩士論文,指導教授 李德河,2003。
50.廖正傑,「南部軟岩於環形剪力試驗及力學特性之研究」,國立成功大學土木工程研究所碩士論文,指導教授 李德河,2004。
51.鄭富書、李怡德及黃燦輝,「軟弱砂岩遇水軟化行為試驗研究」,1996岩盤工程論文集,國立台灣大學,台北,pp.373-382,1996。
52.劉晉材,「軟岩中空環剪儀之研發」,國立交通大學土木工程研究所碩士論文,指導教授 潘以文,2004。
53.嚴國禎,「錦水頁岩殘餘強度與草嶺邊坡穩定關係之研究」,國立台灣大學土木工程研究所碩士論文,指導教授 洪如江、林美玲,1999。
54.經濟部中央地質調查所,「龍崎兵仔舍滑崩災害」,台灣山崩災害專輯,pp.125-131,1999。

------------------------------------------------------------------------ 第 4 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200914255252
論文名稱(中文) 長枝坑層砂岩室內預應力試驗推估方法之研究
論文名稱(英文) Investigating the Laboratory Experiments to Estimate Pre-Stress on Changchikeng Sandstone
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 96
學期 2
出版年 97
研究生(中文) 詹恕齊
學號 n6695129
學位類別 碩士
語文別 中文
口試日期 2008-07-15
論文頁數 144頁
口試委員 口試委員-陳錦清
口試委員-李德河
口試委員-胡劭敏
口試委員-王建力
口試委員-陳昭旭
指導教授-吳建宏
關鍵字(中) 曾文越域引水隧道
長枝坑層
變形率變化法
音射法
關鍵字(英) Changchikeng sandstone
DRA
AE
Tsengwen reservoir transbasion diversion tunnel
學科別分類
中文摘要 曾文越域隧道最大厚度為1300公尺,現地應力預期將影響隧道穩定性,因此本研究以曾文越域引水工程東引水隧道東口附近沿岸露頭的長枝坑層砂岩做為材料,此材料與該隧道岩覆最高段之岩層屬同一岩層,但並未實際以工址處岩石做為材料。本研究以MTS反覆加載應力於試體之上使應力記憶於試體之中,再以音射法(AE)與變形率變化法(DRA)推估其室內預應力大小,探討將來運用此方法在岩覆最高處之長枝坑層砂岩現地應力推估的可行性。由於考慮未來運用本研究於現地應力量測時,岩心從現地取出至試驗進行需花費時間,因此需考慮延遲時間(Delay Time)對推估精度之影響。進而利用DSCA法與DRA法的觀念開發三向度(三維)預應力推估之方法,驗證以三維反覆均壓的方式,能否在有效防水之下,量測應變變化情形推估三維預應力的大小,省去以圓柱試體推估其它方向預應力需以不同方向鑽取岩心之不便。試驗中預應力的給定為σv、1.4σv、2.2σv三類,研究結果如下:
1.以超音波量測P波波速時,發現P波波速與單壓強度大小有關,P波波速較快單壓強度較高,反之,P波波速較慢單壓強度較低,其P波波速分界以4000m/s區別波速快慢。
2.本研究證明長枝坑層砂岩以AE法推估時有Kaiser Effect的現象,且以DRA法推估預應力亦為可行之方法,比較兩方法的推估準確性後發現DRA法較AE法來得準確。
3.延遲時間在14天之內以AE法與DRA法推估預應力時,誤差率隨著延遲時間的增長有遞減之趨勢,本研究研判延遲時間在14天之內對此兩種方法推估結果影響不大。
4.本研究證實以DRA法的觀念推估三維預應力,利用立方型試體進行試驗時,若能在有效的防水情況下,量測應變之變化則可有效推估其結果。
英文摘要 Tsengwen reservoir transbasion diversion tunnel has the largest thickness of overburden roughly 1300 m, which will be excavated in Changchikeng sandstone. The in-situ stress is expected to govern the stability of the tunnel. Thus, this study is focus on investigating the applicability in using Acoustic Emission (AE) and Deformation Rate Analysis (DRA) to estimate different pre-stress of Changchikeng sandstone. Since the tunnel construction has not reached the site with largest thickness, the investigated Changchikeng sandstones are obtained from the outcrops at the ground surface near the east entrance. Different pre-stress states 1、1.4、2.2 times of vertical stress and delay time are investigated because the rock samples from in-situ may be in different stresses and are unable to carry out uniaxial tests without sample preparation and transportation. In addition, combining differential strain curve analysis (DSCA) and DRA, we attempted to develop a new method to simultaneously measure three-dimensional (3D) pre-stresses. The test results show that,
1.P-wave velocity correlates with compressive strength. The higher P-wave velocity is, the stronger compressive strength is and vice versa. The P-wave velocity of 4000m/s is set to distinguish the sandstone.
2.The study proved that Changchikeng Sandstone has Kaiser Effect phenomenon and it is also feasible to estimate pre-stress by DRA. The pre-stress evaluated by DRA is more precise than AE.
3.The delay time insignificantly influences the pre-stress estimation in AE or DRA methods. The errors of testing results decreased when the delay time increased.
4.The study proved that the 3D DRA is workable if waterproof is well done.
論文目次 中英文摘要 III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 XI
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究內容 2
第二章 音射概論 5
2-1音射簡介 5
2-2音射訊號參數與波形 6
2-2-1音射訊號參數 7
2-3音射儀器參數之設定與建議 8
2-3-1放大器(Amplifier) 8
2-3-2音射感應器及其黏貼 9
2-3音射訊號特性分析 11
2-3-1時間域分析 11
2-3-2頻率域分析 12
2-4背景噪音之濾除 14
2-4-1背景噪音之濾除 14
2-4-2接觸面噪音之濾除 15
2-4-3音射訊號時間參數的設定 15
第三章 文獻回顧 17
3-1岩石之破壞機制與音射特性 17
3-1-1岩石單軸壓縮破壞行為 17
3-1-2岩石單軸壓縮試驗之音射特性 18
3-1-3 Kaiser Effect相關研究 21
3-2反覆加載相關研究 22
3-3現地應力的相關研究 24
3-4現地應力量測方法 26
3-4-1室內現地應力量測方法 27
3-5延遲時間對現地應力推估的影響 36
第四章 試驗材料、儀器及流程 42
4-1試驗材料 42
4-2取樣地點 44
4-3試體製作 47
4-3-1圓柱試體 47
4-3-2立方型試體 48
4-3試驗儀器 50
4-3-1非接觸式雷射量測系統 50
4-3-2 MTS材料試驗系統 51
4-3-3 圍壓加載試驗系統 52
4-3-4 音射記錄系統 53
4-3-5 應變記錄量測系統 56
4-3-6 超音波量測系統 57
4-4試驗方法 58
4-4-1預應力的決定 59
4-4-2試體組裝 62
4-4-3平整度試驗流程與結果 64
第五章 試驗結果與討論 68
5-1 長枝坑層砂岩基本試驗結果 68
5-1-1超音波試驗量測結果 68
5-1-2單軸壓縮試驗與靜彈性試驗結果 69
5-1-3 基本物理性質試驗結果 72
5-1-4微觀試驗分析結果 73
5-1-5單軸壓縮音射特性 75
5-1-6 長枝坑層砂岩吸水性試驗 75
5-2單軸方向預應力的推估結果 77
5-2-1AE法推估結果 77
5-2-2不同延遲時間對AE法推估之影響 80
5-2-3 DRA法推估結果 81
5-2-4不同延遲時間對DRA法推估之影響 84
5-2-5 AE法與DRA法推估結果比較 86
5-3三維DRA法預應力的推估結果 88
5-4 AE、DRA及三維DRA法比較探討 108
第六章 結論與建議 110
6-1結論 110
6-2建議 111
參考文獻 113
附錄一 120
附錄二 122
附錄三 126
附錄四 131
附錄五 137
參考文獻 中文文獻
1.尹菲 (1990),"對利用聲射凱塞效應量測地應力技術中幾個問題的探討",應用聲學,11卷,1期,pp 5-12。
2.王永南 (1994) "不同應力狀態下岩石之音射特性研究", 國立成功大學土木工程研究所碩士論文。 (李德河教授指導)
3.王鶴翔 (1995) "模擬岩石受單壓應力作用下音射特性之試驗研究", 國立台灣大學土木工程研究所碩士論文。 (洪如江教授指導)
4.王沛夫 (2004) "由世界應力量測資料探討不同地體構造區的應力特性,"國立中央大學應用地質研究所碩士論文。(李錫堤教授指導)
5.田國榮 (2002) "差應變分析與古地磁結合確定地應力方向",中國地質大學工程碩士論文。(孟小紅教授指導)
6.何春蓀 (1986),台灣地質概論,台灣地質圖說明書,第二版:經濟部中央地質調查所。
7.何滿潮 (2003),"深部開採工程岩石力學現狀及其展望",第八屆大陸岩石力學與工程學術大會論文集,pp88-94。
8.吳建宏 (1998) "單軸應力狀態下木山層砂岩之破壞特性研究",國立成功大學土木工程研究所碩士論文。(潘國樑、李德河教授教授指導)
9.宋國城,林慶偉,林偉雄,林文正 (2000),五萬分之一臺灣地質圖說明書,圖幅第五十一號,經濟部中央地質調查所。
10.李佳龍 (2003),"音射定位法於岩石材料之應用",國立成功大學資源工程所碩士論文,2003。(陳昭旭教授、林宏明教授指導)
11.紀毓中 (1994),"脆性岩石受載過程之音射特性與定位",國立交通大學土木工程研究所碩士論文。(潘以文教授指導)
12.施國欽、孫荔珍 (1994),"岩體現地試驗之簡介",地工技術雜誌,46期,pp5-21。
13.施順庭(2001),"軟岩的音射特性與音射源定位之研究",國立成功大學土木工程研究所碩士論文。(李德河教授指導)
14.孫逸民(1988),"儀器分析",全威圖書有限公司。
15.國道新建工程局網站,網址:http://gip.taneeb.gov.tw/mp.asp
16.陳慶忠 (1992),"大地材料之力學行為與音射特性之研究",國立成功大學土木工程所碩士論文。(李德河教授指導)
17.陳錦清,俞旗文 (1994) "坪林隧道沿線水力破裂法現地應力量測",地工技術雜誌,46期,pp 35-46。
18.陳世昌 (2000),"三軸應力狀態下岩石音射特性研究",國立成功大學土木工程研究所碩士論文。(李德河教授指導)
19.俞旗文,2005,"利用取樣岩心量測岩石現地應力的技術",中興工程工程技術,94期,pp11-18。
20.張健峰 (2007),"黑色片岩預應力是內試驗推估方法之研究" , 國立成功大學土木工程研究所碩士論文。(吳建宏教授、李德河教授指導)
21.曾聖智 (1999),"岩石材料之音射特性及音射源定位研究",國立成功大學土木工程研究所碩士論文. (李德河教授指導)
22.黃燦輝 (2003),"隧道工程之發展與放射性廢棄物地質處置應用",放射性廢棄物最終處置專題演講。台北: 行政院原子能委員會放射性物料管理局,pp 3-1-3-3。
23.楊明宗,歐陽湘,柳志錫,吳建宏 (2004) "水力破裂法現地應力量測及破壞準則探討",地工技術雜誌,99期,pp 5-14。
24.經濟部水利署南區水資源局網站,網址:www.wrasb.gov.tw
25.廖志信 (1993),"岩石材料中音射發生源之位置探測研究",國立成功大學土木工程所碩士論文。(李德河教授指導)
26.曾文水庫越域引水工程計劃-隧道工程委託技術服務 (2004),中興工程顧問有限公司,補充地質調查試驗及評估報告,經濟部水利署南區水資源局。
英文文獻
1.American Society for Testing and Materials Designation (2005): E976-05, "Determining the Reproducibility of Acoustic Emission Sensor Response."
