進階搜尋

 
查詢範圍:「 關鍵字=Sediment concentration   」
顯示範圍:第1、2、3、4、5、6、7、8、9、10、11筆 論文書目資料
顯示格式:全部欄位
共 11 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910351135
論文名稱(中文) 不規則波引致之細砂質海床液化與懸浮漂砂試驗初步研究
論文名稱(英文) A Preliminary Study on Soil Fluidization and Sediment Suspension in a Fine Sand Seabed Induced by Irregular Waves
校院名稱 成功大學
系所名稱(中) 工程管理碩士在職專班
系所名稱(英) Institute of Engineering Management (on the job class)
學年度 90
學期 2
出版年 92
研究生(中文) 劉穎欣
學號 n8689418
學位類別 碩士
語文別 中文
口試日期 2002-06-26
論文頁數 108頁
口試委員 口試委員-許榮中
口試委員-謝平城
指導教授-臧效義
指導教授-歐善惠
關鍵字(中) 懸浮漂砂濃度
海床液化
細砂質土壤
不規則波
關鍵字(英) Irregular waves
fine sandy soils
seabed fluidization
suspended sediment concentration
學科別分類
中文摘要   本研究採用一細砂質 ( d50 =0.078mm ) 土壤作為試驗砂床材料,於1m寬之斷面水槽中,以一系列不規則波進行試驗。試驗之目的為探討在特定波譜下海床孔隙水壓及土壤液化反應與懸浮漂砂濃度剖面之關聯性。試驗時於近砂床上方等間距架設五支光學式濃度計量測懸浮漂砂濃度,並於其下砂床內部架設五支孔隙水壓計,同時量測土壤反應。由孔隙水壓力量測結果顯示,細砂質土壤在不規則波浪作用下也有非液化、起始液化及連續液化三種反應。一般而言,砂床液化機制主要之決定因素為土壤滲透性。土壤滲透性越小越可能於第一次造波時,即產生液化現象。從其多階段之抬升現象可以清楚的看出,不規則波與簡諧波皆有相同之特性,即易使土壤液化層更深入砂床,可看出液化是由表層往底層深入。從同步懸浮漂砂濃度量測之結果顯示,在砂床土壤產生液化後,砂床面上各高度之濃度值有明顯上升現象。尤其是在起始液化時砂床上方 1cm 處最為明顯。最後本研究建議,應進一步用現場的波浪資料模擬進行造波試驗,並與現場所量得的懸浮漂砂資料作比較。
英文摘要   In this thesis, a fine sandy seabed ( d50 = 0.078 mm ) in laboratory water tankis used to investigate the relationships between soil fluidization responses and overall suspended sediment concentration profiles induced by Irregular waves on the firm spectrum. In the experimental setup, five optical sediment concentration probes with equal vertical intervals above a sandy bed and five pore pressure transducers inside the sandbed are installed for simultaneous measurements. The pressure responses show that, under irregular waves, the sandy seabeds display also typical responses such as unfluidized, initially fluidized and continuously fluidized, respectively. In addition, a resonance mechanism can be identified on initially fluidized responses, closely associated with the permeability of the soils. Monochromatic wave and irregular waves show the same tendency that fluidization goes into the seabed, from the seabed surface. During the fluidization, our measurements show that the suspended sediment concentration increases significantly, especially at about 1 centimeter above the seabed. It is suggested that experiments under irregular waves of fields on fluidization and comparisons with the concentration and pressure in the fields.
論文目次 目錄
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
符號說明 IX


第一章 緒論 1
  1-1 研究動機 1
  1-2 研究目的與方法 3
  1-3 本文組織 4

第二章 相關背景 5
  2-1 理論基礎 5
  2-2 液化與共振機制 8
  2-3 規則波引致之海床液化反應 10
  2-4 懸浮漂砂 13

第三章 試驗設備與步驟 19
  3-1 試驗佈置與設備 19
  3-2 試驗步驟 20
  3-3 儀器率定 24
  3-4 試驗條件 26
  3-5 資料分析流程 30

第四章 試驗結果 33
  4-1 孔隙水壓力變化 33
  4-2 懸浮漂砂濃度剖面 48
  4-3 孔隙水壓力與漂砂濃度關係 64

第五章 討論 70
  5-1 細顆粒海床液化反應特性 70
  5-2 波浪特性之影響 79
  5-3 懸浮漂砂濃度 86

第六章 結論與建議 93
  6-1 結論 93
  6-2 建議 94

參考文獻 95
附錄A 試驗儀器照片 99
附錄B 波浪之理論與實際能譜比較圖 101




圖目錄
圖1.1 接近碎波帶處三種之砂質海床行為 2
圖2.1 液化機制示意圖 (a) 非液化土壤結構 (b) 液化土壤結構 ( Huang, 1996 ) 9
圖2.2 代表性海床土壤反應類型:[a] Tzang (1992) 沈泥質 (d = -20cm), a1:非破壞 a2:共振式液化 a3:非共振式液化;[b]簡(2001) (d = -45cm)砂質, b1:非液化 b2:起始液化 b3:連續液化 12
圖2.3 Hay 與 Bowen (1994) 在加拿大現場量測所得儀器光學強度與波浪資料 14
圖 2.4 Smith 與 Mocke (1994) 在南非現場量測懸浮漂砂濃度與波群特性反應趨勢 14
圖2.5 黃等人 (1996) 於台中港外海試驗所得濃度歷時圖 15
圖2.6 林等人 (1998) 分析台中港外海所得波高與懸浮質濃度變化圖 15
圖2.7 彭 (2000) 試驗結果 (a) 孔隙水壓歷時反應圖 (b) 懸浮漂砂濃度歷時圖 17
圖2.8 簡 (2001) 試驗結果 (a) 孔隙水壓歷時反應圖(b) 懸浮漂砂濃度歷時圖 18
圖3.2 儀器配置之細部放大圖 ( 單位:cm ) 22
圖3.3 (1) 懸浮漂砂濃度計架設示意圖 (a) 整體架設圖 (b) 平面圖 23
圖3.3 (2) 懸浮漂砂濃度計架設示意圖 (c) 俯視圖 23
圖3.4 試驗流程圖 25
圖3.6 B-1 試次移動平均法處裡後之孔隙水壓力趨勢圖 31
圖3.7 A-3試次實際值與平均值比較 31
圖3.8 A-1 試次不規則波頻譜分析反應 31
圖3.9 起始液化反應孔隙水壓力歷時圖 (a) 原始波壓資料及放大圖 (b) 雜訊處理後及放大圖 32
圖 4.19 A 回合之孔隙水壓 ( d = -45cm ) 及濃度歷時圖 ( d = 1cm ) 66
圖 4.20 B 回合之孔隙水壓 ( d = -45cm ) 及濃度歷時圖 ( d = 1cm ) 67
圖 4.21 F 回合之孔隙水壓 ( d = -45cm ) 及濃度歷時圖 ( d = 1cm ) 68
圖 4.22 G 回合之孔隙水壓 ( d = -45cm ) 及濃度歷時圖 ( d = 1cm ) 69
圖 5.1 蘇 (1999)、彭 (2000)、簡 (2001) 及本文粒徑分佈圖 73
圖 5.2 定深度下A回合之平均孔隙水壓歷時曲線 76
圖 5.3 定深度下 B 回合之平均孔隙水壓歷時曲線 77
圖 5.4 定深度下 C 回合之平均孔隙水壓歷時曲線 78
圖 5.5 前後波高能譜比較圖 81
圖 5.6 前後波高能譜比較圖 81
圖 5.7 土槽上方壓力與波高能譜比較圖 81
圖 5.8 土槽上方壓力與波高能譜比較圖 81
圖 5.9 A-7試次連續液化反應 85
圖 5.10 F-3試次連續液化反應 85
圖 5.11 A 回合濃度歷時圖 (a) 濃度計位於底床上 1 公分 (b) 濃度計位於底床上5公分 87
圖 5.12 F 回合濃度歷時圖 (a) 濃度計位於底床上 1 公分 (b) 濃度計位於底床上5公分 88
圖 A-1 波高計及其增幅器示意圖 99
圖 A-2 孔隙水壓計及其增幅器示意圖 99
圖 A-3 FOSLIM懸浮漂砂量測系統:(a)光學感應元件 (b)增幅器 100



表目錄
表1.1 前人試驗與觀測結果 2
表1.2 前人試驗與反應模式 3
表2.1 理論靜土壓 9
表2.2 試驗土壤粒徑比較 11
表 3.1 試驗用海床土壤特性 20
表 3.2 波浪條件 28
表 4.1 試驗反應模式 36
表 4.2 不規則波作用下孔隙水壓及漂砂濃度開始抬升之時間 61
表 5.1 Tzang (1992)、蘇 (1999)、彭 (2000)、簡 (2001) 與本研究各土壤參數值 72
表 5.2 試驗土壤粒徑與液化反應之比較結果 73
表 5.3 GF值的比較 83
參考文獻 1. Biot, M.A. (1941), “General theory of three-dimensional consolidation.” J. Appl. Phys., Vol. 12, pp. 155-165.

2. Biot, M.A. (1956), “Theory of propagation of elastic waves in fluid-saturated porous solid:1 low-frequency ranger.” J. Acoust. Soc., Vol. 28, pp. 168-191.

3. Clukey, E.C., F.H. Kulhawy and P.L.-F. Liu (1983), “Laboratory and field investigation of wave-sediment interaction.” Joseph H. DeFrees Hydraulics Laboratory Rep. 83-1, School of Civil and Environmental Eng., Cornell University, Ithaca, N. Y.

4. Conley, D.C. and D.L. Inman (1992), “Field observation of the fluid-granular boundary layer under near-breaking waves.” J. Geophy. Res., Vol. 97, C6, pp. 9631-9643.

5. Dohmen-Janssen, C.M. (1999), “Velocity profiles and sand concentrations in sheet-flow under waves and currents.” I.A.H.R. Symposium on River, Coastal and Estuarine Morphodynamics, University of Genova, Vol. 1, pp. 467-476.

6. Foda, M.A. and S.Y. Tzang (1994), “Resonant fluidization of silty soil by water waves.” J. Geophys. Res., Vol. 99 (C10), pp. 20463-20475.

7. Foda, M.A., D.F. Hill, P.L. DeNeale and C.H. Huang (1997), “Fluidization response of sediment bed to rapidly falling water surface.” J. of Waterway, Port, Coastal, and Engineering, ASCE., pp. 261-265.

8. Funke, E. R. and E. P. D. Mansard “On the synthesis of realistic sea state,” 17th Int Conf. On Coastal Eng., sydeny, pp. 2974-2991 (1980).

9. Goda Y. (1985), Random seas and design of maritime structures. Tokyo: Univ. Tokyo Press

10. Henkel, D.J. (1970), “The role of waves in causing submarine landslides.” Geotechnique, Vol. 20, pp. 75-80.

11. Hanes, D.M. and D.A. Huntley (1986), “Continuous measurement of suspended sand concentration in a wave dominated nearshore environment.” Cont. Shelf Res., Vol. 6 (4), pp. 585-596.

12. Havinga, F.J. (1992), “Sediment concentration and transport in the case of irregular non-breaking waves with a current.” Rep. H840 Parts E, F, and G, Delft Hydr. Lab., Delft University of Technology, Delft, The Netherlands.

13. Hay, A.E. and A.J. Bowen (1994), “Space-time variability of sediment suspension in the surf zone.” Proc. Coast. Dyn. ’94, ASCE, Barcelona, Spain, pp. 962-975.

14. Huang, C.M. (1996), “A fluidization model for cross-shore sediment transport.” Ph. D. Dissertation, University of California, Berkeley, U. S. A.

15. Hamilton, L.J., Z. Shi and S.Y. Zhang (l998), “Acoustic backscatter measurements of estuarine suspended cohesive sediment concentration profiles.” J. Coast. Res., Vol. 14, No. 4. pp. 1213-1224.

16. Ifuku, M. (1988), “Field observation and numerical calculation of suspended sediment concentration in the surfzone.” Coast. Eng. in Japan, Vol. 30, No. 2, pp. 75-88.

17. Mei, C.C. and M.A. Foda (1981), “Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils.” Marine Geotechnology, Vol. 3, pp. 123-150.

18. Okayasu, A., T. Matsumoto, and Y. Suzuki (1996), “Laboratory experiments on generation of long waves in the surf zone.” Proc. 22th ICCE, ASCE, pp. 1321-1334.

19. Seed, H.B. and M.S. Rahman (1978), “Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils.” Marine Geotechnology, Vol. 3, pp. 123-150.

20. Shi, Z. (1998), “Acoustic observation of fluid mud and interfacial wave, Hangzhou Bay, China.” J. Coast. Res., Vol. 14, No. 4. pp. 1348-1353.

21. Smith, G.G. and G.P. Mocke (1994), “Sediment suspension by turbulence in the surf zone.” Proc. Coast. Dyn. ’94, ASCE, Barcelona, Spain, pp. 375-387.

22. Tzang, S.-Y. (l992), “Water wave-induced soil fluidization in a cohesionless Seabed.” Ph. D. Dissertation, University of California, Berkeley, U. S. A.

23. Tzang, S.-Y. (l998), “Unfluidized soil response of a silty seabed to monochromatic waves.” Coast. Eng., Vol. 35, pp. 283-301.

24. van Kessel, T. (1997), “Generation and transport of subaqueous fluid mud layers.” Ph. D. Dissertation, Dept. of Civil Engineering, Delft University of Technology, The Netherlands.