2.American Society for Testing and Materials Designation (2003): F1797-98, "Test Method for Acoustic Emission Testing of Insulated Digger Derricks."
3.Bieniawski, Z. T. (1967),"Mechanism of brittle fracture of rock," International Journal of Rock Mechanics & Mining Sciences, part I, II, III, Vol. 4, pp 395-430.
4.Boyce, G. M., McCabe, W. M., Koerner, R.M. (1981), "Acoustic emission signatures of various rock types in unconfined compression," Acoustic Emissions in Geotechnical Engineering Practice, ASTM STP 750, pp 142-154.
5.Brown, E. W. and Hoek, E. (1978) "Trends in relationships between measured in situ stresses and depth," International Journal of Rock Mechanics & Mining Sciences, Vol. 15,No.4, pp211–215
6.Bray, D. E. and McBride, D. (1992), "Acoustic emission technology," Nondestructive Testing Technique: John Wiley & Sons, pp 345-377.
7.Dey, T.N., Brown, D.W. (1986), "Stress measurements in a deep granitic rock mass using hydraulic fracturing and differential strain curve analysis." In: Proceedings International Symp. Rock Stress and Rock Stress Measurements, pp351–357.
8.Goodman, R. E. (1963), "Subaudible noise during compression of rock," Geological Society of America Bulletin, Vol. 74, No. 4, pp 487-490.
9.Goodman, R. E. (1989), Introduction to Rock Mechanics 2nd Edition: John Wiley & Sons.
10.Haimson, B. C. (1978), "Effect of cyclic loading on rock," In: M. L. Silver, Ed., Dynamic geotechnical testing, ASTM STP 654: American Society for Testing and Materials, pp 228-245.
11.Haimson, B.C., Cornet, F.H. (2003), "ISRM Suggested methods for rock stress estimation—Part3:hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)," International Journal of Rock Mechanics & Mining Sciences, Vol. 40, No. 7-8, pp 1011-1020.
12.Hardy, H. R., Jr. (1972), "Application of acoustic emission techniques to rock mechanics research," Acoustic emission, ASTM STP 505, American Society for Testing and Materials, pp 41-83.
13.Hardy, H.R., Jr., Zhang, D. (1989), "Recent studies of the Kaiser effect in geological materials," Acoustic emission/microseismic Activity in Geological Structures and Materials, Proceedings of the 4th Conference, ed. by Hardy ,H.R. ,Jr. ,pp27-55
14.Hayashi, M., Kanagawa, T., Hibino, S., Motozima, M., Kitahara, Y. (1979), "Detection of anisotropic geo-stresses trying by acoustic emission, and non-linear rock mechanics on large excavating caverns," In: Proceedings of the fourth ISRM International Congress on Rock Mechanics, Montreux, vol. 2, pp. 211–218.(間接引用)
15.Johnston, I. W. (1993), "Soft rock engineering," Comprehensive Rock Engineering: Principles, Practice & Projects, Pergamon Press, Oxford, Vol. 3, pp367-393.
16.Kang, S. S., Nakamura, N., Obara, Y.,Sugawara, K. (2000) "Rock stress interpretations from Mt.Torigata(Japan) based on calcite strain gauge and differential strain curve analysis," Engineering Geology, Vol.58,pp35-52
17.Koerner, R. M., McCabe, W. M., Lord, A. E., Jr. (1981), "Overview of acoustic emission monitoring of rock structures," Rock Mechanics, Vol. 14, pp 27-35.
18.Lavrov, A. (2003) "The Kasier effect in rock:principle and stress estimation techniques," International Journal of Rock Mechanics & Mining Sciences, Vol. 40, pp 151-171.
19.Li, C., Nordlund, E. (1993), "Experimental verification of the Kaiser effect in rocks," Rock Mechanics and Rock Engineering, Vol. 26, No. 4, pp 333-351.
20.Matthews, J. R. and Hay, D. R. (1983), "Nondestructive testing monographs and tracts," Acoustic Emission, Gordon and Breach, New York, pp 1-14.
21.Michihiro, K., Hata, K., fujiwara, T., and Yoshioka, H., and Tanimoto, T.,(1989) "Study on estimating initial stress and predicting failure on rock masses by acoustic emission," Rock at great depth rock mechanics and rock physics at great depth, Proceedings of ISRM/SPE International Symposium, Vol. 2, pp.1025-1032.
22.Mogi, K., (1962), "Study of elastic shocks caused by the fracture of heterogenous materials and Its relations to earthquake phenomena," Bulletin of the Earthquake Research Institute, Vol. 40, pp 125-173.
23.Nelson, P. P., Glaser, D. S. (1989), "AE and discrete fracture propagation in rock," In: H. R. Hardy, Jr., Ed., Acoustic Emission / Microseismic Activity in Geological Structures and Materials, Proceedings of the 4th Conference, pp 117-130.
24.Oikawa, Y., Matsunaga, I., Yamaguchi, T. (1993), "Differential strain curve analysis to estimate the stress state of the Hijiori hot dry rock field, Japan," International Journal Rock Mechanics & Mining Sciences, Vol.30, NO.7, pp1023–1026.
25.Physical Acoustic Coporation (PAC) Mistras 2001 AEDSP-32/16-115-User's Manua, PAC Part Number 6300-1000, 1995.
26.Scholz, C. H. (1968a), "The frequency-magnitude relation of microfracturing in rock and Its relation to earthquakes," Bulletin of the Seismological Society of American, Vol. 58, No. 1, pp 399-415. (間接引用)
27.Scholz, C. H. (1968b), "Microfracturing and the inelastic deformation of rock in compression," Journal of Geophysical Research, Vol. 73, No. .4, pp 1417-1432. (間接引用)
28.Seto, M., Nag, D.K. and Vutukuri, V.S. (1999) "In-situ rock stress measurement from rock cores using the acoustic emission method and deformation rate analysis," Geotechnical and Geological Engineering, Vol. 17, pp 241-266.
29.Seto, M., Soma, N., Maeda, N., Matsui, H., Villaescusa, E., Katsuyama, K. (2001), "Methodology and studies of stress measurement by the AE and DRA methods using rock core (in Japanese)", Shigen-to Sozai (資源と素材), Vol. 117, pp 829-835.
30.Spanner, J. C., Brown, A., Hay, D. R., V., Notvest, K. and Pollock, A. (1987), "Fundamentals of acoustic emission testing," In: K. Miller Ronnie, Paul McIntire, Ed., Nondestructive Testing Handbook, 2nd Edited, Vol. 5, pp 11-44.
31.Strickland, F.D., Ren, N.K. (1980), "Use of differential strain curve analysis in predicting the in-situ stress state for deep wells," In: Proceedings 21st US Symp. Rock Mechanics, pp523–532.
32.Tuncay E., Ulusay R. (2008) "Relation between Kaiser effect levels and pre-stresses applied in the laboratory." International Journal of Rock Mechanics & Mining Sciences, Vol. 45, pp524–537.
33.Utagawa, M., Seto, M., Katsuyama, K. (1997) "Estimation of initial stress by Deformation Rate Analysis (DRA)." International Journal of Rock Mechanics & Mining Sciences, Vol. 34, No. 3-4, pp317.
34.Yamamoto, K., Kuwahara, Y., Kato, N., Hirasawa, T. (1990), "Defermation rate analysis: A new method for in situ stress estimation from inelastic deformation of rock sample under axial compressions," Tôhoku Geophysical Journal, Vol. 33, No. 2, pp. 127-147.
35.Yamamoto, K., Yamamoto, H., Kato N. (1991), "Deformation rate analysis for in situ stress estimation," In: H. R. Hardy, Ed., Proceeding of the 5th conference, Acoustic Emission/Microseismic Activity in Geologic Structures and Materials: Trans Tech Publications, pp 243-255.
36.Yoshikawa, S., Mogi, K. (1989), "Experimental studies on the effect of stress history on acoustic emission activity-A possibility for estimation of rock stress," Journal of Acoustic Emission, Vol. 8, No. 4, pp 113-123.

------------------------------------------------------------------------ 第 5 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200914341925
論文名稱(中文) 多孔隙軟弱砂岩受振動態力學特性之研究
論文名稱(英文) Investigating on the Dynamic Mechanics of Porous Soft Sandstone
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 96
學期 2
出版年 97
研究生(中文) 柯昭宇
學號 n6695419
學位類別 碩士
語文別 中文
口試日期 2008-07-15
論文頁數 155頁
口試委員 指導教授-李德河
口試委員-許琦
口試委員-田永銘
口試委員-黃安斌
口試委員-黃景川
口試委員-紀雲曜
關鍵字(中) 非均向壓密
超額孔隙水壓
三軸試驗
軟弱砂岩
阻尼比
剪力模數
關鍵字(英) damping ratio
excess pore water pressure
triaxial test
anisotropy consolidated
soft sandstone
shear modulus
學科別分類
中文摘要 台灣西部麓山帶多軟弱岩石邊坡,在地震時常造成邊坡破壞,為進一步了解此軟弱岩石邊坡在受振時的動態力學特性,本研究初步以出露於台南縣龍崎鄉一帶的多孔隙軟弱砂岩進行壓密不排水靜態三軸試驗,並以非均向壓密不排水動態三軸試驗模擬飽和軟弱砂岩邊坡的受振情形。藉由試驗所得之應力-應變關係、超額孔隙水壓變化的量測,以探討飽和狀態下多孔隙軟弱砂岩在靜態與動態三軸試驗中的應力路徑、動態參數的變化等力學行為。
壓密不排水靜態三軸試驗結果顯示,在0.2-2MPa的圍壓下,透過超額孔隙水壓的變化,知道軟弱砂岩初始階段呈壓縮現象,爾後當超額孔隙水壓達尖峰值後,軟弱砂岩開始轉為剪脹現象,當軸差應力達尖峰值時、負超額孔隙水壓接近最大值,軟弱砂岩剪脹量達最大。藉由不同破壞準則的分析,求得靜態三軸的脆延性轉換壓力約為3.6MPa,且其剪力強度參數 、 ; 、 。
非均向壓密不排水動態三軸試驗結果顯示,試體在破壞前超額孔隙水壓力將有明顯的累積,致使試體的有效應力降低,導致軸向應變量逐漸增加,當其應變量約達1%,試體進而迅速產生破壞,最後形成破壞面與水平向夾約45~60°。在動態參數剪力模數G及阻尼比D方面,發現剪力模數在接近破壞時迅速下降,另外阻尼比隨剪應變及反覆次數的增加而下降,在接近試體破壞時,則反向迅速增加。 在不同壓密應力比Kc下所累積的超額孔隙水壓力隨Kc的增加而減少。當初始正向應力po’相同時,初始剪應力q0越大,達破壞所需應變量隨之增加,反之當相同q0的情況下達破壞的應變量隨po’增加而減少。此外,透過粒徑分析結果發現,破壞面上的顆粒在受剪後,明顯的產生破碎,並且細粒料含量隨反覆剪應力增加而增加。
綜合以上所述,可知在非均向壓密下,軟弱砂岩並沒初始液化的現象產生,試體破壞由顆粒間結構性的破壞所造成,當應變量達一定程度時,試體即產生快速且大變形的破壞。
英文摘要 Lushan western Taiwan with more soft rock slope is easy to damage by the earthquake, in order to understand of soft rock slope in the mechanical properties of the dynamics, this study initially exposed to the Tainan County Longci Township related to the rural area of porous soft sandstone of consolidated undrained triaxial test and use anisotropy consolidated undrained cyclic triaxial shear tests to simulate saturation of soft sandstone slope by shake. By tests of the stress - strain relations, the excess pore water pressure changes over the measure, to explore soft porous sandstone in the static and cyclic triaxial test of stress path, dynamic parameters such as changes in mechanical behavior.
The results in the consolidated undrained triaxial test under confining pressure 0.2-2 MPa showed that soft sandstone was compressed at the initial stage by excess pore water pressure changes and excess pore water pressure after the peak value, the soft sandstone phenomenon began to dilatancy, and when deviator stress to reach peak value and negative excess pore water pressure close to the maximum, the dilation to reach peak value of soft sandstone. By different failure criterion to analysis can obtain brittle-to-ductile transition pressure is 3.6MPa of triaxial test, the shear strength parameters is 、 ; 、 .
In the consolidated undrained cyclic triaxial test result shows specimens of the destruction before excess pore water pressure there will be significant cumulative, result of lower effective stress and axial strain should be increased gradually, when axial strain to reach 1%, specimens of further destabilizing rapidly, with the final form of damage to the folder level of about 45° ~ 60 °. In the dynamic parameters of shear modulus G and damping ratio D, found in the shear modulus close to destruction at the rapid decline. Also damping ratio decreased with the increment of shear strain and cyclic number, as approach of failure, and then reverses the rapid increase. In different consolidated stress ratio Kc, increasing of Kc decreased the excess pore water pressures accumulate value. When the initial normal stress p0’ at the same time, the greater the initial shear stress q0, should be required to destroy variables increases, instead when the same q0 increase of the failure strain decreased the p0’. In addition, through the particle size analysis found that the particles in the destruction of surface shear, and increase of cyclic shear stress increased the fine-grained content.
Based on the above mentioned shows are in anisotropy consolidated of soft sandstone is not the initial liquefaction phenomenon to occur and specimens to cause damage to particles structure was destroyed, When strain amounted to a certain extent, specimens were occurred the rapid destruction of large deformation.
論文目次 摘要 I
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
符號說明 XVI
第一章、緒論 1
1-1、研究動機與目的 1
1-2、研究步驟與流程 2
1-3、研究內容 3
第二章、文獻回顧 5
2-1、台灣西南部地區地質概述 5
2-1-1、我國西南部軟弱岩層之分布 5
2-1-2、台灣西南部軟岩之物理及力學特性研究 8
2-2、軟弱岩石的概述 10
2-2-1、軟弱岩石的定義 10
2-2-2、軟弱岩石成因與分類 12
2-2-3、軟弱岩石的特性 14
2-3、影響軟岩靜態力學性質因子 16
2-3-1、孔隙水對軟岩力學行為的影響 17
2-3-2、圍壓對岩石力學行為的影響 18
2-3-3、應力路徑對岩石力學行為的影響 20
2-4、動態三軸試驗相關理論與研究 21
2-4-1、反覆動態三軸試驗原理 21
2-4-2、動態三軸相關研究 27
2-5、軟岩破壞準則 36
2-5-1、Mohr-Coulomb 破壞準則 36
2-5-2、Hoek-Brown 破壞準則 36
2-5-3、Adachi and Ogawa 破壞準則 39
2-5-4、Johnston 破壞準則 40
第三章、試驗計畫與內容 43
3-1、試驗材料來源及試體製作 43
3-1-1、試驗材料來源 43
3-1-2、試體製作 43
3-2、試驗規劃 46
3-2-1、壓密不排水靜態三軸試驗 47
3-2-2、非均向壓密不排水動態三軸試驗 48
3-3、試驗儀器 51
3-3-1、實體顯微鏡 51
3-3-2、超音波量測設備 52
3-3-3、載重試驗機MTS 53
3-3-4、靜態三軸試驗系統 55
3-3-5、反覆三軸試驗系統(cyclic triaxial test system) 59
3-4、試驗方法 65
3-4-1、基本物性試驗 65
3-4-2、超音波試驗 66
3-4-3、單軸壓縮試驗 67
3-4-4、壓密不排水靜態三軸試驗 68
3-4-5、非均向壓密不排水動態三軸試驗 69
第四章 試驗結果與討論 75
4-1 、一般物理性質試驗結果 75
4-2、超音波試驗結果 77
4-3、單軸壓縮試驗結果 78
4-4、壓密不排水靜態三軸試驗結果 80
4-4-1、均向壓密不排水靜態三軸試驗結果-應變控制 80
4-4-2、非均向壓密不排水靜態三軸試驗結果-應力控制 85
4-4-3、相關破壞準則 88
4-4-4、破壞準則之適用性小結 95
4-5、非均向壓密不排水動態三軸試驗 99
4-5-1、非均向性壓密不排水動態三軸試驗結果 99
4-5-2、動態參數的變化 122
4-5-3、非均向壓密不排水動態三軸試驗應力路徑 125
4-5-4、壓密應力比(Kc)的影響探討 126
4-5-5、反覆剪應力的影響 138
4-5-6、顆粒分析 142
4-5-7、多孔隙軟弱砂岩受動態荷重作用下破壞條件說明 146
第五章、結論與建議 147
5-1、結論 147
5-2、建議 149
參考文獻 151
參考文獻 【1】 林宏明,“軟岩在不同環境及應力條件下之力學行為”, 國立成功大學土木工程研究所碩士論文, 2000。
【2】 林商裕,“台中都會區卵礫石層動態特性之研究”, 國立中興大學土木工程系所博士論文,2001。
【3】 林智惠,“膠結不良砂岩在不同應力路徑下之力學行為”, 國立交通大學土木工程系所碩士論文,2003。
【4】 李怡德,“軟弱砂岩弱化研究”,國立台灣大學土木工程研究所碩士論文,1996。
【5】 李德河、紀雲曜、謝文元,”不同溫度、壓力下泥岩之力學行為研究”, 1996岩盤工程研討會論文集,第333-342頁,1996。
【6】 耿文博, “台南以東丘陵區之地質”, 經濟部中央地質調查所彙刊, 第一號, pp.1-31,1981。
【7】 許琦,“反覆荷重下泥岩的動力特性之初步研究”,國立成功大學土木工程研究所碩士論文,1985。
【8】 黃燦輝, “軟弱岩石隧道問題研究(Ⅰ)”, 行政院國家科學委員會專題研究計劃成果報告, 1996。
【9】 游有方,“關廟層砂岩之力學特性”,國立成功大學土木工程研究所碩士論文,,2003。
【10】 鄭富書、李怡德及黃燦輝,“軟弱砂岩遇水軟化行為試驗研究”,1996岩盤工程論文集,國立台灣大學,台北,pp.373-382,1996。

【11】 Barton, M. E., “Cohesive sands: The natural transition from sands to sandstones”, Geotechnical Engineering of Hard Soil-Soft Rocks, Anagnostopoulos et al. (end), 1993, Balkema, Rotterdam, ISBN 90 5410 3442, pp.367-374, 1993.
【12】 Bell, F. G. and Culshaw, M. G., “A survey of the geotechnical properties of some relatively weak Triassic sandstone”, The Engineering Geology of Weak Rock, Cripps et al. (eds), Balkema, Rotterdam. ISBN 90 6191 1672, pp. 139-148, 1993.
【13】 Bieniawski, Z. T. “Mechanics Design in Mining and Tunnrling” , Balkema, Rotterdam, 1984.
【14】 Dobereiner, L., De Freitas, M. H., “Geotechnical Properties of Weak sandstones”, Geotechnique, Vol. 36, No.1, pp.79-94, 1986.