25. Yamamoto, T., H.L.K.H. Sellmeijer and E.V. Hijum (1978), “On the response of a pore-elastic bed to water waves.” J. Fluid Mech., Vol. 87, No. l, pp. 193-206.

26. 郭金棟,「海岸工程」,中國土木水利工程學會,第 366-368 頁 (1995)。

27. 黃清和、蔡立宏、林柏青、蔡金吉 (1996),「碎波帶內懸浮質濃度分佈研究」,第十八屆海洋工程研討會論文集,第 573-580 頁。

28. 林柏青、莊甲子、周憲德 (1998),「群波與近岸底床輸砂關係研究」,第二十屆海洋工程研討會論文集,第 453-458 頁。

29. 蘇美光 (1999),「規則波引致之細顆粒砂質海床反應特性試驗研究」,國立成功大學水利及海洋工程學系碩士論文。

30. 彭雯章 (2000),「波浪作用下細砂質海床土壤液化反應與懸浮漂砂濃度特性試驗研究」,國立成功大學水利及海洋工程學系碩士論文。

31. 俞聿修 (2000),「隨機波浪及其工程應用」。

32. 簡德深 (2001),「簡諧波與線性群波引致細砂質海床液化與懸浮漂砂濃度試驗研究」,國立成功大學水利及海洋工程學系碩士論文。

33. 王智民 (2001),「液化海床內波以致之孔隙水壓分析」,國立成功大學水利及海洋工程學系碩士論文。

------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200912051530
論文名稱(中文) 使用高解析力衛星影像量測河海泥砂量之研究
論文名稱(英文) Measuring the Turbidity and Suspended Sediment Concentration in Waters with High Resolution Satellite Images
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 94
學期 2
出版年 95
研究生(中文) 林孟勳
學號 l4693113
學位類別 碩士
語文別 中文
口試日期 2006-06-26
論文頁數 88頁
口試委員 指導教授-余騰鐸
指導教授-曾清凉
口試委員-李孫榮
關鍵字(中) 濁度
懸浮度
高解析力影像
關鍵字(英) High Resolution Image
Turbidity
SSC(Suspended Sediment Concentration)
學科別分類
中文摘要 臺灣地區山高水急,河川侵蝕搬運作用旺盛,侵蝕物被帶到河流下游及出海口處堆積,而海岸區的波浪也會將之侵蝕或是搬運,兩者間作用直接影響到水體濁度與含砂量的變化;過去欲了解水中含砂量大都以人工的方式到現場量測,不只曠日費時且所費不貲,所得的資訊也侷限為點狀或線狀的分布,也無法經常性地讀取具代表性的足夠樣本,對於泥砂量分布的了解依然有盲點與限制;近年來由於遙感探測技術日新月異,且高解析力衛星影像的取得方便,以衛星影像量測含砂量變化,不但快速、經濟且是面狀具有時間序列資料,但是數位影像的頻譜像元資訊無法轉換成為水的濁度與含砂量,其間必須建立對應的關聯,同時檢測其可行性及準確性。
本研究探討的就是高解析力衛星多光譜影像中不同波段與水中含砂量(懸浮物濃度與濁度)的關係。即以GER 1500光譜儀採樣數據,以SPOT多光譜影像的三個波段分隔出G、R、N-IR波段,分別與現場水質檢測資料比較;再以取得的SPOT衛星影像不同波段DN值與當日採樣的光譜數據對應,迴歸出SPOT衛星與光譜儀兩者間的修正量。最後即可得出以衛星影像所量測出之懸浮度及濁度。
研究發現:懸浮度與SPOT衛星R波段對應關係較好,與現場採樣光譜總能量相關係數可達0.8626;濁度則與SPOT衛星G波段對應關係較好,與現場採樣光譜總能量的相關係數可達0.7204。



英文摘要 Due to high elevation and precipitation of Taiwanese landscape, the land erodes rapidly. The eroded sediments being transported downward by river streams towards estuary, where it discharge into the ocean. The interaction between erosion and transportation of the eroded materials plays an important role in controlling the sand content and turbidity of waters. In the pass, the Suspended Sediment Concentration (SSC) was measured manually; it is sometimes unreliable due to data are gathered by different space and time; moreover, it is time consuming and costy. When obtaining these data by satellite imaging, it will provide us a much more consistant data in time, and cheaper in cost. To achieve this goal, one must attempt to correlate the satellite information with the actual SSC in the real time, the feasibility and accuracy of their relationship is need to be validated.
The objective of this research is attempting to establish the relation between actual SSC and turbidity with different wavelength data from high-resolution optical satellite images. Three different type of satellite data are used: In-situ sample data, high resolution satellite image, and the simulate experiments. The in situ spectrum sampled with GER 1500 Spectrummeter, was separated into three wavelengths based on SPOT satellite wave bands G, R, and N-IR bands; each were studied between the actual SSC, turbidity and seawater reflectance on the date. After regression analysis between DN value from SPOT image and spectrum signal, the relative connection parameters to the SSC and turbidity was established.
The results show that SSC is considerably correlated t the SPOT satellite R band of the in situ spectrum data with correlation coefficient of 0.8626; and the turbidity is considerably correlated to the SPOT satellite G band of the in situ spectrum data, with the correlation coefficient of 0.7204.



論文目次 目 錄
=章次========================頁碼=
摘要...(I)
ABSTRACT...(II)
誌謝...(III)
目錄...(IV)
圖目錄...(VI)
表目錄...(VIII)

第一章 前言...(1)
1.1研究目的...(1)
1.2前人研究...(4)
1.3研究流程...(8)
第二章 遙測方法與圖資來源...(9)
2.1 遙測原理...(9)
2.2 高解析力光學影像衛星...(16)
2.2.1 SPOT衛星...(16)
2.2.2 福爾摩沙衛星二號(FormoSat II)...(20)
2.2.3 IKONOS衛星...(22)
2.2.4 QuickBird(捷鳥)衛星...(23)
2.3地面遙測資料...(26)
2.3.1光譜儀...(26)
2.3.2濁度計...(28)
第三章 研究區及實驗設計...(29)
3.1 研究區環境介紹...(29)
3.2 實驗設計...(31)
3.3 實地採樣...(34)
3.4 模擬實驗...(46)
3.4.1 懸浮度與濁度實驗...(46)
3.4.2 鹽度與濁度關係實驗...(48)
3.4.3 懸浮度與光譜關係...(49)
第四章 現場採樣數據處理與分析...(51)
4.1 現場採樣數據處理...(51)
4.2 現場採樣分析...(57)
4.3 影像判識成果...(60)
第五章 結論與建議...(69)
5.1 討論...(69)
5.2 結論...(70)
5.3 建議...(72)
參考文獻...(73)
附錄A 水中總溶解固體及懸浮固體分析...(76)
附錄B 水中氫離子濃度指數測定方法-電極法...(78)
附錄C 水溫檢測方法...(81)
附錄D 水中導電度測定方法-導電度計法...(83)
附錄E 水中鹽度檢測方法-導電度法...(86)
參考文獻 左佳勝,“曾文溪口附近海域的濁度與溫鹽特性:現場實測與衛星遙測研究” (1996)
邱文彥,“臺灣海岸的願景”,科學發展月刋362期(2003)
郭金棟, “臺灣海岸之變遷”,臺灣的海岸何去何從研討會論文集87年度(1998)
美國地球物理及環境公司網站http://www.ger.com/ie.html
財團法人成大研究發展基金會衛星資訊中心, ”國土利用現況調查規範及先期試辦工作 國內現有各類影像資料及分析比較報告”,(2005)
張石角, “臺灣海岸之自然環境與國土資源評估”,工程環境特刋第5號(1993)
張立福、張良培,高光譜遙測,武漢大學出版社(2005)
張永生、鞏丹超等,高分辨率遙感衛星應用,科學出版社(2005)
浦瑞良、宮鵬,高光譜遙測及其應用,五南圖書出版公司(2002)
國立成功大學水工試驗所, 臺南市海岸環境監測計畫(2005)
楊龍士、周天穎、陳惠燕, “遙測技術用於水質汙染監測及判釋之研究”,中華地理資訊學會地理資訊學報,第1期(1997)
經濟部水利署第九河川局,花蓮河岸防護工作之檢討(2001)
經濟部水利署第五河川局, http://www.wra05.gov.tw/default.asp
黃良雄、謝平城及林建宏, “花蓮海岸之保護工程研究”,中華水土保持學報,三十四卷一期(2003)
劉良明, 衛星海洋遙測導論,武漢大學出版社(2005)
2002年中國海洋衛星應用報告,
http://www.coi.gov.cn/hygb/hywx/2002/4.htm (2002)
2003年中國海洋衛星應用報告,
http://www.coi.gov.cn/hygb/hywx/2003/4.htm (2003)
AAS E., J. HØKEDAL, K. SØRENSEN, “Spectral backscattering coeffient in coastal waters,” International Journal of Remote Sensing Vol. 26, No. 3 (2005)
AlfÖldi T.T., “Remote sensing for water quanlity monitoring, Remote Sensing for Resource Management, ” Soil Conservation Societr of America, Ankney, Iowa, p317~328 (1982)
Antoine D & Morel A., “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument) : principle and implementation for atmospheres carrying various aerosols including absorbing ones, ” International Journal of Remote Sensing Vol. 20, no. 9 (1999)
Bartolucci, L. A., B. F. Robinson, and L. F. Silva, “Field measurements of the spectral response of natural waters, ” Photogrammetric Engineering and Remote Sensing, 43(5), p595~598 (1977)
Bhargava D. S., and D. W. Mariam, “Spectral reflectance relationship to turbidity generated by different clay materials, ” Photogrammetric Engineering and Remote Sensing, 56(22), p225~229 (1990)
Binding C.E., “Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters; the impact of variable particle scattering properties, ” Remote Sensing of Environment, Volume 94, Issue 3, Pages 373-383 (2005)
Bowers D. G., S. Boudjelas & Harker G. E. L., “The distribution of fine suspended sediments in the surface waters of te Irish Sea and its relation to tidal stirring, ” International Journal of Remote Sensing Vol. 19, no. 14 (1998)
Dadson Simon J., Niels Hovius, Hongey Chen, W. Brian Dade, Meng-Long Hsieh, Sean D. Willett, Jyr-Ching Hu, Ming-Jame Horng, Meng-Chiang Chen, Colin P. Stark, Dimitri Lague & Jiun-Chuan Lin, “Links between erosion, runoff variability and seismicity in the Taiwan orogen, ” Nature 426 (2003)
Doxaran D., R. C. N.Cherukuru & S. J. Lavender, “Use of reflectance band ratios to estimate suspended and dissolved matter concentrations in estuarine waters,” International Journal of Remote Sensing Vol. 26 no. 8 ,p1763~1769 (2005)
GER1500 使用說明書
HACH 2100P 使用說明書
Han L., Rundquist D. C., Liu L.L., Fraser R. N., Schalles J. F., “The spectral responses of algal chlorophyll in water with varying levels of suspended sediment, ” International Journal of Remote Sensing Vol. 15, no. 18 (1994)
Han L., Rundquist D. C., “The response of both surface reflectance and the underwater light field to various levels of suspended sediments: preliminary result, ” Photogrammetric Engineering and Remote Sensing Vol.60, p1463~1471 (1994)
Kendall L. Carder, Cheng-Chien Liu, Zhongping Lee, David C. English, James Pattern, F. Robert Chen, James E. Ivey, and Curtiss O. David , “Illumination and turbidity effect on observing faceted bottom elements with uniform Lambertian Albedos, ” Limnology and Oceanography, 48(1, part 2), pp. 355-363. (2003)
Lingya Zhu, Shixin Wang, Yi Zhou, Fuji Yan & Weiqi Zhou, “Water quality monitoring in Taihu Lake using MODIS image data, ” Geoscience and Remote Sensing Symposium, vol.4, p2314- 2317 (2004)
McKim, H. L., C. J.Merry, and R. W. Layman, “Water quality monitoring using airborne spectroradiometer, ” Photogrammetric Engineering and Remote Sensing, 50, p353~360 (1984)
Mantovani J. E., Cabral A.P., “Tank depth determination for water radiometric measurements, ” International Journal of Remote Sensing, 13, p 2727-2733. (1992)
Moore, G. F., Aiken J. & Lavender S. J., “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters :application to MERIS, ” International Journal of Remote Sensing Vol. 20, no. 9 (1999)
Moore, G. K., “Satellite surveillance of physical water quality characteristics, ” Processing of the Twelfth International Symposium on Remote Sensing of Environment, Environmental Research Institute of Michigan, p 445~462 (1978)
Novo E. M. L. M., J. D. Hansom, and P. J. Curran, “The effect of sediment type on the relationship between reflectance and suspended sediment concentration, ” International Journal of Remote Sensing, 10, p 1283~1289 (1998)
Novo E. M. L. M., J. D. Hansom, and P. J. Curran, “The effect of viewing geometry and wavelength on the relationship between reflectance and suspended sediment concentration, ” International Journal of Remote Sensing, 10, p 1357~1372 (1998)
Pan Delu & Lin Shoulen, “Remote Sensing The Suspended Sediment Distribution On The Mingjiang River Mouth In Different Tide Phases As Shown By MSS And TM Imagery ,” ACTA OCEANOLOGICA SINICA,Vol.22, No.4,P.503-510(2003)
Richard L. Miller, Brent A. Mcbee, “Using MODIS Terra 250 m to map concentration of total suspended matter in coastal waters” , Remote Sensing of Environment, Vol 93, P. 259~266(2004)
Ritchie J. C., F. R. Schiebe, and J. R. Mchenry, “Remote Sensing of suspended sediments in surface waters, ” Photogrammetric Engineering and Remote Sensing, 42, p1539~1545 (1976)
Siegel H., M. Gerth, T. Ohde & T. Heene, “Ocean colour remote sensing revevant water constituents and optical properties of the Baltic sea, ” International Journal of Remote Sensing Vol. 26, no. 2 (2005)
SVÁB E., TYLER A. N., PRESTON T., PRÉSING M. & BALOGH K.V., “Characterizing the spectral reflectance of algae in lake waters with high suspended sediment concentrations, International Journal of Remote Sensing Vol. 26, no. 4 (2005)
Thomas M. Lillesand & Ralph W. Kiefer, Remote Sensing And Image Interpretation 5th, John Wiley & Sons,Inc (2004)
Zhang Lei, Wu Bingfang & Tjeerd Williem Hobma, “Impact removal of marine suspended sediment on estimate of chlorophyll-a pigment concentration Geoscience and Remote Sensing Symposium, Vol.5, p3504- 3506 (2004)