【15】 Hardin, B. O., and Black, W. L.,“Vibration Modulus of Normally Consolidated Clay ”, Journal of the Soil Mechanics and Foundations Div., ASCE, Vol.94, No. SM2, Mar., pp.353-369, 1968.
【16】 Hardin, B. O., and Drnevich, V. P., “Shear Modulus and Damping in Soils:Measurement and Parameter Effects”, Journal of the Soil Mechanics and Foundations Div., ASCE, Vol.98, No. SM6, June., pp.603-624, 1972.
【17】 Heok, E. and Brown, E. T. , “Underground Excavation in Rock” ,
The Institution of Mining and Metallurgy, London, 1980.
【18】 Heok, E. and Brown, E. T. , “The Heok-Brown failure criterion – a 1988 update.”, Proc. 15th Canadian Rock Mech. Symp (ed. J.H. Curran), Toronto: Civil Engineering Dept., University of Toronto, 31-38, 1988.
【19】 Johnston, I. W., “Soft Rock Engineering”, Comprehensive Rock Engineering, ED.J.A. Hudson, Vol.1, pp.367-393, 1993.
【20】 Ko, H. Y. and Scott, R. F., “Deformation of sand in shear,” Journal of the Soil Mechanics and Foundation Divisions, ASCE, Vol.93, No.Sm5, Proc. Paper 5470, pp.283-310, 1967.
【21】 Kokusho, T.,“Cyclic triaxial test of dynamic soil properties for wide strain range, ”Soils and Found., Tokyo, 20(2), pp.45-60, 1980.
【22】 Kramer, Steven L., “Geotechnical Earthquake Engineering”,
Prentice Hall, 1996.
【23】 Lade, P. V., “Rock Strength Criteria: The Theories and the Evidence”, Comprehensive Rock Engineering: Principles, Practice & Project, Pergamon Press Oxford, Ch. 11, pp.255-283, 1994.
【24】 Lee, K. L., and Seed, H. B., “Dynamic Strength of Anisotropically Consolidated Sand”, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.93, No. SM5, pp. 169-191, 1967.
【25】 Mogi, K., “Some Precise Measurement of Fracture Strength of Rocks Under Uniform Compressive Stress ”, Rock Mech Eng. Geol ., Vol.4, pp 41-45, 1966
【26】 Oliverira, R., “Weak Rock Materials”, The Engineering Geology of Weak Rock, Cripps et al. (eds.), Balkma, Rotterdam, pp.5-15, 1993.
【27】 Seed, H. B., and Lee, K. L., “Liquefaction of Saturated Sands during Cyclic Loading”, Journal of the Geotechnical Engineering Division, ASCE, Vol.92, No. SM6, pp.105-134, 1966.
【28】 Selig, E. T. and Chang, C. S., “Soil Failure Modes in Undrain Cyclic Loading”, J. Geotech. Engrg. Div., ASCE, Vol.107, No. GT 5, pp. 539-551, 1981.
【29】 Chen, W.F. and Saleeb, A.F., “Constitutive Equations for Engineering Materials”, Elsevier Science, Vol.1, pp.122-123, 1994.
【30】 Xia, H., and Hu, T., “Effects of Saturation and Back Pressure on Sand Liquefaction”, Journal of Geotechnical Engineering, ASCE, Vol.117, No.9, pp.1347-1362, 1991.
【31】 Yoshinaka, R. and Yamabe, T., “Deformation Behavior of Soft Rocks”, Weak Rock Soft Fractured and Weatherd Rock, Vol.1, Edited by Koichi Akai and Masao Hayashi and Yuichi Nishimatsu, pp.87-92, 1981.
【32】 Yoshimi, Y., and Ohoka, H., “Influence of Degree of Shear Stress Reversal on the Liquefaction Potential of Saturated Sand”, Soils and Foundations, JSSMFE, Vol.15, No.3, pp.27-40, 1975.
【33】 石原研而, “土構造物の耐震設計法の現狀と問題點”,土と基礎,NO.271,28~8,pp.3-8,1980。

------------------------------------------------------------------------ 第 6 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915321122
論文名稱(中文) 溫度循環作用後砂岩力學性質之研究
論文名稱(英文) A Study of the Mechanical Properties of Sandstone After Cyclic Thermal Action
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 藍計侖
學號 n4696111
學位類別 碩士
語文別 中文
口試日期 2009-06-24
論文頁數 74頁
口試委員 口試委員-馬正明
口試委員-黃紀嚴
指導教授-王建力
口試委員-王泰典
關鍵字(中) 彈性模數
裂縫
再結晶
溫度循環作用
燒結
泊松比
砂岩
關鍵字(英) elastic modulus
crack
recrystallization
cyclic thermal action
thermal treatment
Poisson`s ratio
sandstone
學科別分類
中文摘要 本研究探討砂岩受溫度循環作用後與力學性質之相關性。採用隧道開採出之砂岩進行高溫循環熱開裂試驗與溫度循環後單軸壓縮試驗。分別對砂岩在400℃及800℃兩個溫度作1次到5次的燒結,以進行高溫循環熱開裂試驗,藉此量測觀察其體積、密度及外觀型態上的變化。分別在25℃、200℃、400℃、600℃與800℃五個溫度階段,作1次跟5次的循環燒結,並進行高溫後單軸抗壓試驗,來探討砂岩受高溫及溫度循環後對力學性質之影響。研究結果顯示,高溫使砂岩的外觀型態發生改變,於400℃與800℃,體積、密度皆以第一次燒結所產生的變化最大。隨著溫度升高,尖峰應力、尖峰應變增加,彈性模數、泊松比降低。隨著循環次數的增加,尖峰應變的增加,彈性模數、泊松比的降低,就越明顯。由SEM與礦物組成分析顯示,於高溫下造成的再結晶,影響裂縫擴張與增加。溫度與溫度循環所引起的熱應力作用和微結構變化皆是影響砂岩力學性質發生改變的原因。
英文摘要 This study investigated the mechanical properties of sandstones under various cyclic thermal effects. Both the thermal cracking test under cyclic high temperature and the uniaxial compression test after each cyclic thermal action have been carried out in this study. On the thermal cracking test under cyclic high temperature, the thermal treatments on the sandstone samples were repeated one to five times at temperature of 400℃ and 800℃, respectively. The observation of the changes on the volume, density, and appearance of the samples were made. On the uniaxial compression tests, the thermal treatments on the samples were also repeated one and five times at the temperature of 25℃, 200℃, 400℃, 600℃, and 800℃, repectively. The mechanical properties including elastic modulus and Poisson`s ratio at high temperature and after cyclic thermal action were obtained. The experimental results show that the changes of volume, density, and appearance caused by high temperature of 400℃ and 800℃ are the most significant at the first cycle of thermal treatment. Higher temperature leads to increase in the peak stress and peak strain while decrease in elastic modulus and Poisson`s ratio. Moreover, the increase in the number of thermal cycle would lead to increase in the peak strain while decrease in elastic modulus and Poisson’s ratio. From the SEM and X-Ray analysis, it is illustrated that the recrystallization in high temperature has an effect on the potential of micro-crack propagation. The thermal stress and microstructural changes caused by high temperature and cyclic temperature are major factors which affect the mechanical properties of sandstone.
論文目次 誌謝………………………………………………………………………I
摘要…………………………………………………………………II
Abstract…………………………………………………………………III
目錄……………………………………………………………………IV
表目錄…………………………………………………………………VI
圖目錄………………………………………………………………VIII
第一章 緒論……………………………………………………………1
1.1 研究動機與目的………………………………………………1
1.2 研究內容與流程………………………………………………2
第二章 文獻回顧………………………………………………………4
2.1 高溫作用對岩石強度的影響…………………………………4
2.2 高溫作用對岩石應變的影響.........................10
2.3 高溫作用對岩石彈性模數的影響.....................11
2.4 高溫作用對岩石泊松比的影響.......................13
2.5 高溫作用對岩石型態變化的影響.....................15
第三章 試體準備與試驗設備及方法………………………………17
3.1 本研究砂岩性質之相關介紹.........................18
3.2 試驗設備.........................................22
3.2.1 自動溫度控制高溫爐..........................22
3.2.2 載重系統及資料擷取系統……………………………23
3.3 試體製備………………………………………………………26
3.3.1 高溫循環熱開裂試驗…………………………………26
3.3.2 溫度循環後單軸抗壓試驗......................27
3.3.2.1 試體製作………………………………………27
3.3.2.2 應變計黏貼過程………………………………29
3.4 試體編號………………………………………………………32
3.4.1 高溫循環熱開裂試驗…………………………………32
3.4.2 高溫循環後單軸抗壓試驗……………………………33
3.5 試驗步驟………………………………………………………34
3.5.1 溫度循環後單軸抗壓試驗……………………………34
3.5.2 高溫循環熱開裂試驗…………………………………35
第四章 試驗結果與討論……………………………………………37
4.1 高溫循環熱開裂試驗結果……………………………………37
4.1.1 燒結400℃與800℃試體破裂情形結果討論………39
4.1.2 燒結400℃與800℃試體體積變化結果討論………42
4.1.3 燒結400℃與800℃試體密度變化結果討論………46
4.2 溫度循環後單軸抗壓試驗結果………………………………49
4.2.1 尖峰應力………………………………………………52
4.2.2 尖峰應變………………………………………………54
4.2.3 彈性模數………………………………………………57
4.2.4 泊松比.......................................59
4.3 SEM分析與礦物組成元素分析………………………………61
4.3.1 SEM分析………………………………………………61
4.3.2 礦物組成元素分析……………………………………64
第五章 結論與建議…………………………………………………68
5.1 結論……………………………………………………………68
5.2 建議……………………………………………………………71
參考文獻………………………………………………………………72
參考文獻 1.王穎鐵,張宏君,黃醒春,邱一平,「高溫作用下大理岩應力-應變過程試驗研究」,岩石力學與工程學報,2002。
2.甲仙-台灣地質圖,「長枝坑層」,經濟部中央地質調查所數值地質圖資料庫,2009。
3.朱合華,曾令軍,鄧濤,「三種岩石高溫後力學性質的試驗研究」,
岩石力學與工程學報,2006。
4.朱珍德,朱明禮,渠文平,阮懷寧,「高溫週期變化與高圍壓作用下大理石力學特性試驗研究」,岩土力學,2007
5.杜守繼,「高溫後花崗岩力學性能的試驗硏究」,岩石力學與工程學報,2004。
6.吳剛,邢愛國,張磊,「砂岩高溫後的力學特性」,岩石力學與工程學報,2007。
7.夏小和,王穎鐵,黃醒春,沈為平,「高溫作用對大理岩強度及變形特性影響的實驗研究」,上海交通大學學報,2004。
8.陳聖文,「岩石熱力學與力學性質之研究-以三種岩石為例」,國立成功大學土木工程研究所碩士論文,2008。
9.陳鴻益,「高溫歷程對岩石強度與變形性質之影響」,國立台灣科技大學營建工程技術研究所碩士論文,2002。
10.楊豐榮,「曾文水庫越域引水隧道水文地質研究」,第五屆海峽兩岸隧道與地下工程學術與技術研討會,2006。
11.張連英,馮梅梅,杜春志,楊逾,「高溫狀態下石灰岩力學性質的初步研究」,岩石力學與工程學報,2006。
12.張淵,張賢,趙陽升,「砂岩的熱破裂過程」,地球物理學報,
  2006。
13.Bauer, S. J. and Johnson, B. “ Effects of slow uniform heating on the physical properties of the Westerly and Charcoal Granites ” Proc. 20th Symp. on Rock Mechanics., Austin Texas,ASCE. pp. 7-18, 1979.