------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200912075218
論文名稱(中文) 洪水對河道沖淤及棲地影響之研究
論文名稱(英文) The Influence of Flood on the Bed Evolution and Habitat in Alluvial River
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 94
學期 2
出版年 95
研究生(中文) 陳金諾
學號 N8889107
學位類別 博士
語文別 中文
口試日期 2006-07-10
論文頁數 327頁
口試委員 口試委員-吳嘉俊
口試委員-李鴻源
口試委員-詹錢登
指導教授-蔡長泰
指導教授-黃進坤
口試委員-陳樹群
關鍵字(中) 河川復育
懸浮載濃度歷線
地文性土壤沖淤模式
河流棲地變遷模式
棲地模式
二維底床沖淤模式
關鍵字(英) suspended sediment concentration hydrograph
stream restoration
habitat model
alluvial river-movable bed-two dimensional model
physiographic soil erosion-deposition model
river habitat transition model
學科別分類
中文摘要 颱洪期間造成集水區大面積崩塌與大量土壤沖蝕,洪水挾帶大量泥砂向中下游河道匯集,洪水漲退水之過程高濃度含砂水流造成河道底床之沖淤演變,河道底床沖淤演變與河道懸浮載濃度亦將對河道之生態棲地造成嚴重之破壞。本研究旨在發展河流變遷模式,以演算洪水期間沖積河流底床沖淤變動及生物棲地之變遷,並探討河流底床沖淤演變所造成水流形態之改變對河流生態棲地之影響,進而作為河流棲地改善與生態復育之利用。
本研究發展之河流棲地變遷模式為地文性土壤沖淤模式、二維底床沖淤模式及棲地模式結合應用。以集水區地文性土壤沖淤模式結合應用地理資訊系統,模擬集水區之出流歷線、懸浮載濃度歷線,並作為二維動床沖淤模式之上游邊界條件。應用二維底床沖淤模式進行天然河道之底床沖淤演變模擬,最後配合棲地模式評估河川生態棲地之變遷。
集水區地文性土壤沖淤模式結合地理資訊系統,可有效處理集水區之水文及地文特性參數,無須簡化水文及地文條件,亦可迅速更新集水區之水文及地文資料,更符合集水區之現況。本文將集水區地文性土壤沖淤模式應用於單一集水區、多集水區之流域(濁水溪流域)及水庫集水區進行集水區之逕流歷線、懸浮載濃度歷線、輸砂量及土壤沖蝕量演算。經模式模擬演算之結果與集水區實測之水文資料比較驗證,模式可合理模擬逕流歷線、懸浮載濃度歷線、土壤沖蝕量及輸砂量。集水區之逕流歷線、懸浮載濃度歷線可作為下游河道之水理演算及底床變動演算之邊界條件,而沖蝕量及產砂量則可作為集水區經營管理之重要參考。
應用沖積河流動床二維沖淤演變模式模擬大里溪河道及集集攔河堰蓄水區在洪水過程中底床沖淤演變,由模擬結果可看出洪水挾帶之懸浮載可明顯影響底床沖淤,包括河道斷面之沖淤位置及沖淤後河道斷面形狀等。由考慮集水區上游來砂與否之模擬比較得知,考慮懸浮載輸運之蓄水區沖淤結果,與集集攔河堰蓄水區現況淤積情況較為符合。因此需結合地文性土壤沖淤模式以獲得豪雨洪水期間之集水區沉滓輸運歷線作為河道沖淤演變模式之上游邊界條件。
河道底床之沖淤變化會影響河道的水流形態,而水流形態的改變會造成河川生態棲地之變化,本文將二維底床沖淤模式與棲地模式結合應用,利用二維底床沖淤模式所演算之水理結果配合棲地指標物種之水深、流速及底質之適合度曲線,進行棲地適合度指數,權重可使用棲地面積及可使用棲地面積百分比之評估。進ㄧ步應用集水區地文性土壤沖淤模式、二維底床沖淤模式及棲地模式模擬各重現期距年洪水及實際發生之颱洪所造成之底床沖淤演變對河道生態棲地之影響。
因洪水時之懸浮載輸運影響河道底床之沖淤演變,而底床之沖淤演變造成水流型態之改變,進而影響棲地適合度指數值及分佈。因此進行河川復育或河川棲地改善,需能演算豪雨逕流在河道上游集水區之地表土壤沖蝕所形成之輸砂歷線,方能合理模擬河道底床之沖淤變動,進而合理推估棲地適合度指數值及分佈。本研究發展之河流棲地變遷模式,可有效演算豪雨洪水期間及洪水過後之河道棲地變遷及平時之河道棲地面積。




英文摘要 Most sediment was transported from upstream watershed that generated from large-scale collapse and soil erosion into the river and resulted the riverbed evolution during the process of flooding. The river habitat could be seriously destroyed by the riverbed evolution and high concentration of suspended sediment. The purpose of this study is to develop the river habitat transition model applicable for the simulation of bed evolution, habitat transition, and estimation the influence of bed evolution and flow condition on river habitat during the flood. The river habitat transition model can be used for stream restoration and river habitat improvement.
The river habitat transition model was developed combining the physiographic soil erosion-deposition model (PSED Model), alluvial river-movable bed-two dimensional model (ARMB-2D Model) with habitat model. GIS is applied to the physiographical soil erosion-deposition model to simulate the hydrographs of runoff and the concentration of suspended sediment. Finally, the distribution of river habitat can be estimated using the habitat model.
The physiographic soil erosion-deposition model utilizes GIS, in which, the hydrological and physiographical factors are processed instantaneously but not necessarily simplified. Any changes in these factors are incorporated on a timely basis. The runoff hydrograph, suspended sediment concentration hydrograph, soil erosion and deposition in watershed, and sediment yield could be simulated by PSED model for single small river basin, large-scale watershed with many sub-watersheds of tributaries (such as the Choshui river basin), or reservoir watershed. In order to verify the PSED model, the simulation results of discharge hydrograph, suspended sediment concentration hydrograph, and sediment yield were compared to the observed data at hydrological station. The upstream boundary conditions including runoff hydrograph and suspended sediment concentration hydrograph was first obtained and then used by the alluvial river-movable bed-two dimensional model for the unsteady flow and bed evolution calculations. The PSED model is applicable to estimate the soil erosion and sediment yield occurring in a river basin and is helpful for the watershed management.
The bed evolution of the Tali river and Chi-Chi weir of Choshui river basin were simulated by alluvial river-movable bed-two dimensional model. The result indicated that suspended load would be able to affect the riverbed evolution that included the location of silting and shape of river cross-section. The channel bed evolution simulated with the inclusion of suspended load from upstream watershed was better conformed to the present silting appearance in Chi-Chi weir of Choshui river basin. Therefore, the boundary condition of alluvial river-movable bed-two dimensional model with the consideration of suspended sediment concentration hydrograph obtained from physiographic soil erosion-deposition model was necessary during the period of flooding for the simulation purpose.
The influence of the riverbed evolution on flow condition can be transferred to the habitat in alluvial river. The alluvial river-movable bed-two dimensional model and habitat model can be combined to calculate the combined suitability factor, weighted usable area (WUA), and percent usable area (PUA) by habitat suitability curve of depth, velocity, and substrate for the target species. The influence of flood of different return periods and typhoon events on bed evolution and habitat could be estimated by PSED model, alluvial river-movable bed-two dimensional model and river habitat model.
The sediment concentration hydrograph from upstream river basin caused by precipitation can be simulated and then the riverbed evolution can be reasonably estimated. Finally, the value of combined suitability factor and distribution of the habitat during the processes of flood can be obtained which becomes helpful to stream restoration and river habitat improvement. The river habitat transition model developed in this study may be useful for estimating the river habitat during and after the processes of flood as well as ordinary flows.




論文目次 目 錄
誌謝 I
中文摘要 II
英文摘要 IV
目錄 VI
圖目錄 X
表目錄 XXIII
符號說明 XXV

第一章 緒論 1
1.1 研究緣起與目的 1
1.2 文獻回顧 3
1.3 研究內容 13
1.4 本文組織 14

第二章 集水區地文性土壤沖淤模式 16
2.1 前言 16
2.2集水區地文性土壤沖淤模式之建立 16
2.2.1水流演算 17
2.2.2土壤沖淤演算 19
2.3地理資訊系統與集水區地文性土壤沖淤之模式之應用 25
2.3.1河流集水區之描繪與坡地格區之劃分 27
2.3.2算格區之產生與屬性資料之給定 30
2.2.3演算流程 31


第三章 集水區地文性土壤沖淤模式之應用 32
3.1集水區沖蝕與產砂量之模擬演算 32
3.1.1單一集水區之沖蝕與產砂量推估應用 33
3.1.2流域多集水區之沖蝕與產砂量推估應用 48
3.2水庫集水區之沖蝕與水庫淤砂量之推估應用 68
3.2.1研究區域-曾文水庫集水區 69
3.2.2流量歷線及懸浮載濃度歷線之模擬 73
3.2.3水庫集水區年產砂量計算 79
3.3小結 87

第四章 河床沖淤演變模式 89
4.1水流基本控制方程式 89
4.2數值方法 93
4.3邊界條件與起始條件 100
4.4沉滓輸運率 104
4.4.1泥砂擴散係數 105
4.4.2底床沈降項 107
4.4.3沈降速度 108
4.4.4底床載輸運率 109
4.4.5底床變動 110
4.5底床沖淤模式 111
4.5.1懸浮載體積濃度C之計算 111
4.5.2底床高程Z之計算 113
4.5.3邊界條件 114
4.6乾點處理 114
4.7修正乾點處理 116



第五章 河床沖淤演變模式之應用 117
5.1集水區產砂對河床演變之模擬 117
5.1.1研究區域 117
5.1.2颱洪事件之模擬之模擬 119
5.1.3大里溪河床沖淤演變模擬與討論 122
5.2攔河堰蓄水區沖淤之模擬 149
5.2.1研究區域-集集攔河堰 149
5.2.2集水區產砂對欄河堰蓄水區沖淤影響之探討 151
5.2.3懸浮載輸運對欄河堰蓄水區沖淤影響之探討 165
5.2.4二維底床沖淤模式模擬欄河堰閘門排砂操作 168

第六章 洪水-棲地變遷模式及應用 176
6.1河流棲地變遷模式(River Habitat Transition Model) 176
6.2物理棲地模式(PHABSIM) 178
6.2.1水理模式 178
6.2.1棲地模式 180
6.3沖積河流動床二維模式與物理棲地模式(PHABSIM)之結合 182
6.4洪水對河道棲地之影響 186
6.4.1大里溪水域生物調查-魚類調查 186
6.4.2洪水-棲地變遷模式之應用 191
6.4.3洪水過程懸浮載輸運對河道棲地之影響 198
6.4.4洪水過程底床變動對河道棲地之影響 212
6.4.5有無洪水過程對河道魚類棲地變遷之影響 232
6.5 低流量之河道棲地模擬演算 241