14.B.D. Cullity, Elements of X-ray diffraction, Addison-Wesley Publishing Company, Inc. 2nd ed., London, 1978.

15.Hughes,D. S. and Maurette, C. K., “Variation of elastic moduli of igneous Rocks with pressure and temperature ” Geophysic, Vol. 21, No.2,pp.22-31,1956.

16.Heuze, F. E., “High temperature mechanical, physical and thermal properties off Granitic Rock-A Review ” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 20, No.1, pp.3-10, 1983.


17.R. S. C. Wai & K.Y. Lo & Rowe R. K., “Thermal stress analysis in rocks with nonlinear properties,"International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Vol. 19. pp. 211-220, 1982

18.Yoshinori Inada & Naoki Kinoshital & Akira Ebisawa & Shinji Gomi, “strength and deformation characteristics of rocks after undergoing thermal hysteresis of high and low temperatures,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.Vol. 34.No. 140,1997.

------------------------------------------------------------------------ 第 7 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915333234
論文名稱(中文) 內鑽試體應用在砂岩預應力評估之研究
論文名稱(英文) Estimation of Pre-stress on Under-cored Sandstone Samples
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 潘昱維
學號 n6696122
學位類別 碩士
語文別 中文
口試日期 2009-07-10
論文頁數 221頁
口試委員 口試委員-胡紹敏
口試委員-王泰典
口試委員-潘以文
口試委員-余旗文
指導教授-吳建宏
關鍵字(中) Kaiser Effect
長枝坑層砂岩
音射法
變形率變化法
內鑽法
關鍵字(英) Kaiser Effect
DRA
AE
Under-Coring
Changchikeng sandstone
學科別分類
中文摘要 國內隧道工程的建設逐漸朝向大尺度與大深度的方向發展,因此岩盤預應力的推估將日形重要,目前正在開挖中的曾文越域引水隧道預期隧道最大岩覆處可達1300公尺,高岩覆中較大規模的現地應力分佈情形左右著隧道開挖工程設計與施工安全,因此有必要發展一套簡便經濟的應力量測方法來了解其現地應力分佈情形。現地單一方向鑽孔的岩心直徑通常為五公分,若是能在單一方向岩心試體內部進行不同方向內鑽小試體的製作,並配合室內試驗法(音射法和變形率變化法)與三維應力場推導之結合將可建立現地三維應力場,然而材料在內鑽狀態下的應力記憶特性與以及材料的應力記憶值與所對應的方向是否正確將會影響三維應力推估結果,因此本研究以曾文越域引水隧道開挖至最大岩覆處所遭遇的岩體長枝坑層砂岩作為試驗材料,配合內鑽法進行該材料的應力記憶特性試驗,藉由試驗結果來作為未來室內試驗法應用在曾文越域隧道最大岩覆處之理論依據與試驗方法修正。而研究結果主要有以下幾點:
1.在試驗室條件給定試體預應力值來模擬現地應力時,高預應力加載下由於試體內部裂隙活動較不穩定,預應力反覆加載次數有可能會影響室內試驗法之推估結果,而要模擬現地三軸應力的狀態應以三軸預應力同時加載的條件較為理想。
2.長枝坑層砂岩試體在內鑽的情況仍不影響其Kaiser Effect現象下的應力記憶特性,且在三軸預應力同時加載下室內試驗法所推估出的應力值可以看出其方向性,說明了室內試驗法應用在現地三維應力推估的可行性。
3.未來以室內試驗進行曾文越域地區的現地應力量測時,有可能會遭遇到的問題有:岩體應力記憶值是否在其良好的應力記憶區間、轉折點判釋問題、應變片黏貼問題、解壓時間問題等,因此在岩心的挑選上或是試驗的過程中應針對這幾點予以加強改善。
英文摘要 As the increasing of size and depth of the tunnel constructions in Taiwan, measuring the pre-stress of the rock mass is an essential task for the tunnel design. For example, the maximum overburden thickness of the Tseng-wen reservoir tansbasin water tunnel is roughly 1300m, and the in situ stress condition will affect the design and safety. Therefore, it is necessary to develop an easy and economical technique to assess the in-situ stresses. The diameter of rock core samples taken from in situ borehole drilling is usually 5cm. In stead of conducting borehole drilling from different directions, in this study, we take under-cored samples at various directions from oriented rock core samples and integrate to the laboratory experiments (acoustic emission and deformation rate analysis) to analyze the in-situ three-dimensional stresses. To realize the stress memory characteristics of the under-cored rock samples and the accuracy of pre-stress estimations under different directions, we chose Changchikeng Sandstone as experiment specimen, and combined the artificial prestressed under-cored samples to the acoustic emission and deformation rate analysis to estimate the stress memory characteristic of the sandstone. The following test results of laboratory experiments will contribute to estimate the in situ stress on Tseng-wen reservoir tansbasin water tunnel region in the future.
1.High pre-stress loaded samples result in unstable crack activities. The number of loading cycles may affect the measuring results. It is appropriate that triaxial pre-stress loaded simultaneously for simulating in situ three dimensional stresses.
2.The triaxial pre-stress test resulted indicate that the under-cored Changchikeng Sandstone samples also perform Kaiser Effect, and the direction-dependency. In addition, the test results also proved that over-coring samples associating with acoustic emission and deformation rate analysis are feasible for estimating three dimensional stresses.
3.Future stress estimations conducted in the Tseng-wen reservoir tansbasin water tunnel region may encounter the following problems: the correctness of the pre-stress estimation depends on the value of the in-situ stress, determination of take-off point of the Kaiser Effect, stick strain gauge on the samples, and the delay time. Thus, when pick rock core samples or carry out experiments should modify these problem.
論文目次 摘要......................................................I
誌謝......................................................V
目錄.....................................................VI
表目錄....................................................X
圖目錄.................................................XIII
第一章 緒論...............................................1
1-1 研究動機與目的....................................1
1-2 研究內容..........................................3
1-3 研究流程..........................................5
第二章 音射概論...........................................6
2-1 音射簡介..........................................6
2-2 音射發生機制......................................6
2-3 音射應用基本原理..................................7
2-4 音射訊號參數與波型................................9
2-4-1 音射訊號參數................................9
2-4-2 音射訊號波形...............................10
2-5 音射訊號參數特性分析.............................11
2-5-1 時間域分析.................................11
2-5-2 頻率域分析.................................13
2-6 音射儀器參數之設定...............................14
2-6-1 放大器.....................................14
2-6-2 音射感應器及其黏貼.........................14
2-7 噪音之濾除.......................................17
2-7-1 背景噪音之濾除.............................17
2-7-2 接觸面噪音之濾除...........................18
2-7-3 音射訊號時間參數的設定.....................18
第三章 文獻回顧..........................................21
3-1 岩石單軸壓縮下之音射行為特性.....................21
3-1-1 岩石單軸壓縮破壞行為.......................21
3-1-2 岩石單軸壓縮試驗之音射特性.................22
3-2 Kaiser Effect相關研究............................25
3-2-1 岩石材料之Kaiser Effect....................25
3-2-2 音射法結合Kaiser Effect於應力量測之應用....27
3-2-3 加載方向對Kaiser Effect之影響..............30
3-2-4 Felicity Effect與前期最大應力的Kaiser Effect的影響...................................................31
3-3 DRA法............................................36
3-4 反覆載重相關研究.................................41
3-4-1 預應力.....................................42
3-4-2 延遲時間...................................46
3-4-3 再加載階段.................................50
3-5 現地應力.........................................52
3-5-1 現地應力介紹...............................52
3-5-2 現地應力分佈規律...........................52
3-6 三维應力場之推導.................................57
第四章 試驗材料、儀器及流程..............................68
4-1 取樣地點.........................................68
4-1-1 區域地質概述...............................68
4-1-2 露頭岩塊...................................71
4-1-3 地質鑽探之岩心.............................73
4-2 試體製作.........................................74
4-2-1 內鑽試體之製作.............................74
4-2-2現地岩心定向................................77
4-2-3 立方型試體之製作...........................78
4-3 儀器設備介紹.....................................81
4-3-1 MTS軸力加載系統............................81
4-3-2 圍壓加載系統...............................81
4-3-3 三軸室.....................................82
4-3-4 GT控制系統.................................84
4-3-5 音射量測系統...............................84
4-3-6 應變量測系統...............................87
4-3-7 超音波量測系統.............................88
4-3-8 非接觸式雷射量測系統.......................89
4-4 研究方法與室內試驗概述...........................90
4-5長枝坑層砂岩Kaiser Effect特性研究.................93
4-5-1 單軸預應力試驗.............................94