第七章 結論與建議 247
7.1 結論 247
7.2 建議 249

參考文獻……………………………………………………………….250
附錄A………………………………………………………………. 260
附錄B………………………………………………………………. 295
附錄C………………………………………………………………. 311
作者簡歷……………………………………………………………….324
參考文獻 參考文獻
1. 中興工程科技研究發展基金會,「水利工程之泥沙問題」,研究報告(SFRDEST R-03-HY-01-13),台北(2003)。
2. 交通大學土木工程研究所,「河道輸砂數值模式之評估研究 (IV)」,經濟部水資源統一規劃委員會研究報告,第83EC2A371001號 (1994)。
3. 行政院農委會水土保持局,「濁水溪集水區土砂災害重點區段整體治理調查規劃報告」,研究報告,南投 (2002)。
4. 行政院農委會水土保持局,「清水溪聯合整體治理規劃報告」,研究報告,南投 (2003)。
5. 行政院公共工程委員會,「本土水域生態工法工程技術之研究(第二期)」,研究報告0930233,台北 (2004)。
6. 行政院公共工程委員會,「本土水域生態工法工程技術之研究(第三期)」,研究報告,台北 (2005)。
7. 何智武,「臺灣河川上游集水區之泥砂來源與控制」,中華水土保持學報,第十五卷,第一期,第 15-25頁 (1984)。
8. 吳建民,林襟江,周克魯,吳鵬飛,「河川泥砂移動性之研究」,經濟部水資會水工試驗室研究報告, (1975)。
9. 吳瑞濱,「二維河川水流與泥砂沖淤模擬之研究」,國立台灣大學農業工程學研究所碩士論文 (1993)。
10. 吳嘉俊,「修正版通用土壤流失公式(RUSLE)簡介」,水與土通訊,第27-30期 (1998)。
11. 吳嘉俊、盧光輝、林俐玲,「通用土壤流失量估算手冊」,國立屏東技術學院(1996)。
12. 吳富春、李國昇,「集集共同攔河堰之環境生態基流量評估」,水資源管理研討會會議論文集,第216-237頁 (1998)。
13. 林延郎,「沉滓級配對彎道床形與床質分佈影響之研究」,國立台灣大學土木工程學研究所博士論文 (1991)。
14. 林凱文,蔡智恆,蔡長泰,「分段演算法於二維變量流及底床演變模擬之應用」,中華民國力學學會第二十屆全國力學會議論文集,第576-583頁 (1996)。
15. 林鈺敦,「可蘭數對馬科馬可二維沖淤模式之發展與應用」,國立成功大學水利及海洋工程研究所碩士論文 (1999)。
16. 林鈺敦、蔡智恆、蔡長泰,「MacCormack顯式法中人工滯性項之探討」,第十屆水利工程研討會論文集,第D80-D87頁 (1999)。
17. 林秉賢、連惠邦、葉昭憲,「運用橫向堆石群改善溪流生態棲地之試驗研究」,中華水土保持學報,第三十三卷,第四期,第 317-326頁 (2002)。
18. 林鎮洋、邱逸文,「生態工法概論」,第一版,明文書局,台北 (2003)。
19. 林鎮洋、陳彥璋、吳明聖,「河溪生態工法」,第一版,明文書局,台北 (2004)。
20. 邵廣昭、沈世傑、丘台生、曾晴賢,「台灣魚類之分布及其資料庫」,中央研究院植物研究所專刊台灣生物資源調查及資訊管理研習會論文集,第 173-205頁 (1992)。
21. 邵廣昭、謝麗 、白璧玲、嚴漢偉,「生物其資料庫-以魚類為例」,台灣環境資料庫之建置研討會論文集,第 105-113頁 (1992)。
22. 胡蘇澄、盧昭堯、吳益裕、陳台芳,「台灣中部蓮華池地區高黏土含量土壤之紋溝間沖蝕率」,林業試驗所研究報告季刊,第十卷,第一期,第 33-40頁 (1995)。
23. 胡通哲、施上粟、李鴻源,「近自然公法水理數值分析之研究-以多望溪為例」,中華水土保持學報,第三十四卷,第一期,第 95-100頁 (2003)。
24. 胡通哲、葉明峰,「基隆圓山子至八堵河段環境基流量之研究」,中華水土保持學報,第三十五卷,第三期,第 229-239頁 (2004)
25. 施上粟、李鴻源、胡通哲,「台中柳川應用生態工法於魚類棲地改善之研究」,中華水土保持學報,第三十五卷,第三期,第 229-239頁 (2004)。
26. 馬明明,「台灣中部與台北地區降雨特性及沖蝕性關係之研究」,碩士論文,國立中興大學土木工程研究所,台中 (1995)。
27. 陳義雄、方力行,1999,台灣淡水及河口魚類誌,國立海洋生物博物館籌備處,屏東縣,P287。
28. 陳薔諾、蔡智恆、蔡長泰,「集集地震對濁水溪流域土壤沖蝕量與產砂量之影響」,台灣水利季刊,第十六卷,第三期,第 26-35頁 (2003)。
29. 陳正昌,「丁壩工對魚類棲地面積之影響-以蘭陽溪為應用案例」,碩士論文,國立台灣大學土木工程研究所,台北 (2003)。
30. 陳薔諾、蔡智恆、蔡長泰,「集水區地文性土壤沖淤模式與地理資訊系統結合應用之研究」,中國土木水利工程學刊,第五十一卷,第一期,第 379-391頁 (2004)。
31. 陳樹群、賴益成,「水庫集水區土砂評量與整治率評估模式」,中華水土保持學報,第三十五卷,第一期,第 53-67頁 (2004)。
32. 清水康行,板倉忠興,「沖積河川二維性流況之河床變動計算」,北海道開發局土木試驗所,北海道 (1986)。
33. 張海燕,「河流演變工程學」,科學出版社,新華書店,北京 (1990)。
34. 張瑞瑾,謝鑒衡,王明甫,黃金堂,「河流泥沙動力學」,水利電力出版社,武漢水利電力學院 (1988)。
35. 郭惠貞,「複式河槽非均質底床演變模式之研究」,國立成功大學水利及海洋工程研究所碩士論文 (1994)。
36. 張明明,「非均勻沉滓動床之沖降模擬」,國立成功大學水利及海洋工程研究所碩士論文 (1991)。
37. 楊昌儒、蔡智恆、蔡長泰,「應用地理資訊系統評估淹水災害損失」,中國土木水利工程學刊,第十卷,第一期,第 93-100頁 (1998)。
38. 楊昌儒,「地文性淹水預報系統建構之研究」,博士論文,國立成功大學水利及海洋工程研究所,台南 (2000)。
39. 葉昭憲、連惠邦、段錦浩、王晉倫,「大甲溪魚類棲地改善工法之實施與成效評估」,中華水土保持學報,第三十三卷,第四期,第 327-340頁 (2002) 。
40. 葉克家,「非均勻沉滓多方式輸砂模式」,河川輸砂模式講習班講義,國立交通大學土木系 (1995)。
41. 葉克家,楊錦釧,「河川彎道動床數值模式之發展應用研究」,國立交通大學土木工程研究所,中興工程科技研究發展基金會研究報告,第SFRDEST R-95-HY-01-6號 (1995)。
42. 葉正旭,「山區集水區水理特性之模擬」,碩士論文,國立成功大學水利及海洋工程研究所,台南 (2002)。
43. 臺灣省曾文水庫管理局,「曾文水庫集水區治理績效評估研究」,台南 (1989)。
44. 蔡長泰,「沖積河川變量流之模擬」,國立成功大學土木工程研究所博士論文 (1981)。
45. 蔡長泰,俞德忠,「彎曲渠道之水流模擬」,中華民國力學學會第十五屆全國力學會議論文集,第281-288頁 (1991)。
46. 蔡長泰,沈學汶,王文江,「台灣河川沉滓輸運之分析(二)」,經濟部水資源統一規劃委員會研究報告,第CKHOPJ-92-006號 (1992)。
47. 蔡長泰,蔡智恆,「洪流演算模式(FRLFI-模式)之建立:(I)理論手冊」,行政院國家科學委員會專題研究計畫成果報告,計畫編號:NSC 83-0410-E006-036,(1994)。
48. 蔡智恆,蔡長泰,「彎道二維緩變量流之模擬」,中國土木水利工程學刊,第七卷,第四期,第 461-473頁 (1995)。
49. 蔡長泰,蔡智恆,「平衡狀態含沙水流之流速與濃度分佈」,第八屆水利工程研討會論文集,第585-592頁 (1996)。
50. 蔡長泰、蔡智恆,「梯形寬頂堰堰流公式適用性之研究」,台灣水利季刊,第四十五卷,第二期,第 29-45頁 (1997)。
51. 蔡長泰、游保杉、周乃昉、史天元、楊昌儒、蔡智恆,「地理資訊系統在淹水預警上之應用(四)」,台灣省水利局研究報告,CKHOPJ-97-001,台中 (1997)。
52. 蔡智恆,「定岸沖積河流水理及底床演變之模擬」,博士論文,國立成功大學水利及海洋工程研究所,台南 (2000)。
53. 錢寧,「關於床沙質和沖瀉質的概念的說明」,水利學報,第一期,第 29-45頁 (1957)。
54. 錢寧、萬兆惠,「泥沙運動力學」,第三版,科學出版社,新華書店,北京 (1991)。
55. 顏清連,李鴻源,張守陽,「沖積河流之沖淤力學與數值模擬~以濁水溪為應用對象(III)」,行政院國家科學委員會防災科技研究報告,第78-64號 (1990)。
56. 顏清連,何興亞,「水庫對下游彎道床形與床質級配之影響研究(三)」,行政院國家科學委員會專題研究報告,台大水工所 (1992)。
57. 經濟部水利署,「流域土沙管理模式使用手冊」,研究報告,台中 (2002)。
58. 經濟部水利署南區水資源局,「曾文水庫集水區泥砂產量推估模式計畫」,台南 (2004)。
59. 經濟部水利署水利規劃試驗所,「水庫水理、水質、泥沙量測及運移機制分析」,研究報告,台中 (2005)。
60. 經濟部水利署南區水資源局,「曾文水庫93年淤積測量報告」,台南 (2005)。
61. 經濟部水利署中區水資源局,「集集攔河堰清淤既排砂操作之研究」,台中 (2005)。
62. 經濟部水利署水利規劃試驗所,「大里溪斷面測量及防洪構造物調查成果報告書」,台中 (2004)。
63. 經濟部水利署水利規劃試驗所,「敏督利颱風水文分析報告」,台中 (2004)。
64. 經濟部水利署水利規劃試驗所,「水庫水理、泥砂量測及運移機制分析」,台中 (2005)。
65. 經濟部水利署水利規劃試驗所,「都市河川復育之研究」,台中 (2005)。
66. Ariathurai, R. and Arulanandan, K., “Erosion rates of cohesive soils,” Journal of the Hydraulics Division, ASCE, Vol. 104, No. HY2, pp. 279-283 (1978).
67. Bridge, J. S.,“A Revised Model for Water Flow, Sediment Transport, Bed Topography and Grain Size Sorting in Natural River Bends,”Water Resources Research, Vol. 28, No. 4, pp. 999-1013 (1992).
68. Cole, P and Miles, G. V.,“ Two-Dimensional model of mud transport, ”Journal of Hydraulic Engineering, ASCE, Vol. 109, No. 1, pp. 1-12 (1983).
69. Chang, H. H.,“Generalized Computer Program FLUVIAL-12 Mathematical Model for Erodible Channels,”April (1990).
70. Chaudhry, M. H., 1993. Open-Channel flow, Prentice-Hall Inc., Englewood Cliffs, New Jersey .
71. Chen, Y. H., Reservoir Sedimentation Model - RESSED, User's Manual, October (1993).
72. Chen, C. N., Yeh, C. H., Tasi, C. H. and Tasi, C. T., “ The simulation of disharge and suspended sediment concentration hydrographs in river basin,” Proceeding of the 5th Taiwan-Japan Joint Seminar on Natural Hazards Mitigation, Tainan, Taiwan, pp. 99-108 (2002).
73. Chen, C. N., Yeh, C. H., Tsai, C.H. and Tsai, C.T., 2003. “Simulation of Sediment Yield from Chin-Shui River Catchment, ” Proceedings of XXX IAHR Congress, Greece Theme C, Vol. II, 687-694.
74. Chow, V. T., Maidment D. R. and Mays, L. W., Applied Hydrology, McGraw-Hill, United States, pp. 153-155 (1988).
75. Cunge, J. A. “Unsteady Flow in Open Channel,” Water Resources Publishing Limited, London, pp.705-762 (1980).
76. Field, R. and Brown, M. P., 1994. Stormwater Pollution Abatement Technologies, U. S. Environmental Protection Agency, NJ. USA.
77. Havis, R. N., Alonso, C. V. and King, J. G.,“Modeling Sediment in Gravel-Bedded Streams Using HEC-6,”Journal of Hydraulic Engineering, Vol. 122, No. 10, pp. 559-564 (1996).
78. Henderson, F. M., Open-Channel flow, Macmillan Co., New York, NY (1966).
79. Hey, R. D., “ Environmentally sensitive river engineering, ” In:petts, G. et. al. (eds.), Rver Restoration: Selected Extracts from the Rivers Handbook, Backwell Science Ltd. (1996).
80. Holly, F. M. and Karim, M. F.,“Computer Simulation Prognosis for the Degradation of the Missouri River Between Gavins Point Dam and Iowa's Southern Border,”Iowa Institute of Hydraulic Research, No. 267, The University of Iowa (1983).
81. Itakura, T., Kishi, T., “Open channel flow with suspended sediments,” Journal of the Hydraulics Division, ASCE, Vol. 106, No. HY8, pp. 1325-1343 (1980).
82. Karim, M. F. and Kennedy, J. F.,“IALLUVIAL: A Computer-Based Flow and Sediment Routing Model for Alluvial Streams and its Application to the Missouri River,”Iowa Institute of Hydraulic Research, Report No. 250, The University of Iowa (1982).
83. Karim, M. F. , Holly, F. M. and Kennedy, J. F.,“Bed Armoring Procedures in IALLUVIAL and Application to the Missouri River,”Iowa Institute of Hydraulic Research, Report No. 269, The University of Iowa, December (1983).
84. Lai, C. T.,“A Numerical Scale Model for Simulating Unsteady Alluvial-Channel Flow,”Twelve Selected Computer Stream Sedimentation Models Developed in the United States, Edited by Fan, S. S., Federal Energy Regulatory Commission, pp. 189-260 (1988).
85. Mahmood, K. and Yevjevich, V., 1975. Unsteady Flow in Open Channel, Vol. 1, Water Resources Publications, Fort Collins, Colorado.
86. Mutchler, C.K. and Young, R.A.,“ Soil detachment by raindrops,” Proceedings of sediment-yield workshop, ARS-S-40, USDA (1975).
87. Meyer, L. D., “How rain intensity affects interrill erosion,” Transactions, ASAE, pp. 1472-1475 (1981).
88. Mehta, A. J., Hayter, E. J., Parker, W. R., Krone, R. B. and Teeter, A. M.,“ Cohesive sediment transport I: process description,” Journal of Hydraulic Engineering, Vol. 115, No. 8, pp. 1076-1093 (1989).
89. Odgaard, A. J.,“Flow and Bed Topography in Alluvial Channel Bend,”Journal of Hydraulic Engineering, Vol. 110, No. 4, pp. 521-535 (1984).
90. Odgaard, A. J.,“Meander Flow Model. I: Development,”Journal of Hydraulic Engineering, Vol. 112, No. 12, pp. 1117-1136 (1986).
91. Odgaard, A. J.,“River-Meander Model. I: Development,”Journal of Hydraulic Engineering, Vol. 115, No. 11, pp. 1433-1450 (1989a).
92. Odgaard, A. J.,“River-Meander Model. II: Applications,”Journal of Hydraulic Engineering, Vol. 115, No. 11, pp. 1451-1464 (1989b).
93. Osher, S. and Solomon, F.,“Upwind Difference Schemes for Hyperbolic Systems of Conservation Law,”Mathematics of Computation, Vol. 38, No. 158, pp. 339-374 (1982).
94. Parchure, T. M. and Mehta, A. J., “Erosion of soft cohesive sediment deposits,” Journal of Hydraulic Engineering, ASCE, Vol. 111, No. 10, pp. 1308-1326 (1985).
95. Pain, N. John. and Akan, A. Osman., 2004. Urban Stormwater Management Tools, McGraw-Hill, United States, pp. 5.1-5.4.
96. Parker, G.,“The ACRONYM Series of Pascal Programs for Computing Bedload Transport in Gravel Rivers,”Saint Anthony Falls Hydraulic Laboratory, No. M-220, The University of Minnesota (1990a).
97. Parker, G.,“Surface-Based Bedload Transport Relation for Gravel Rivers,”Journal of Hydraulic Research, Vol. 20, No. 4, pp. 417-436 (1990b).
98. Shimizu, Y., Yamaguchi, H. and Itakura, T., “Three-Dimensional computation of flow and bed deformation,” Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 9, pp. 1090-1108 (1990).
99. Sharma, P. P., Gupta, S. C. and Foster, G. R., “Raindrop-induced soil detachment and sediment transport from interrill areas,” Soil Science Society America Journal, Vol. 59, pp. 727-734 (1995)。
100. Struiksma, N., Olesen, K. W., Flokstra, C. and de Vriend, H. J.,“Bed Deformations in Curved Alluvial Channels,”Journal of Hydraulic Research, Vol. 23, No. 1, pp. 57-79 (1985).
101. Teisson, C., “Cohesive suspended sediment transport: feasibility and limitations of numerical modeling,” Journal of Hydraulic Research, Vol. 29, No. 6, pp. 755-769 (1991).
102. Tasi, C. H. and Tasi, C. T.,“ Velocity and concentration distributions of sediment-laden open channel flow, ” Journal of the American Water Resources Association, Vol. 36, No. 5, pp. 1075-1086 (2000).
103. van Niekerk, A., Vogel, K. R., Slingerland, R. L. and Bridge, J. S.,“Routing of Heterogeneous Sediments over Movable Bed : Model Development,”Journal of Hydraulic Engineering, Vol. 118, No. 2, pp. 246-262 (1992a).
104. Wischmeier, W. H., Smith, D. D. and Uhland, R. E., “Evaluation of factors in the soil loss equation,” Agricultural Engineering, Vol. 39, pp. 458-462 (1958).
105. Yang, C.R., Tsai, C.H. and Tsai, C.T., 1998. Application of GIS to the Estimation for Inundated-Damage Value, Journal of the Chinese Institute of Civil and Hydraulic Engineering, 10(1), 93-100.
106. Yen, C. L. and Ho, S. Y.,“Bed Evolution in Channel Bend,”Journal of Hydraulic Engineering, Vol. 116, No. 4, pp. 544-561 (1990).
107. Yeh, K. C. and Kennedy, J. F.,“Moment Model of Nonuniform Channel-Bend Flow. I: Fixed Beds,”Journal of Hydraulic Engineering, Vol. 119, No. 7, pp. 776-795 (1993a).
108. Yeh, K. C. and Kennedy, J. F.,“Moment Model of Nonuniform Channel-Bend Flow. II: Erodible Beds,”Journal of Hydraulic Engineering, Vol. 119, No. 7, pp. 796-815 (1993b).
109. Zhao B., 1999. Cost Minimization for Detention Basin System,29th Annual Water Resources Planning and Management Conference, June6-9, Tempe, Arizona, USA.

------------------------------------------------------------------------ 第 4 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200913565557
論文名稱(中文) 水色遙測技術應用於內陸水體含砂濃度估算之研究
論文名稱(英文) Application of water surface reflectance on estimating the concentration of suspended sediment in inland water
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系專班
系所名稱(英) Department of Hydraulics & Ocean Engineering (on the job class)
學年度 95
學期 2
出版年 96
研究生(中文) 林章文
學號 n8794103
學位類別 碩士
語文別 中文
口試日期 2007-06-27
論文頁數 90頁
口試委員 口試委員-林財富
口試委員-鄭克聲
口試委員-劉正千
指導教授-謝正倫
關鍵字(中) 光譜反射率
遙測泥砂參數
高光譜儀
水體含砂濃度
關鍵字(英) suspended sediment concentrations
spectrcal coefficient
spectroradiometer
學科別分類
中文摘要 由於自然天候及人為不當開發集水區因素,地表逕流常挾帶大量泥砂流入水庫庫區,使得庫區水體含砂濃度及原水濁度飆升,造成民生供水出現問題。本研究是利用水色遙測分析技術,針對南台灣主要飲用水水體曾文水庫及高屏溪攔河堰,以高光譜分析儀USB2000量測現地水面遙測反射光譜 ,並分析含砂濃度,發展出水體含砂濃度之光學定量關係式,以期建立快速量測水體含砂濃度的方法。
針對曾文水庫及高屏溪攔河堰遙的光譜特性,發展出遙測泥砂參數,其目的在於凸顯現地泥砂特徵以及去除藻類葉綠素a和有色溶解物質(CDOM)對光譜反射率的干擾。在環境特性分析結果,曾文水庫屬於低含砂水體區域,高屏溪攔河堰遙則屬於較高含砂水體區域。最後由含砂水體光譜反射率及濃度資料庫,針對曾文水庫及高屏溪攔河堰遙測泥砂參數條件所回歸出的半經驗關係式分別為線性及指數型關係式,其相關系數R2分別為0.83及0.82,透過模式推導及運算,對水體的含砂濃度及濁度都有理想的應用性。
英文摘要 Due to the natural disasters, a considerable change has been observed in the water catchments area of many rivers upstream in Taiwan during the past few years. The suspended sediment concentration (SSC) in rivers plays a crucial role for the management of environment. The purpose of this research applied the spectroradiometer to investigate the relationship between surface remote-sensing reflectance and SSC in Tseng-Wen Reservoir and Kao-Ping-Hsi Weir of south Taiwan. The relationships between water suspended sediment concentrations and spectral reflectance derive a semi-empirical model that develops the rapid method of measuring suspended sediment concentrations.
In order to reduce the influence of chlorophyll-a (Chl-a) and colored dissolved organic matter (CDOM); and characterize spectrum of suspended sediment, the spectral coefficient of suspended sediment will be determined. The result shows that Tseng-Wen Reservoir is a water body of low suspended sediment concentrations; and Kao-Ping-Hsi Weir is a water body of high suspended sediment concentrations.
According to the regressive relationships between concentrations and spectrcal coefficient of suspended sediment, Tseng-Wen Reservoir is a linear regression model and Kao-Ping-Hsi Weir is an exponential model .The coefficient of determination R2 values are all 0.83 and 0.82. It is useful to estimate the concentration of suspended sediment and turbidity in surface water by applying this model.
論文目次 第一章 緖論 1
1-1研究動機與目的 1
1-2論文架構 2

第二章 含砂水體特性 4
2-1含砂水體物理特性 4
2-2遙測光學原理 5
2-3水體光學分類 7
2-4含砂水體光學特性 8

第三章 研究方法 20
3-1 現地研究地點概述……………..………………...…………..20
3-2 現地光譜量測及水體樣本採集 32
3-3 實驗分析設備與方法 38

第四章 結果分析與回歸式建立 42
4-1 現地環境分析…………………….…….……………….…..42
4-2 現地光譜特性分析………………………………..………...45
4-3 泥砂參數設定……………………………………..………...55
4-4 回歸模式建立……………………………………..………...59
4-5 迴歸模式驗證……..……… ……………………..…………62
第五章 結論與建議 69
5-1 結論 69
5-2 建議 71
參考文獻 72
附錄 73
參考文獻 〔1〕 中華水土保持學會,1989,曾文水庫集水區治理績效評估研究
〔2〕 歐陽鍾欲,1992,遙感探測學,大中國圖書公司
〔3〕 陳濤、李武、吳初曙,1994,懸浮泥沙濃度與光譜反射率峰值波長紅移的相關關係,海洋學報,Vol.16,No.1,page 38-43
〔4〕 李炎、李京,1999,基於海面-遙感器光譜反射率斜率傳遞現象的懸浮泥沙遙感算法,科學通報,第44卷,第17期
〔5〕 樂華福、林壽仁、趙太初、陳立娣,2000,近海Ⅱ類海水反射率與表面懸浮泥沙相關性的研究,國土資源遙感,第1期
〔6〕 毛志華、黃海清、朱乾坤、潘德爐,2001,我國海區 Sea WiFS資料大氣校正,海洋與湖沼,第32卷,第6期
〔7〕 李四海、惲才興,2001,河口表層懸浮泥沙氣象衛星遙感定量模式研究,遙感學報,第五卷,第二期
〔8〕 蕭慶章,2003,實用河川工程, 科技圖書股份有限公司
〔9〕 韓震、惲才興、蔣雪中,2003,懸浮泥沙反射光譜特性實驗研究,水利學報,No.12,page 118-121
〔10〕宋立松、陳武、向衛華、陳彩妮,2004,基於粗糙集的杭州彎含砂量遙感模型,水利學報,第五期
〔11〕韓震、金並秋,2005,星載紅外與微波多源遙感數據提取長江口淤泥質潮灘水邊線信息,自然科學進展,第15卷,第8期
〔12〕蕭國鑫、吳啟南、廖子毅,2005,地面光譜資料與SPOT影像應用於水質定量推估研究,航測及遙測學刊,第10卷,第2期
〔13〕經濟部水利署水資源局,2006,95年度曾文、牡丹、高屏溪及甲仙攔河堰水質檢驗分析計畫
〔14〕黃慶祥,2006,水庫水質與光學性質模式之建立及其應用,國立成功大學環境工程學系碩士論文
〔15〕環保署環檢所河川、湖泊及水庫水質採樣通則(NIEA W104.51C)
〔16〕環保署環檢所水質檢測方法總則 (NIEA W102.51C)
〔17〕環保署環檢所水中總溶解固體及懸浮固體檢測方法-103℃~105℃乾燥 (NIEA W210.57A)
〔18〕 Morel, A. and Prieur, L,1977. Analysis of variations in ocean colour. Limnol. Oceanogr., 22, 709 – 722
〔19〕Gordon,H,1978,Removal of atmospheric effects from satellite,Applied Optic,Vol.17,No.10
〔20〕Morel, A and Bricaud,A,1981, Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,Deep-Sea Res. 28, 1375 – 393
〔21〕Tassan,S,1994,Local algorithms using SeaWiFS data for the retrieval of phytoplankton ,pigment,suspended sediment,and yellow substance in coast water,Applied Optic,Vol.33,No.12
〔22〕 Mobley, C. D.,1994, Light and water:Radiative transfer in natural waters, Academic, San Diego.
〔23〕 Kirk ,J. T. O.,1994, Light and photosynthesis in aquatic ecosystems (second edition),Cambridge University, New York.
〔24〕 Han,L and Rundquist,D.C,1994,The response of both surface reflectance and the underwater light field to various levels of suspended sediments: preliminary results,Photogrammetric engineering and remote sensing,Vol.60,No.12,page 1463-1471
〔25〕 Han,L,1997,Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters,Photogrammetric engineering and remote sensing,Vol.63,No.6,page 701-705
〔26〕 Han,L、and Rundquist,D.C,1997,Comparison of NIR/RED Ratio and First Derivative of Reflectance in Estimating Algal-Chlorophyl Concenctation:A Case Study in a Turbid Reservoir,Remote Sensing of Environment,Vol 62, page 253–261
〔27〕Mobley, C. D.,1999,Estimation of the Remote-Sensing Reflectance from Above-Surface Measurements. Appl. Optics, 38, page 7442 – 7455
〔28〕Ruhl,C.A , Schoellhamer,D.H , Stumpfb,R.P and Lindsay,C.L,2001, Combined Use of Remote Sensing and Continuous Monitoring to Analyse the Variability of Suspended-Sediment Concentrations in San Francisco Bay, California,Estuarine, Coastal and Shelf Science ,Vol 53, page 801–812
〔29〕 Doxaran,D ,. Froidefond ,J.M and Castaing,P,2002,A re ectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,Int. J. Remote Sensing, Vol. 23, No. 23, page 5079–5085
〔30〕Raineya,M.P ,.Tylera, A.N , Gilveara, D.J , Bryantb, R.G and McDonald,P,2003,Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing,Remote Sensing of Environment,Vol 86, page 470–480
〔31〕 Doxaran,D , Froidefond,J.M and Castaing,P,2003,Remote-sensing waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios,Applied Optic,Vol.42,No.15
〔32〕 Doxaran ,D , Chreukuru, R. C. N and Lavender, S. J,2005,Use of reflectance band ratios to estimate suspended and dissolved matter concentrations in estuarine waters,International Journal of Remote Sensing Vol. 26, No. 8, page 1763–1769