4-5-2 三軸預應力試驗.............................98
4-6 現地應力試驗....................................100
4-7 立方型試體DRA法之研究試驗.......................101
4-8 其他相關試驗....................................105
4-8-1 物性試驗..................................105
4-8-2 基本力學試驗..............................105
4-8-3 平整度試驗................................106
第五章 試驗結果與討論...................................108
5-1 長枝坑層砂岩基本物理性質試驗結果................108
5-2 長枝坑層砂岩基本力學試驗結果....................108
5-2-1 超音波試驗量測結果........................108
5-2-2 單軸壓縮試驗結果..........................110
5-3 立方型試體平整度試驗結果........................113
5-4 內鑽試體應力記憶試驗(單軸預應力條件)............114
5-5 改變再加載方向之Kaiser Effect評估試驗(單軸預應力).....................................................131
5-6 三軸預應力試驗結果(分別加壓)....................137
5-7 三軸預應力試驗結果(同時加壓)....................139
5-8 現地應力試驗....................................150
5-8-1 露頭岩塊..................................150
5-8-2 現地岩心..................................153
5-9 立方型試體DRA法之研究試驗.......................164
第六章 結論與建議.......................................171
6-1 結論............................................171
6-2 建議............................................174
參考文獻................................................175
附錄一 不同露頭岩塊所對應之試驗.........................185
附錄二 超音波試驗.......................................186
附錄三 AE與DRA法試驗結果圖..............................192
參考文獻 中文文獻
1.王永南 (1994),"不同應力狀態下岩石之音射特性研究", 國立成功大學土木工程研究所碩士論文,台南市,台灣。
2.王鶴翔 (1995),"模擬岩石受單壓應力作用下音射特性之試驗研究", 國立台灣大學土木工程研究所碩士論文,台北市,台灣。
3.王沛夫 (2004),"由世界應力量測資料探討不同地體構造區的應力特性",國立中央大學應用地質研究所碩士論文,中壢市,台灣。
4.田國榮(2002),"差應變分析與古地磁結合確定地應力方向",中國地質大學工程碩士學位論文,北京市,中國。
5.何春蓀 (1956),"台南竹頭崎油田之中新世地層",台灣省地質調查所彙刊,第八號,pp7-14。
6.何春蓀 (1986),"台灣地質概論,台灣地質圖說明書,第二版",經濟部中央地質調查所,台北市,台灣。
7.吳建宏 (1998),"單軸應力狀態下木山層砂岩之破壞特性研究",國立成功大學土木工程研究所碩士論文,台南市,台灣。
8.李佳龍 (2003),"音射定位法於岩石材料之應用",國立成功大學資源工程所碩士論文,台南市,台灣。
9.紀毓中(1994),"脆性岩石受載過程之音射特性與定位",國立交通大學土木工程研究所碩士論文,新竹市,台灣。
10.施順庭(2001),"軟岩的音射特性與音射源定位之研究",國立成功大學土木工程研究所碩士論文,台南市,台灣。
11.張吉佐,侯秉承,劉弘祥(2004),"台灣山岳隧道工程技術之回顧與展望",地工技術雜誌, 第100期,pp 93-106。
12.張吉佐,李怡德(2005),"台灣地下工程之回顧與展望",The 11th Conference on Current Researches in Geotechnical Engineering in Taiwan,台北縣,台灣,pp J32-1~10。
13.张艳霞,何晖(2007),"岩石聲發射的Kaiser效應研究進展",地下空間與工程學報,第3卷,第6期,pp 1089-1093。
14.陳慶忠 (1992),"大地材料之力學行為與音射特性之研究",國立成功大學土木工程所碩士論文,台南市,台灣。
15.陳世昌 (2000),"三軸應力狀態下岩石音射特性研究",國立成功大學土木工程研究所碩士論文,台南市,台灣。
16.張健峰 (2007),"黑色片岩預應力是內試驗推估方法之研究" , 國立成功大學土木工程研究所碩士論文,台南市,台灣。
17.曾聖智 (1999),"岩石材料之音射特性及音射源定位研究",國立成功大學土木工程研究所碩士論文,台南市,台灣。
18.楊豐榮 (2006),"曾文水庫越域引水隧道水文地質研究",第五屆海峽兩岸隧道與地下工程學術與技術研討會,台北市,台灣。
19.經濟部水利署南區水資源局網站,網址:www.wrasb.gov.tw
20.廖志信 (1993),"岩石材料中音射發生源之位置探測研究",國立成功大學土木工程所碩士論文,台南市,台灣。
21.曾文水庫越域引水工程計劃-隧道工程委託技術服務 (2004),中興工程顧問有限公司,補充地質調查試驗及評估報告,經濟部水利署南區水資源局。
22.詹恕齊(2008),"長枝坑層砂岩預應力室內試驗推估方法之研究",國立成功大學土木工程研究所碩士論文,台南市,台灣。
23.蕭富元,張玉粦,曾慶恩,蔡政憲(2006),"套鑽法現地應力量測技術於台灣之應用",岩盤工程研討會,台南市,台灣,pp 621-630。

英文文獻
1.American Society for Testing and Materials Designation (2005): E976-05, "Determining the Reproducibility of Acoustic Emission Sensor Response."
2.American Society for Testing and Materials Designation (2003): F1797-98, "Test Method for Acoustic Emission Testing of Insulated Digger Derricks."
3.Bieniawski, Z. T. (1967),"Mechanism of Brittle Fracture of Rock," International Journal of Rock Mechanics & Mining Sciences, part I, II, III, Vol. 4, pp 395-430.
4.Boyce, G. M., McCabe, W. M., Koerner, R.M. (1981), "Acoustic Emission Signatures of Various Rock Types in Unconfined Compression," Acoustic Emissions in Geotechnical Engineering Practice, ASTM STP 750, pp 142-154.
5.Brown, E. W. and Hoek, E. (1978) "Trends in Relationships Between Measured in Situ Stresses and Depth," International Journal of Rock Mechanics & Mining Sciences, Vol. 15,No.4, pp211–215.
6.Bray, D. E. and McBride, D. (1992), "Acoustic Emission Technology," Nondestructive Testing Technique: John Wiley & Sons, New York, US, pp 345-377.
7.Chen, Z.H., Tham, L.G., Xiec, G. H.(2007), "Experimental and Numerical Study of the Directional Dependency of the Kaiser Effect in Granite " International Journal of Rock Mechanics & Mining Sciences,Vol.44, pp 1053-1061.
8.Chen, W.,Saleeb,A, F.(1994),"Constitutive Equations for Engineering Materials ,Volume 1:Elasticity and Modeling, Revised Edition," Amsterdam, Holland.
9.Desai, C.S., Sirwardane, H.J.(1984), "Constitutive Laws For Engineering Materials with Emphasis on Geologic Materials," Rainbow-Bridge Book Co., Ltd, Taipei, Taiwan
10.Filimonov, Y.L., Lavrov, A.V., Shkuratnik, V.L.(2001), " Prospects of Memory Effects for Stress Measurement Applications in Rock Salt," In: Proceedings of EUROCK’2001 Symposium. Rotterdam: A.A.Balkema, pp 59-63.
11.Goodman, R. E. (1963), "Subaudible Noise During Compression of Rock," Geological Society of America Bulletin, Vol. 74, No. 4, pp 487-490.
12.Goodman, R. E. (1989), " Introduction to Rock Mechanics 2nd Edition," New York, USA.
13.Haimson, B. C. (1978), "Effect of Cyclic Loading on Rock," In: M. L. Silver, Ed., Dynamic geotechnical testing, ASTM STP 654: American Society for Testing and Materials, Denver, USA, pp 228-245.
14.Hardy, H.R., Jr. (1972), "Application of Acoustic Emission Techniques to Rock Mechanics Research," Acoustic Emission, ASTM STP 505, American Society for Testing and Materials, Philadelphia, USA, pp 41-83.
15.Hardy, H.R., Jr., Zhang, D. (1989), "Recent Studies of the Kaiser Effect in Geological Materials," Acoustic emission/microseismic Activity in Geological Structures and Materials, Proceedings of the 4th Conference, ed. by Hardy, H.R., Jr., Pennsylvania, USA, pp 27-55.
16.Holcomb, D.J.(1993), "Observations of the Kaiser Effect under Multiaxial Stress States: Implications for use in Determining in situ Stress," Geophysical Research Lett ,Vol. 20, No. 10, pp 2119-22.
17.Hunt, S.P., Meyersb, A.G., Louchnikovb,V.(2003), "Modelling the Kaiser Effect and Deformation Rate Analysis in Sandstone using the Discrete Element Method," Computers and Geotechnics, Vol. 30, pp 611-621.
18.ISRM(1981), "Basic Geotechnical Description of Rock Masses , ISRM Commission on Classification of Rocks and Rock Masses" International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, Vol.18,pp.85-110.
19.Kanagawa, T., Hayashi, M., Nakasa, H.(1976), "Estimation of Spatial Geostress Components in Rock Samples using the Kaiser Effect of Acoustic Emission," Report No. 375017, Central Research Institute of Electrical Power Industry, Abiko, Japan.
20.Kang, S. S., Nakamura, N., Obara, Y.,Sugawara, K. (2000), "Rock Stress Interpretations from Mt.Torigata(Japan) Based on Calcite Strain Gauge and Differential Strain Curve Analysis," Engineering Geology, Vol. 58, pp35-52.
21.Kent, L., Bigby, D., Coggan, J., Chilton, J.(2002), "Comparison of Acoustic Emission and Stress Measurement Results to Evaluate the Application of the Kaiser Effect for Stress Determination in Underground Mines," 21st International Conference on Ground Control in Mining, Morgantown, USA.
22.Koerner, R. M., McCabe, W. M., Lord, A. E., Jr. (1981), "Overview of Acoustic Emission Monitoring of Rock Structures," Rock Mechanics, Vol. 14, pp 27-35.
23.Koerner, R.M., Lord, A.E.(1989), "AE Detection of Prestress in Soil and Rock," Fourth Conference on Acoustic Emission /Microseismic Activity in Geologic Structure and Materials, Pennsylvania, USA, pp 73-86.
24.Lavrov, A., Vervoort, A., Wevers, M., Napier, JAL.(2002), "Experimental and Numerical Study of the Kaiser Effect in Cyclic Brazilian Tests with Disk Rotation," International Journal of Rock Mechanics & Mining Sciences ,Vol. 39, pp 287-302.
25.Lavrov, A. (2003) "The Kasier Effect in Rock: Principle and Stress Estimation Techniques," International Journal of Rock Mechanics & Mining Sciences, Vol. 40, pp 151-171.
26.Lee, C. T.(2005), "Tectonic Activity and Hazards in Taiwan,"台灣原子能論壇與放射性廢棄物最終處置研討會,龍潭,台灣,pp 102-117.