------------------------------------------------------------------------ 第 5 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915244091
論文名稱(中文) 懸板配置對高桶式旋流排砂器排砂效率影響之試驗研究
論文名稱(英文) Experimental study on the effect of suspended deflectors on sediment removal efficiency of a deep-type vortex chamber
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 林程翰
學號 N8696405
學位類別 碩士
語文別 中文
口試日期 2009-05-26
論文頁數 96頁
口試委員 口試委員-賴進松
口試委員-李明熹
口試委員-周憲德
指導教授-詹錢登
關鍵字(中) 高桶式旋流排砂器
排砂濃度效率
懸板
關鍵字(英) Suspended deflector
Sediment concentration removal efficiency
Deep-type vortex chamber
學科別分類
中文摘要 水力旋流漏斗排砂器的基本原理是將渾水引入漏斗槽內做旋流運動,利用重力及離心力的雙重作用,使水砂分離。高桶式旋流排砂器的漏斗槽具有較高的桶身,使引入的渾水在漏斗槽中有較長的停留時間,以利於排除較細的泥砂。本研究在排砂漏斗槽內安裝環狀懸板,以實驗方式探討懸板配置位置及數量對排砂漏斗排砂效率之影響。研究試驗在直徑 為48公分及高度 為115公分的旋流排砂器進行實驗,實驗水深 為95.7公分。懸板的寬度 為12公分,在高度方面的配置分為底部、中間以及頂部三種,數量配置由一片到三片,其中兩片180度半環狀懸板設置於中間與頂部,250度角懸板則設置於底部。
本研究之清、渾水觀測試驗以及渾水排砂試驗,在固定入流量 為 以及漏斗底孔直徑 為6 的條件下進行,並分別針對不同的懸板配置位置與數量來探討其對流場特性與排砂效率之影響。研究試驗分成清水與渾水試驗兩大部分。於清水試驗中再分為排砂底孔流量的量測、無懸板時清水渦流的特性及懸板對清水渦流特性的影響。在渾水試驗中則分為清渾水交界面特性觀測、無懸板時渾水渦流之特性、懸板對清渾水交界面及渦流特性的影響、懸板對底孔排砂效率之影響。從清水觀測試驗中,在無懸板的條件下,當水體開始溢流後十分鐘,空氣柱長度約48公分,而於設置三懸板的條件下,空氣柱長度僅有2至3公分,此說明設置懸板後明顯減少空氣柱之長度。另外,在有設置上懸板的條件下,表面水流環狀流動主要侷限在自渦流中心起算0.5R至0.6R處(R為漏斗槽半徑)。渾水觀測試驗中,其表面流速較清水條件下慢,而在渦流的變化方面,水體開始溢流後,渾水渦流會消失,清水則否,此現象的原因可能為渾水的黏滯性大於清水所致。排砂試驗方面,於無懸板及設置上、中、下單一懸板條件下,其平均排砂濃度效率 分別為96.07 %、97.70 %、95.95 %以及96.55 %,此說明懸板設置位置對排砂濃度效率的影響,上優於下且下優於中。於雙懸板與三懸板條件下,其平均排砂濃度效率則皆有98 %以上。
英文摘要 According to the basic theorem of hydraulic, muddy water flows into the vortex chamber through tangential inlet, and then muddy water moves as a vortex flow inside the chamber. So water and sediment will be separated due to the gravity and centrifugal force. Deep-type vortex chamber has a higher body of hopper, so muddy water has a longer residence time in the chamber in order to exclude the fine sediment. The ring-type suspended deflectors are set inside the vortex chamber, and the sediment removal efficiency of vortex chamber in experimental methods is discussed by different setting and numbers of suspended deflector. Experimental study is proceeding in the vortex chamber having diameter of 48 cm, height of 115 cm, and experiment water depth of 95.7 cm. There are three suspended deflectors, and the width of them is 12 cm. Each deflector could be installed at the relative position of top, middle, or bottom, numbers of setting is from 1 to 3 flats. The top and middle deflectors are 180 degrees half-ring-type suspended deflectors, and the bottom one is 250 degrees deflector.
In the condition of inflow discharge = and the bottom flushing orifice =6 , with different sets and numbers of suspended deflectors, how deflectors influence on the flow characteristic in the chamber and sediment removal efficiency is discussed, the clear and muddy water observation test and sediment removal efficiency test are also presented in this study. There are two major parts in this research, one is for clear water, and the other one is for muddy water. For clear water experiment, we measure underflow discharge and observe vortex flow characteristic with and without suspended deflectors. For the muddy water experiment, the observation of the interface between clear and muddy water due to the deflector was conducted. The interaction between vortex flow and deflectors was observed, and its effect on sediment removal efficiency is also discussed.
In the observation of clear water, under the condition without installing deflector and after the water overflowing 10 minutes, the air core was 48 cm length, while under the condition with three deflectors, the air core left only 2~3 cm. It is demonstrated that installed deflectors could reduce the length of air core significantly. Besides, under the condition with top deflector, the water surface moving as a vortex flow was restricted at the region from the center of chamber outward to 0.5R~0.6R (R is the radius of chamber). From the observation of muddy water, it is found that the surface velocity is more slowly compared with the condition of clear water. When muddy water started overflowing for a while, the muddy water vortex would disappear but it does not for clear water. This phenomenon might be due to the viscosity of muddy water greater than clear water. In the experiment of sediment removal, when the condition without deflector and with one deflector at the top, middle, or bottom, the average sediment concentration removal efficiency, , are 96.07%, 97.70%, 95.95%, and 96.55%, respectively. It is demonstrated that the effect degree of position of deflector on sediment concentration removal efficiency is as follows, the top one is better than bottom one and the bottom one is better than middle one. For the condition with two and three deflectors, their average sediment concentration removal efficiency is more than 98%.
論文目次 中 文 摘 要.............................I
Abstract................................II
誌 謝...................................IV
目 錄...................................V
表目錄..................................VII
圖目錄..................................VIII
符號說明................................XI
第一章 緒論.............................1
1.1研究動機.............................1
1.2研究目的.............................2
1.3本文架構.............................3
第二章 文獻回顧.........................4
2.1水力旋流漏斗排砂原理.................5
2.2試驗模型.............................7
第三章 試驗設備及試驗方法...............11
3.1高桶式旋流排砂器配置.................11
3.2試驗前置作業.........................15
3.2.1試驗泥砂特性.......................15
3.2.2定量瓶與清水重率定.................18
3.3渾水含砂濃度表示方式與量測方法.......20
3.3.1渾水含砂濃度表示方式...............20
3.3.2渾水含砂濃度量測方法...............22
3.4懸板配置及試驗條件...................23
3.5試驗方法.............................25
第四章 試驗結果分析.....................28
4.1清水試驗.............................28
4.1.1排砂底孔出流量與流量係數之建立.....28
4.1.2無懸板條件之清水渦流特性...........31
4.1.3懸板對清水渦流之影響...............32
4.2渾水試驗.............................35
4.2.1清渾水交界面觀測...................35
4.2.2無懸板條件之渾水渦流特性...........36
4.2.3懸板對渦流及清渾水交界面之影響.....37
4.2.4懸板對排砂效率之影響...............40
4.2.5其他條件改變對排砂效率之影響.......44
4.2.5.1入流量對排砂效率之影響...........44
4.2.5.2排砂底孔直徑對排砂效率之影響.....46
4.2.5.3渾水含砂濃度對排砂效率之影響.....47
第五章 結論與建議.......................90
5.1結論.................................90
5.2建議.................................91
參考文獻................................92
附錄A、相關參考資料.....................94
自 述...................................96
參考文獻 1.Athar M., Kothyari U. C., and Garde R. J. (2002) , ”Sediment Removal Efficiency of Vortex Chamber Type Sediment Extractor.” Journal of hydraulic engineering, Vol.128, No.12, 1051-1059.
2.Athar M., Kothyari U. C., and Garde R. J. (2003) , ” Distribution of sediment concentration in the vortex chamber type sediment extractor.” Journal of Hydraulic Research Vol. 41, No. 4, pp. 427–438.
3.Bruce R. Munson, Donald F. Young, Theodore H. Okiishi (2001) , “Fundamentals of Fluid Mechanics, 4th edition.” U.S.A.: John Wiley & Sons, Inc.
4.Keshavarzi A. R. and Gheisi A. R. (2006) , “Trap efficiency of vortex settling chamber for exclusion of fine suspended sediment particles in irrigation canals.” Irrig. and Drain. 55 : 419–434.
5.Paul T. C., Sayal S. K., Sakhuja V. S., and Dhillon G. S. (1991) , “Vortex-settling basin design considerations.” Journal of Hydraulic Engineering, Vol. 117, No. 2, pp.172-189.
6.Rea Q. (1984) , “Secondary currents within the circulation chamber sediment extractor.” Msc thesis, University of Southampton, Southampton, England.
7.肖俊、邱秀云、周著、侯杰、龔守遠 (2006),「應用PIV技術測試渾水水力分離清水裝置的清水流場流動特性」,水力水運工程學報,第1期,pp.54-58,中國大陸。
8.李琳、邱秀云、龔守遠、趙濤、牧振偉 (2008),「渾水水力分離清水裝置內水沙兩相弱旋流場數值模擬」,中國農村水力水電,第1期,中國大陸
9.余新豔、邱秀云、朱超、許史、翟新峰 (2008),「動水中渾液面升降規律試驗研究」,中國農村水力水電,第2期,中國大陸。
10.余新豔、邱秀云、劉芬、牧振偉、李琳 (2008),「渾水水力分離清水裝置溢流性能的影響因素試驗研究」,新疆農業大學學報,第2期,中國大陸。
11.邱秀云、侯杰、周著 (1999),「排沙漏斗的流場特性及輸沙機理」,中國農村水力水電,第4期,中國大陸。
12.邱秀云、肖俊、周著、侯杰 (2006),「渾水水力分離清水裝置清水流場特性試驗研究」,新疆農業大學學報,第4期,中國大陸。
13.徐燕、邱秀云、李琳 (2006),「渾水分離清水裝置無懸板時的流場數值模擬」,新疆農業大學學報,第1期,pp. 58-62,中國大陸。
14.唐偉熊 (2002),「靜水中阿公店水庫淤泥沉降特性之試驗研究」,國立成功大學水利及海洋工程學系碩士論文,指導教授:黃進坤。
15.陳偉東、徐燕、邱秀云、劉芬 (2007),「渾水水力分離清水裝置的流場數值模擬」,水力發電,第5期,中國大陸。
16.黃聰憲 (2007),「漏斗式排砂器水流特性及排砂效率之試驗研究」,國立成功大學水利及海洋工程學系碩士論文,指導教授:詹錢登。
17.劉芬、邱秀云、陳偉東、李琳、趙濤 (2007),「渾水水力分離清水裝置的優化試驗研究」,新疆農業大學學報,第2期,中國大陸。
18.譚冬初 (1999),「排沙漏斗的水力分析計算」,水動力學研究與進展,第2期,中國大陸。

------------------------------------------------------------------------ 第 6 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915244697
論文名稱(中文) 凝聚性沙質在水體沉降過程之研究
論文名稱(英文) Settling process behavior of cohesive sediment under quiescent water
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 黃鈺軒
學號 N8695120
學位類別 碩士
語文別 中文
口試日期 2009-05-18
論文頁數 85頁
口試委員 口試委員-楊瑞源
口試委員-楊錦釧
口試委員-李忠潘
指導教授-黃煌煇
關鍵字(中) 高嶺土
泥水交界面
濁度計
泥水混合濃度
沉降速度
關鍵字(英) optical backscatter sensors
settling velocity
cohesive sediment
concentration gradient
acoustic backscatter system
suspended sediment concentration
學科別分類
中文摘要 本研究主要以實驗的方式來觀測於不同初始泥水混合濃度條件下中的沉降過程。由初始泥水混合濃度估算出濃度的變化速度。除了運用在水庫上,本文亦希望了解整個沉降機制可以運用處理泥砂運動、解決海岸的流失以及港口淤泥等問題。
本文採用高嶺土做為本實驗泥質,於邊長0.8 cm的方形水槽,利用沒水式馬達調製出均勻的濃度環境下進行不同初始泥水混合濃度條件下的沉降實驗,運用ABS聲學儀器來量測沉降過程出現的泥水交界面的變化,估算出泥水交界面的速度,得到於低濃度時交界面的沉降速度會隨濃度增加而變快,直到濃度達到3000 mg/l其沉降速度會隨濃度增加而下降。本實驗於不同的位置設置六根濁度計用來量測垂直濃度剖面的變化,量測結果得到於濃度2000mg/l以下時交界面未出現,直到濃度條件為2000mg/l ~ 3000mg/l會出現較不明顯的交界面,濃度條件達3000mg/l以上時則會出現較明顯的泥水交界面,與ABS的結果相對應,故本文定義濃度條件達3000mg/l才會出現較明顯的泥水交界面。由濁度計所量測的垂直濃度剖面的結果運用質量守恆的概念計算出沉降速度。
根據ABS量測到的不連續交界面出現的時間及位置計算出最大梯度值得知在不同的初始濃度條件下整個空間的最大梯度分布會呈現不同的趨勢,依初始濃度條件分類可分成濃度為2000 mg/l ~ 2500 mg/l、2800 mg/l ~ 3500 mg/l、3500 mg/l ~ 5500 mg/l及5500 mg/l ~ 13000 mg/l共四種型態。

關鍵詞:高嶺土,沉降速度,泥水混合濃度,泥水交界面,濁度計
英文摘要 The experimental studies is focused research on the settling process with different suspended sediment concentration (SSC).Although settling velocity depends mainly on initial SSC. Settling behavior and distribution of concentration are also affected by the intensity of concentration gradient.
Kaolinite is used as bed material, which is typical cohesive sediment. The experiment is conducted in a square tank with length of 0.8 m, equipped with two smbmerged pumps. Six optical backscatter sensors (OBS) were used to monitor the change of suspended sediment concentration (SSC) at different levels. Time-averaged settling velocity was determined by depth-integrated mass balance equation from OBS. Additionally, acoustic backscatter system (ABS) was used to provide clear insight of interface, and the movement of interface will be used to determine fall speed. The result has shown that settling velocity increases with SSC in the enhanced settling velocity of SSC < 3000 mg/l and then decreases. From the result of OBS, interface didn’t appear in SSC < 2000 mg/l. The transition region ranges from 2000 mg/l ~ 3000 mg/l, and finally appear in SSC > 3000 mg/l. We define that when SSC is bigger than 3000 mg/l, there exist a interface. Furthermore, the similarlities of greatest concentration gradient distribution and the initial concentration are observed in our experiment.
KEYWORDS: cohesive sediment, suspended sediment concentration, settling velocity, concentration gradient, optical backscatter sensors, acoustic backscatter system
論文目次 中文摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
照片目錄 XII
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 5
1-3 本文組織 9
第二章 實驗設備與佈置 10
2-1實驗儀器設備 10
2-2儀器率定 13
1.濁度計(OBS)率定步驟 13
2.率定結果 14
2-3 實驗配置 18
2-4實驗條件 20
第三章 實驗方法與資料分析 21
3-1 實驗步驟之進行 21
3-2 分析方法 23
1.ABS二次殘響檢視分析 23
2.Z分數的轉換分析 25
3.質量守衡方程分析凝聚性沙質之沉降速度 33
第四章 結果與討論 36
4-1 ABS量測結果 36
4-2 濁度計量測分析結果 42
4-3 ABS與濁度計量測結果之對照比較 68
4-3 最大濃度梯度 78
第五章 結論與建議 82
5-1 結論 82
5-1 建議 83
參考文獻 84
參考文獻 1. Eisma, E., Dyer, K.R. and van Leussen, W, "The in-situ determination of the settling velocity of suspended fine-grained sediment - a review," In N. Burt, R. Parker and J. Watrts (eds.), Cohesive Sediments, John Wiley and Sons,1997
2. Erik A. Toorman and Jean E. Berlamont, "Mathermatical Modeling of Cohesive Sediment Settling and Consolidation, " Nearshore and Estuarine Cohesive Sediment Transport, pp.167~183,1993
3. Fugate, D.C and Friedrichs, C.T, "Determining concentration and fall velocity of estuarine particle population using ADV,OBS and LISST, " Continental Shelf Research, 22(11-13), pp. 2867-1886, 2002
4. Kynch, G., " A theory of sedimentation, " Transactions of the Faraday Society 48, pp.166-17, 1952.
5. Mehta, A., "Characterisation of cohesive sediment properties and transport processes in estuaries. In: Mehta, A. (Ed.), Estuarine Cohesive Sediment Dynamics, " Lecture Notes in Coastal and Estuarine Studies. Springer, Berlin, pp. 290–325, 1986
6. Mikkelsen, O.A. and Pejrup, M, "The use of a Lisst-100 laser particle sizer for in-situ estimeates of floc size, density and settling velocity, " Geo-Marine Letters, 2001
7. Manning, A.J., Bass, S.J. and Dyer, K.R, "Variability in cohesive sediment settling fluxes: Observations under different estuarine tidal conditions, " Marine Geology 235, pp. 177–192, 2006
8. Mantovanelli, A., Ridd, P.V., "Devices to measure settling velocities of cohesive sediment aggregates: a review of the in situ technology," J. of Sea Research 56(3), pp. 199-226, 2006
9. Maa, Jerome P.-Y. and Kwon, J.-I, "Using ADV for Cohesive Sediment Settling Velocity Measurements, Estuarine, Coastal and Shelf ," Science, 73, pp. 351-354, 2007
10. Owen, M.W., "Determination of the Settling Velocities of Cohesive Muds, " Report No. IT 161, Hydraulic Research Station, Wallingford, 1976
11. Stokes, G.G., "On the effect of the internal friction of fluids on the motion of pendulums," Transactions Cambridge Philosophical Society IX, pp 8–106, 1851 (Reprinted in Mathematical and Physical Papers, 2nd Ed., Vol. 3, Johnson Reprint Corp., New York, p1, 1966).
12. Wit, P.J., "Liquefaction and erosion of mud due to waves and current. Tech. rept, " Delft University of Technology, pp 10-92, 1992
13. You, Z.J., "The effect of suspended sediment concentration on the settling velocity of cohesive sediment in quiescent water, " Ocean Engineering, Vol 31, pp 1955-1965, 2004

------------------------------------------------------------------------ 第 7 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915332321
論文名稱(中文) 遙測技術應用於懸浮泥砂濃度定量估算之研究
論文名稱(英文) Application of remote sensing technique on estimating suspended sediment concentration
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 謝明霖
學號 n8891103
學位類別 博士
語文別 中文
口試日期 2009-07-21
論文頁數 153頁
口試委員 口試委員-鄭克聲
口試委員-游保杉
口試委員-曾志民
指導教授-謝正倫
指導教授-劉正千
關鍵字(中) 泥砂指數
吸收係數
粒徑
特性波長
懸浮泥砂濃度
遙測
關鍵字(英) suspended sediment concentration (SSC)
suitable wavelength
size
specific absorption coefficient
remote sensing
suspended sediment index (SSI)
學科別分類
中文摘要 遙測方法具有近即時、大範圍及長時間監測等優點,改善傳統方法的缺點,提升對於水中泥砂時空分佈監測及含砂濃度推估之能力。所謂的水色(water color)是指水體在可見光及近紅外光波段的反射光譜所組成,隨著水體組成物質及含量所產生不同的顏色變化,正如肉眼所見的顏色差異一般。唯目前針對懸浮泥砂的光譜特性尚未完全掌握,因此在估算的精確度上仍有突破的空間,本研究希望藉由商用輻射傳輸模式-HYDROLIGHT模擬、現場光譜採樣與水槽試驗三個方向探討懸浮泥砂的光學特性,包括泥砂種類、濃度及粒徑大小等三個最大的影響因素。
研究首先透過HYDROLIGHT輻射傳輸模式的模擬,根據模擬的條件設定探討懸浮泥砂在「環境組成」及「泥砂種類」等兩大因素下之懸浮泥砂光譜反射率,利用遙測反射率第一峰值特性訂定不同懸浮泥砂種類之遙測定量特性波長。在可見光的範圍內,可以將光譜波長鎖定在600-700nm區間,以本研究之選定之懸浮泥砂種類為例,各特性波長分別如下:紅色黏土(650nm)、棕壤土(675nm)、黃色黏土(700nm)及鈣質砂土(600nm)。
利用遙測技術進行懸浮泥砂濃度的定量方法,由於懸浮泥砂固有光學特性的資料有限,透過理論解析的方法還有待後續持續研究,因此目前多採用經驗或半經驗的統計方法進行定量分析。本研究修訂目前最常使用的「遙測泥砂指數」,針對水庫及河川等兩種內陸常見之水域以現地水樣之高光譜的峰值波長取代衛星波段,達到不錯的定量分析結果。

透過輻射傳輸的模擬及現場水域的高光譜遙測定量分析,針對懸浮泥砂的遙測定量分析獲得初步的瞭解,然而無論是遙測光學技術還是目前常用的光學式懸浮泥砂量測技術都具備一個共同的缺點-粒徑影響,因此,針對懸浮泥砂顆粒粒徑進行室內水槽光學實驗。
根據實驗結果顯示,透過生光模式理論的比吸收係數概念,懸浮泥砂的比吸收係數與可見光光譜波長成指數衰減關係。進一步探討比吸收係數特性與泥砂顆粒粒徑的關係發現,無論單一泥砂種類或是現場混合泥砂,懸浮泥砂之比吸收係數與泥砂顆粒粒徑成「反比」關係,而且相同泥砂顆粒粒徑下,不同水域之現場混合泥砂,其比吸收係數特性亦有所差異。
根據目前的研究結果,可以將懸浮泥砂遙測定量分析分成二個階段,第一階段是短期應用,可以應用衛星進行大規模水域整體濃度的分佈概況或利用高光譜儀結合遙測泥砂指數的定量分析方式提高單點濃度估算的精確度;第二階段則是有待後續研究的持續進行,在粒徑及種類等影響因素的固有光學特性資料庫建立完全後,則可以透過理論解析的方式直接進行外顯光學特性及水中組成成分的相互推算。
英文摘要 Information of the concentration of suspended sediments in waters is necessary for the researchers and environmental management staff. Estimation of suspended sediment concentration (SSC) in large areas of water using in situ sampling is time-consuming, expensive, inaccurate, and does not include all water areas.
Hydrologic optics is the foundation of remote sensing of water color, which retrieves the information of water constituents from the optical measurements of surface reflectance. Review of literatures, the wavelength of each scholar used in the quantitative analysis of the SSC is not consistent; it is difficult to be applied on different regions. In this research study, three methods, model simulation, in situ measurement and experimental approaches are used to analyze the optical influence factors which included sediment types, concentrations and sizes.
The simulated schemes attempt to explore the corresponding wavelength at each reflectance peak value of various sediment concentration waters and sediment types. In the results, the SSC of water more than 400 mg/L had a suitable wavelength for the quantitatively by remote sensing reflectance, such as 650nm for red clay, 675nm for brown earth, and 600nm for calcareous sand. Based on the above results, following researches try to classify SSCs and establish semi-empirical relationships between reflectance peak values and SSCs.
This research study applies Ocean Optics USB2000 spectroscope to measure remote sensing reflectance ; and analyze water SSC in Tseng-Wen Reservoir and Kao-Ping Intercept Weir of South Taiwan. Base on the relationships between water suspended sediment concentrations and remote sensing reflectance derive a semi-empirical model was developed and applied on measuring SSC in inland water. Linear regression analyses showed the best fit for the relationship between SSC and suspended sediment index (SSI) was linear and exponential for Tseng-wen Reservoir and Kao-ping Intercept Weir, respectively. The coefficients of determination are both the same values of 0.83.
According to simulated results from HYDROLIGHT, the model is validated; therefore, it could be applied in the nearby water areas of the Kao-Ping Intercept Weir. We modified the algorithms established by Tassan (1994) that using SeaWiFS data for retrieval of SSCs. Two types of sediment- “Red Clay” and “Brown earth” were used to establish relationships between SSC and SSI with R2 equals 0.80 and 0.82. In general, the suitable wavelength of different sediment types could be used for SSC estimation.
The size of suspended sediment in the inland waters is an important factor for optical monitoring method. A water tank was used for all experiments, and the inner surface was painted black in order to minimize the extraneous reflectance of the light. After collecting the absorption coefficient data of different sediment sizes by using the AC-S instrument. Mie theory was used toanalyze the specific absorption coefficient of different sediment sizes. The result shows an inverse relationship between specific absorption coefficient and sediment size. Therefore, this relationship could be applied to single type and field mixture sediments such as standard sand and Kao-Ping River sediment.
Although this study had established several suspended sediment quantification methods; however, it is suggested that more effort is needed for following study about the mixture sizes and different sediment types.
論文目次 章節目錄
中文摘要………………………………………………………… I
Abstract…………………………………………………… III
誌謝................................................... V
章節目錄………………………………………………………… VII
圖目錄…………………………………………………………… X
表目錄…………………………………………………………… XIV
英文縮寫符號表......................................... XV