27.Lehtonen, A.(2005), " Evaluation of Rock Stress Estimation by the Kaiser Effect," Helsinki University of Technology, Working Report,2005-67, Olkiluoto, Finland.
28.Li, C., Nordlund, E. (1993), "Experimental Verification of the Kaiser Effect in Rocks," Rock Mechanics and Rock Engineering, Vol. 26, No. 4, pp 333-351.
29.Matthews, J. R., and Hay, D. R. (1983), "Nondestructive Testing Monographs and Tracts," Acoustic Emission, Gordon and Breach, New York, USA, pp 1-14.
30.Michihiro, K., Yoshioka, H., Hata, K., Fujiwara, T.(1989), "Strain Dependence of the Kaiser Effect for Various Rocks, " Fourth Conference on Acoustic Emission /Microseismic Activity in Geologic Structure and Materials, Pennsylvania, USA, pp 87-95.
31.Mogi, K., (1962), "Study of Elastic Shocks Caused by the Fracture of Heterogenous Materials and Its Relations to Earthquake Phenomena," Bulletin of the Earthquake Research Institute, Vol. 40, pp 125-173.
32.Nelson, P. P., Glaser, D. S. (1989), "AE and Discrete Fracture Propagation in Rock," In: H. R. Hardy, Jr., Ed., Acoustic Emission / Microseismic Activity in Geological Structures and Materials, Proceedings of the 4th Conference, Pennsylvania, USA, pp 117-130.
33.Oikawa, Y., Matsunaga, I., Yamaguchi, T. (1993), "Differential Strain Curve Analysis to Estimate the Stress State of the Hijiori Hot Dry Rock Field, Japan," International Journal of Rock Mechanics & Mining Sciences, Vol.30, No.7, pp1023–1026.
34.Physical Acoustic Coporation (PAC) Mistras 2001 AEDSP-32/16-115-User's Manua, PAC Part Number 6300-1000, 1995.
35.Sakaguchi, K., Iino1, W., Matsuki, K.(2002), "Damage in a Rock Core Caused by Induced Tensile Stress and its Relation to Differential Strain Curve Analysis, " International Journal of Rock Mechanics & Mining Sciences, No.39, pp367–380.
36.Scholz, C. H. (1968a), "The Frequency-Magnitude Relation of Microfracturing in Rock and Its Relation to Earthquakes," Bulletin of the Seismological Society of American, Vol. 58, No. 1, pp 399-415.
37.Scholz, C. H. (1968b), "Microfracturing and the Inelastic Deformation of Rock in Compression," Journal of Geophysical Research, Vol. 73, No.,4, pp 1417-1432.
38.Seto, M., Nag, D.K. and Vutukuri, V.S. (1999) "In-situ Rock Stress Measurement from Rock Cores using the Acoustic Emission Method and Deformation Rate Analysis," Geotechnical and Geological Engineering, Vol. 17, pp 241-266.
39.Seto, M., Soma, N., Maeda, N., Matsui, H., Villaescusa, E., Katsuyama, K. (2001), "Methodology and Studies of Stress Measurement by the AE and DRA Methods using Rock Core (in Japanese)", Shigen-to Sozai (資源と素材), Vol. 117, pp 829-835.
40.Shi, L. P., Huang, T. H., and Hung, J. J.(1995), "A Study on the Uniaxial Compression Behaviors and Acoustic Emission Characteristics of Rock in Taiwan," 8th ISTM Congress. Tokyo, Japan, pp 211-214.
41.Shin, K., Kanagawa ,T.(1995), "Kaiser Effect of Rock in Acousto-Elasticity, AE and DR," In: Proceedings of the Fifth Conference on AE/MA in Geologic Structures and Materials. Clausthal-Zellerfeld: Trans Tech Publications, pp 197-204.
42.Shin, K., Ito, H., Oikawa, Y.(2000), "Stress State at The Ogachi Site," Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan, pp 1749-1952.
43.Spanner, J. C., Brown, A., Hay, D. R., V., Notvest, K., Pollock, A. (1987), "Fundamentals of Acoustic Emission Testing," In: K. Miller Ronnie, Paul McIntire, Ed., Nondestructive Testing Handbook, 2nd Edited, Vol. 5, Columbus, USA, pp 11-44.
44.Stacey, T., Wesseloo, J.(2002), "Application of Indirect Stress Measurement Techniques (Non Strain Gauge Based Technology) to Quantify Stress Environments in Mines," Safety in Mines Research Advisory Committee, Final Project Report, Witwatersrand, South Africa.
45.Stuart, CE., Meredith, PG., Murrell, SAF., Munster, JG.(1993), "Anisotropic Crack Damage and Stress–Memory Effects in Rocks under Triaxial Loading," International Journal of Rock Mechanics & Mining Sciences ,Vol. 30,No .7, pp 937-41.
46.Tamaki, K.,Yamamoto, K., Furuta, T., Yamamoto, H.(1991) "An Experiment of in-situ Stress Estimation on Basaltic Rock Core Samples from Hole 758A, Ninetyeast Ridge, Indian Ocean, "Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 121, No. 35, pp 697-717.
47.Tuncay, E., Ulusay, R.(2008), "Relation Between Kaiser Effect Levels and Pre-stresses Applied in the Laboratory," International Journal of Rock Mechanics & Mining Sciences, Vol. 45, pp 524–537.
48.Utagawa, M., Seto, M., Katsuyama, K. (1997) ,"Estimation of Initial Stress by Deformation Rate Analysis (DRA)," International Journal of Rock Mechanics & Mining Sciences, Vol. 34, No. 3-4, pp 317.
49.Villaescusa, E., Seto, M. and Baird, G.(2002), "Stress Measurements from Oriented core,"International Journal of Rock Mechanics and Mining Sciences, Vol. 39, pp 603-615.
50.Yamamoto, K., Kuwahara, Y., Kato, N., Hirasawa, T. (1990), "Defermation Rate Analysis: A New Method for in situ Stress Estimation from Inelastic Deformation of Rock Sample under Axial Compressions," Tôhoku Geophysical Journal, Vol. 33, No. 2, pp. 127-147.
51.Yamamoto, K., Yamamoto, H., Kato N., Hirasawa, T.(1991), "Deformation Rate Analysis for in situ Stress Estimation,"Fifth Conference on Acoustic Emission /Microseismic Activity in Geologic Structure and Materials, Pennsylvania, USA, pp 243-255.
52.Yokoyama, T., Kanagawa, T., Yamamoto, K., Tanaka, T.(1991), "Simultaneous Measurement of AE and DR for Estimation of Geo-Stresses," Fifth Conference on Acoustic Emission/Microseismic Activity in Geologic Structures and Materials , Pennsylvania, USA, pp 257-264.
53.Yoshikawa, S., Mogi, K. (1989), "Experimental Studies on the Effect of Stress History on Acoustic Emission Activity-A Possibility for Estimation of Rock Stress," Journal of Acoustic Emission, Vol. 8, No. 4, pp 113-123.
54.Yuan, R., Li, Y.(2008), "Theoretical and Experimental Analysis on Mechanism of The Kaiser Effect of Acoustic Emission in Brittle Rocks," Journal of University of Science and Thchnology Beijing, Vol. 15, No.1,pp 1-4.

------------------------------------------------------------------------ 第 8 筆 ---------------------------------------------------------------------
系統識別號 U0026-2208201114382900
論文名稱(中文) 小林村獻肚山深層崩塌地質構造及地質材料特性之研究
論文名稱(英文) The Characteristics of Geological Structures and Material Properties of Hsien-du-shan Rock Avalanche at Hsiaolin, Chiahsien, Kaohsiung
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 陳建宏
學號 n66981282
學位類別 碩士
語文別 中文
口試日期 2011-07-12
論文頁數 142頁
口試委員 口試委員-林銘郎
口試委員-謝正倫
指導教授-吳建宏
口試委員-林宏明
口試委員-賴文基
口試委員-王文能
關鍵字(中) 莫拉克颱風
深層崩塌
小林村
糖恩山砂
鹽水坑頁岩
關鍵字(英) Typhoon Morakot
rock avalanche
Hsiaolin
Tangenshan Sandstone
Yenshuikeng Shale
學科別分類
中文摘要 摘要
2009年8月中度莫拉克颱風侵襲台灣,其所引進的西南氣流形成高強度及長延時的降雨型態,且降雨中心集中在中南部山區,連日的豪雨使得高雄縣甲仙鄉小林村東北方的獻肚山發生深層崩塌,進而造成小林村滅村事件,而深層崩塌的發生是有跡可尋的,以小林村為例,該區域內有高縣DF006及高縣DF007兩條件土石流潛勢溪流通過,且常因大雨發生土石流災害,再者獻肚山之山區道路於崩塌前已有隆起和凹陷等現象出現,表示該區域已有速度較緩慢的地滑現象發生。
該區域之地層構造中上部為一崩積土層,中間夾層為鹽水坑頁岩,底層為糖恩山砂岩,崩積土層主要為鹽水坑頁岩及糖恩山砂岩風化後之堆積物;由已出露的糖恩山砂岩滑動面可看出有許多不連續面分佈,該滑動面為一圓弧形的順向坡,其受大地應力之擠壓而產生褶皺,力學試驗結果顯示糖恩山砂岩為中等硬岩,透水係數為10-11cm/sec;鹽水坑頁岩為易吸收水分之地質材料,力學試驗結果為軟弱岩石,透水係數為10-7cm/sec,其受大地應力作用後易產生裂縫,地層較為破碎;由現地量測之滑動面位態顯示滑動面傾角介於23°~30°之間,現地材料之高含水量重模試體直接剪力試驗結果之內摩擦角介於21.4°~25.5°之間,由試驗結果顯示現地土層於高含水量的狀態下有發生滑動的趨勢。
英文摘要 Abstract
Typhoon Morakot brought heavy rainfall to Taiwan on 8 August 2009. The rainfall center was located at the mountain in southern Taiwan and induced a deadly rock avalanche at Hsiaolin, Chiahsien, Kaohsiung country. Two debris flow channels (Kaohisung County DF006 and Kaohsiung County DF007) were known in Hsiaolin, and were always induced debris flows after raining. In addition, uplifts and subsidence were available at the path on the Hsien-du-shan slope and were considered as unstable precursors before it failed.
The Hsien-du-shan slope was consisted of colluvials at the top, Yenshuikeng Shale at the middle, and the Tangenshan Sandstone at the bottom. The colluvial soils were consisted of weathered Yenshuikeng Shale and Tangenshan Sandstone. Numerous discontinuities are distributed on the sliding surface, which is an arc dip slope, of the Tangenshan Sandstone. The mechanical test results show that the strength of Tangenshan Sandstone is classified as a medium strong rock, and its hydraulic conductivity is 10-11cm/sec. In addition, the strength of Yenshuikeng Shale is weak, and its hydraulic conductivity is 10-7cm/sec. The shale is easy to be fractured under large geologic stresses. The dip angle of the sliding surface is in the range of 23°~30°. The internal friction angle of the remolded soils with high water contents sample is 21.4°~25.5° by direct shear tests. Therefore, the soils with high water content are easy to slide.
論文目次 目錄
第一章 緒論 1
1-1研究背景 1
1-2研究動機與目的 4
1-3研究內容與流程 5
第二章 文獻回顧 8
2-1研究區域概述 8
2-1-1地理位置 8
2-1-2地形、地層與地質構造 9
2-1-3流域水系 16
2-2崩塌概述 18
2-2-1崩塌之定義 18
2-2-2崩塌之分類 20
2-2-3發生崩塌之原因 24
2-2-4崩塌與地滑之差異 24
2-3獻肚山相關研究 25
2-3-1陳樹群等(2009)高雄縣小林村獻肚山巨型深層崩塌引致之地形變遷特性 25
2-3-2李錫堤等(2009)小林村災變之地質背景探討 27
2-3-3唐昭榮等(2009)遽變式山崩之PFC3D模擬初探-以草嶺與小林村為例 29
2-3-4吳佳峻(2010)小林村災害歷程重現之探討 31
2-4現地透水試驗 32
2-4-1 Boutwell Permeameter現地透水試驗 32
2-4-2 Hoek & Bray現地透水試驗 33
第三章 試驗方法及儀器介紹 36
3-1材料來源及試體製作方法 36
3-1-1現地材料取樣地點 36
3-1-2試體製作 38
3-2儀器介紹 40
3-2-1十噸直接剪力試驗機 40
3-2-2重模試體模具 43
3-2-3消散耐久性試驗機 44
3-2-4超音波量測設備 44
3-2-5MTS載重試驗機 45
3-2-6應變量測系統 47
3-2-7圍壓加載系統 49
3-2-8巴西張力試驗 51
3-2-9三軸透水試驗 52
3-2-10現場工地密度試驗 52
3-2-11地質材料礦物成份分析試驗 54
3-2-12抽真空馬達 54
3-2-13現地透水試驗 55
3-2-14崩塌區水源pH值及導電率 56
3-3試驗方法及步驟 57
3-3-1土壞一般物性試驗 57
3-3-2重模試體直接剪力試驗 59
3-3-3消散耐久性試驗 62
3-3-4吸水率試驗 64
3-3-5超音波試驗 65
3-3-6單壓強度試驗 66
3-3-7三軸壓縮試驗 67
3-3-8巴西張力試驗 68
3-3-9三軸透水試驗 69
3-3-10現地透水試驗 70
3-3-11現地位態量測 72
3-3-12現場工地密度試驗 72
3-3-13地質材料礦物成份分析試驗 73
3-3-14邊坡湧水之水質分類 73
第四章 試驗結果與分析 77
4-1一般性質試驗 77
4-1-1物性試驗 77
4-1-1-1滑動面土壤 77
4-1-1-2糖恩山砂岩及灰色鹽水坑頁岩 81
4-1-2消散耐久性試驗 82
4-1-3三軸透水試驗 82
4-1-4吸水率試驗 84
4-1-5超音波試驗 84
4-2力學性質試驗 85
4-2-1重模土壤反覆直接剪力試驗 85
4-2-2巴西張力試驗 92
4-2-3單壓強度試驗 93
4-2-4三軸壓縮試驗 96
4-3化學成分分析 104
4-3-1滑動面土壤 104
4-3-2糖恩山砂岩及鹽水坑頁岩 107
4-3-3邊坡湧水化學成分分析試驗 108
4-4現地試驗 110
4-4-1現場工地密度試驗 110
4-4-2現地透水試驗 111
4-4-3現地位態量測 114
4-4-4崩塌區水源pH值及導電率試驗 120
4-5小結 127
第五章 結論與建議 132
5-1結論 132
5-2建議 133
參考文獻 134
附錄 138
自述 142
參考文獻 參考文獻
1. 中央地質調查所,地質資料整合查詢系統,「http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/license_agree.cfm」,2011。
2. 中央地質調查所,環境地質查詢系統,「http://envgeo.moeacgs.gov.tw/geoenv/login.asp」,2011。
3. 中央研究院地理資訊科技研發與應用網站,「http://gissrv5.sinica.edu.tw/GoogleApp/JM20K1904_1.htm」。
4. 中央氣象局,2009年8月份時雨量記錄,2009。
5. 中央氣象局,「莫拉克颱風警報單」,2009。
6. 水土保持局,土石流防災資訊網,「http://246.swcb.gov.tw/default-1.asp」,2011。
7. 地質調查所月報,第22卷,第6號,pp.13-25,1971。
8. 行政院公共工程委員會、國家災害防救科技中心,「莫拉克颱風高雄縣甲仙鄉小林村及那瑪夏鄉、桃源鄉致災原因調查報告」,2010。
9. 行政院農委會全球資訊網,水土保持技術規範,「http://law.coa.gov.tw/GLRSnewsout/LawContentDetails.aspx?id=FL014521&KeyWordHL=&StyleType=1」。
10. 行政院經濟部水利署,「莫拉克颱風暴雨量及洪流量分析」,2009。
11. 吳佳峻,「小林村災害歷程重現之探討」,國立成功大學水利工程研究所碩士論文,2010。
12. 宋國城、林慶偉、林偉雄、林文正,「五萬分之一臺灣地質圖圖幅五十一號甲仙」,經濟部中央地質調查所,2000。
13. 李錫提、董家釣、林銘郎,「小林村災變之地質背景探討」,地工技術,第122期,pp.87-94,2009。
14. 林美聆、王國隆、陳天健、林聖琪,「莫拉克颱風重大土石流災害案例分析」,地工技術,第122期,pp.123-132,2009。
15. 姚善文,「土石流發生之水文特性探討」,國立中央大學土木工程學系碩士論文,2001。
16. 范嘉程、劉芸呈,「旗山溪流域之邊坡災害與機制」,地工技術,第122期,pp.21-30,2009。
17. 唐昭榮、胡植慶、羅佳明、林銘郎,「遽變式山崩之PFC3D模擬初探-以草嶺與小林村為例」,地工技術,第122期,pp.143-152,2009。
18. 財團法人成大研究發展基金會,「複合型災害調查、分析與境況模擬 第一次期中報告書」,2010。
19. 高雄縣甲仙鄉公所,「甲仙鄉志增修初版」,2008。
20. 陳天健、吳嘉俊、翁孟嘉、謝坤宏、王建智,「莫拉克颱風荖濃溪坡地災害調查」,地工技術,第122期,pp.13-20,2009。
21. 陳信雄,「崩塌地調查與分析」,渤海堂,1995。
22. 陳榮河,「崩塌類型之現地研判」,地工技術,pp.13-19,1984。
23. 陳樹群、吳俊鋐,「高雄縣小林村獻肚山巨型深層崩塌引致之地形變遷特性」,中華水土保持學報,40(4),pp.359-376,2009。
24. 陳樹群、許中立,「莫拉克颱風形成之堰塞湖及危險度評估」,地工技術,第122期,pp.77-86,2009。
25. 游繁結等,「集水區整治率評估模式之探討」,中華水土保持學報,30(2),pp.137-147,1999。
26. 楊智堯,「類神經網路於邊坡破壞潛能分析之應用研究」,國立成功大學土木工程學系碩士論文,1998。
27. 經濟部中央地質調查所,「五萬分之一台灣地質圖圖幅第五十一號」,2000。
28. 潘國樑,「歷史重演~小林村的宿命」,地工技術,第122期,pp.153-155,2009。
29. 鄧鳳儀,「地滑地區滲流及地下排水工法對邊坡穩定影響之數值模擬-以梨山地滑區為例」,國立中興大學水土保持學系碩士論文,2005。
30. 賴志強,「台灣地區降雨及地震誘發崩塌之特性分析研究」,國立成功大學水利及海洋工程學系,2007。
31. Fookes, P. G., Sweeney, M., Mandy, C. N. D. and Martin, R. P., ”Geological and Geotechnical Engineering Aspects of Low-Cost Roads in Mountainous Terrain”, Engineering Geology 21, pp. 57-65, 1985.
32. Hoek, E. and Bray, J. W., “Rock Slope Engineering”, Revised Third Edition, E & FN Spon, London, 1981.
33. Hvorslev, M. J., “Time Lag in the Observation of Ground-water Levels and Pressures”, U. S. Army Engineers Waterways Experiment Station, Vicksburg, Miss, 1949.
34. Johnston, I. W., “Soft Rock Engineering”, Comprehensive Rock
Engineering, ED. J. A. Hudson, 1, pp. 367-393, 1993.
35. Srinvasa Rao, N., “A Computer Program for Modified Hill-Piper Diagram for Classification of Ground Water”, Computers & Geosciences Vol. 24, No. 10, pp. 91-1008, 1998.
36. Tsou, C. Y., Feng, Z. Y., Masahiro Chigira, “Catastrophic Landslide Induced by Typhoon Morakot, Shiaolin, Taiwan” Geomorphology 127, pp. 166-178, 2011.
37. Varnes, D. J., “Landslides Analysis and Contral”, Natioal Academy of Sciences Transportation Research Board Specail Report 176, Washington, pp12-33, 1978.
38. 千木良雅弘,「崩壞の場所:大規模崩壞の発生場所予測」,近未来社,名古屋,日本,2007。
39. 狛 武,橫田節哉,「第三系地すべり地帯における水質の特徵-北海道常盤台地区の例」,地質調查所月報,第22卷,第6號,pp.13-25,1971。

 


如您有疑問,請聯絡圖書館
聯絡電話:(06)2757575#65773
聯絡E-mail:etds@email.ncku.edu.tw