第一章、研究緣起與目的
1-1 研究背景………………………………………………… 1
1-2 研究目的………………………………………………… 5
1-3 論文架構………………………………………………… 6
第二章、懸浮泥砂測定方法之回顧
2-1 傳統取樣量測方法……………………………………… 9
2-2 間接儀器量測方法……………………………………… 11
2-3 遙測光學定量方法……………………………………… 20
2-3-1 衛星遙測定量方法………………………………… 23
2-3-2 手持式高光譜遙測定量方法……………………… 35
2-3-3 懸浮泥砂固有光學特性探討……………………… 39
第三章、水色遙測之研究方法
3-1 水色光學理論…………………………………………… 43
3-1-1 水體組成要素……………………………………… 44
3-1-2 固有光學性質……………………………………… 44
3-1-3 外顯光學性質……………………………………… 48
3-1-4 生光模式…………………………………………… 52
3-1-5 輻射傳輸模式……………………………………… 55
3-1-6 常見光學遙測平台………………………………… 57
3-2 輻射傳輸模式模擬……………………………………… 59
3-2-1輻射傳輸模式及HYDROLIGHT模式簡介…………… 59
3-2-2 模擬規劃…………………………………………… 61
3-3 現場高光譜遙測………………………………………… 65
3-3-1 手持式高光譜輻射儀及操作概述………………… 65
3-3-2 水體懸浮泥砂濃度測定方法……………………… 67
3-3-3 遙測懸浮泥砂指數定量分析……………………… 68
3-4 室內水槽光學特性實驗………………………………… 70
3-4-1 實驗水槽設計……………………………………… 70
3-4-2 實驗光學儀器介紹………………………………… 74
3-4-3 實驗設計…………………………………………… 76
3-4-4 實驗步驟及數據處理……………………………… 78
第四章、研究成果
4-1 懸浮泥砂遙測反射率特徵波長………………………… 81
4-1-1 不同環境因素影響………………………………… 81
4-1-2 不同懸浮泥砂種類的特性………………………… 86
4-1-3 小結………………………………………………… 92
4-2 手持式高光譜遙測定量分析…………………………… 93
4-2-1 研究區域…………………………………………… 93
4-2-2 懸浮泥砂光譜特性分析…………………………… 96
4-2-3 懸浮泥砂遙測定量關係式的建立………………… 102
4-2-4 小結………………………………………………… 104
4-3 懸浮泥砂光譜吸收係數分析…………………………… 105
4-3-1 光譜吸收係數特性分析…………………………… 105
4-3-2 比吸收係數特性分析……………………………… 109
4-3-3 比吸收係數衰減曲線的建立……………………… 116
4-3-4 比吸收係數與粒徑關係分析……………………… 122
4-3-5 小結………………………………………………… 125
4-4 結合泥砂特性之遙測定量方法建立與應用…………… 126
4-4-1 半經驗遙測定量方法建立………………………… 126
4-4-2 結合泥砂特性之遙測定量方法應用……………… 128
4-4-3 懸浮泥砂遙測定量後續研究規劃………………… 133
第五章、結論與建議
5-1 研究結論………………………………………………… 137
5-2 建議……………………………………………………… 140
參考文獻 142
附錄 附-1
參考文獻 1. 王心源、李文達、嚴小華、陸應城、周鑫、李祥、夏林益、唐曉光、梅長青,「基於Landsat TM/ETM 數據提取巢湖懸浮泥砂相對濃度的信息與空間分布變化」,湖泊科學,19(3):255-260,(2007)。
2. 李四海、惲才興,「河口表層懸浮泥沙氣象衛星遙感定量模式研究」,遙感學報,5(2):154~160,(2001)。
3. 李四海、唐軍武、惲才興,「河口懸浮泥砂濃度SeaWiFS遙感定量模式研究」,海洋學報,24(2):51-58,,(2002)。
4. 李雲梅、黃家柱、陸皖寧、石浚哲,「基於分析模型的太湖懸浮物濃度遙感監測」,海洋與湖沼,37(2):171-177,(2006)。
5. 汪小欽、王欽敏、鄔群勇,「遙感在懸浮物質濃度提取中的應用-以福建閩江口為例」,遙感學報,7(1):54~57,(2003)。
6. 林志平、鍾志忠、張育嘉、楊錦釧、葉克家、洪銘堅、曾君敏,「高泥砂濃度觀測:時域反射技術」。
7. 馬榮華、唐軍武,「湖泊水色遙感參數獲取與算法分析」,水科學進展,17(5):720-726,(2006)。
8. 財團法人成大水利海洋研究發展文教基金會,「中區水資源營運管理計畫-集集攔河堰清淤及排砂操作之研究」,經濟部水利署中區水資源局,(2005)。
9. 國立成功大學環境研究中心,「曾文、牡丹、高屏溪、甲仙攔河堰水質檢驗分析計畫」,經濟部水利署南區水資源局,(2006)。
10. 國立成功大學環境研究中心,「曾文、牡丹、高屏溪、甲仙攔河堰水質檢驗分析計畫」,經濟部水利署南區水資源局,(2007)。
11. 許盈松、蔡俊峰、魏綺瑪、黃宏莆,「水庫泥砂濁度與濃度率定關係研究-以石門水庫為例」,農業工程學報,53(1):62-71,(2007)。
12. 莊世仁,「運用蒙地卡羅光束追蹤技術模擬水槽中的輻射傳輸過程」,成功大學地球科學研究所碩士論文,(2008)。
13. 陳濤、李武、吳初曙,「懸浮泥砂濃度與光譜反射率峰值波長紅秒的相關關係」,海洋學報,16(1):38-43,(1994)。
14. 馮輝,「懸浮泥砂濃度遙感定量模式」,遙感信息,2:16-19,(1987)。
15. 傅克忖、荒川久幸,「懸沙水體不同波段反射比的分布特性及懸沙量估算實驗研究」,海洋學報,21(3):134~140,(1999)。
16. 童慶禧、張兵、鄭蘭芬,「高光譜遙感的多學科應用」,電子工業出版社,北京,(2006)。
17. 雷廷武、趙軍、袁建平、王輝、劉清坤,「利用 射線透射法測量徑流含沙量及算法」,農業工程學報,18(1):18-21,(2002)。
18. 樂華福、林壽仁、趙太初、陳立娣,「近海II類海水反射率與表面懸浮泥砂相關性的研究」,國土資源遙感,(2000)。
19. 黎夏,「懸浮泥砂遙感定量統一模式及其在珠江口的應用」,環境遙感,7(2):106-113,(1992)。
20. 劉正千、張智華、許華宇、譚子健、溫清光,「應用ISIS高頻譜光學遙測影像於曾文水庫之水質監測」,科儀新知,161:29-42,(2007)。
21. 賴伯勳,「颱風對石門水庫之濁度影響及因應對策」,經濟部水利署北區水資源局,(2006)。
22. 錢寧、萬兆惠,「泥砂運動力學」,科學出版社,中國,(1991)。
23. 韓震、惲才興、蔣雪中,「懸浮泥沙反射光譜實驗研究」,水利學報,12:118~121,(2003)。
24. 環保署環檢所河川、湖泊及水庫水質採樣通則(NIEA W104.51C)。
25. 環保署環檢所水質檢測方法總則 (NIEA W102.51C)。
26. 環保署環檢所水中總溶解固體及懸浮固體檢測方法-103 ~105 乾燥 (NIEA W210.57A)。
27. Ahn, Y. H., “Optical properties of biogenous and mineral particles present in the ocean. Application: inversion of reflectance,” Paris-VI university(1990).
28. Agrawal, Y. C., and H. C. Pottsmith. “Laser diffraction particle sizing in STRESS,” Continental Shelf Res., 14(10/11), 1101-1121(1994).
29. Admirral, D.M. and M.H. Garcia, “Laboratory measurement of suspended sediment concentration using an Acoustic Concentration Profiler(ACP),” Experiments in Fluids, 28:116~127(2000).
30. Arst, H., “Optical properties and remote sensing of multicomponental water bodies,” Jointly published with Praxis Publishing, UK (2003).
31. Antonelli, C., F. Eyrolle, B. Rolland, M. Provansal, and F. Sabatier, “Suspended sediment and fluxes during the exceptional December 2003 flood in the Rhone River, southeast france,” Geomorphology, 95:350:360 (2008).
32. Bosman, J.J., Van der Velden ETJM, C.H. Hulsbergen, “Sediment concentration measurement by transverse suction,” Coastal Engineering, 11:353~370 (1987).
33. Barale, V., and P. M. Schlittenhardt, “Ocean color: theory and applications in a decade of CZCS experience,” Kluwer Academic, Dordrecht: 367pp. (1993).
34. Black, K. P., and M. A. Rosenberg, “Suspended sand measurements in a turbulent environment: Field comparison of optical and pump sampling techniques.” Coast. Engrg., 24:137-150 (1994).
35. Buiteveld, H., et al., “Optical properties of pure water,” paper presented at Ocean Optics XII, SPIE, Bergen, Norway (1994).
36. Bukata, R. P., J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters, CRC Press (1995).
37. Binding C. E., D. G. Bowers, and E. G. Mitchelson-Jacob, ,“An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” International Journal of Remote Sensing, 24(19): 3791~3906 (2003).
38. Bowers, D. G., and C. E. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuarine, Coastal and Shelf Science, 67:219-230 (2006).
39. Bowers, D. G., C. E. Binding, and K. M. Ellis, “Satellite remote sensing of the geographical distribution of suspended particle size in an energetic shelf sea,” Estuarine, Coastal and Shelf Science, 73:457-466 (2007).
40. Binding, C. E., J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sensing of Environment, 112:1702-1711 (2008).
41. Chen, Z., J. D. Hansom, and P. J. Curran, “The form of the relationship between suspended sediment concentration and spectral reflectance: its implication for the use of Daedalus 1268 data,” International Journal of Remote Sensing, 12(1): 215~222 (1991).
42. Chen, Z., P. J. Curran, and J. D. Hansom, “Derivative reflectance spectroscopy to estimate suspended sediment concentration,” Remote Sensing of Environment, 40:67~77 (1992).
43. Cipollini, P., G. Corsini, M. Diani and R. Grasso, “Retrieval of sea water optically active parameters from hyperspectral data by means of generalized radial basis function neural networks,” IEEE Transactions on Geoscience and Remote Sensing, 39(7):1508~1524 (2001).
44. Chen, T., P. Li, L. Zhang, and L. Shi, “Estimating suspended sediment concentration in Yangtze River from Landsat-TM image,”MIPPR 2005: SAR and Multispectral Image Processing (2005).
45. Chang, G. C., A. H. Barnard, S. McLean, P. J. Eali, C. Moore, J. R. V. Zaneveld, T. D. Dickey, and A. Hanson, “In situ optical variability and relationships in the Santa Barbara Channel: implications for remote sensing,” Applied Optics, 45(15):3593-3604 (2006).
46. Chen, Z., C. Hu, and M. K. Frank ,“Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery,” Remote Sensing of Environment, 109:207-220 (2007).
47. Doxaran, D., J-M Froidefond, S. Lavender, and P. Castaing ,“Spectral signature of highly turbid waters Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sensing of Environment, 81: 149~161 (2002).
48. Doxaran, D., J-M Froidefond, S. Lavender, and P. Castaing,“Remote-sensing reflectance of turbid sediment-dominated water. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratio.” Applied Optics, 42(15): 2623-2634 (2003).
49. Deng, M. and Y. Li, “Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment,” International Journal of Remote Sensing, 24(3): 519~534 (2003).
50. Downing, J., “Twenty-five years with OBS sensor: The good, the bad, and the ugly,” Continental Shelf Research, 26:2299~2318 (2006).
51. Doxaran, D., N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling,” Applied Optics, 45(10):2310-2324 (2006).
52. Doxaran, D., M. Babin, and E. Leymarie, “Near-infrared light scattering by particles in coastal waters,” Optics express, 15(20):12834-12849 (2007).
53. Froidefond, J. M., P. Castaing, J. M. Jouanneau, and A. Dinet, “ Method for quantification of suspended sediments from AVHRR NOAA-11 satellite data,” International Journal of Remote Sensing , Vol. 14, No. 5, pp. 885-894 (1993).
54. Fry, R. M. P. a. E. S., “Absorption spectrum (380-700 nm) of pure water. II. Intergration cavity measurements,” Applied Optics, 36(33): 8710~8723 (1997).
55. Fournier, G. R. J., Miroslaw, “Computer based underwater imaging analysis,” Proceedings of SPIE - The International Society for Optical Engineering, 3761: 62~70 (1999).
56. Fugate, D.C., C.T. Friendrichs, “Determining concentration and all velocity of estuarine particle populations using ADV, OBS and LISST, ” Continental Shelf Research, 22:1867~1886 (2002).
57. Gordon, H.R, “Radiative transfer: a technique for simulating the ocean in satellite remote sensing calculations,” Applied Optics, 15(8):1974~1979 (1976).
58. Gregg, W. W., and K. L. Carder, “A Simple Spectral Solar Irradiance Model for Cloudless Maritime Atmospheres,” Limnology and Oceanography, 35(8):1657~1675 (1990).
59. Gin, K. Y.-H., Koh, S. T., and Lin, I.-I., “Spectral irradiance profiles of suspended marine clay for the estimation of suspended sediment concentration in troical waters.” International Journal of Remote Sensing, 24(16):3235~3245 (2003).
60. Green, R. E., R. W. Gould Jr., and D. S. Ko, “Statistical models for sediment/detritus and dissolved absorption coefficients in coastal waters of the northern Gulf of Mexico,” Continental Shelf Research, 28:1273-1285 (2008).
61. Han, L., and D. C. Rundquist, “The response of both surface reflectance and the underwater light field to various levels of suspended sediments - Preliminary results,” Photogrammetric Engineering and Remote Sensing,60(12):1463~1471 (1994).
62. Hatcher, A. P., J. G. Hill, and P. Macpherson, “Spectral optical backscatter of sand in suspension: effects of particle size, composition and colour,” Marine Geology, 168(1-4):115~128 (2000).
63. Hoitink, A.J.F. and P. Hoekstra, “Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment,” Coastal Engineering, 52:103~118 (2005).
64. Ha, H.K., W.Y. Hsu, J.P.Y. Maa, Y.Y. Shao, and C.W. Holland, “Using ADV backscatter strength for measuring suspened cohesive sediment concentration,” Continental Shelf Research, 29:1310~1316 (2009).
65. Islam, M. R., Y. Yamaguchi, and K. Ogawa, “Suspended sediment in the Ganges and Brahmaputra River in Bangladesh: observation from TM and AVHRR data,” Hydrological Process, 15:493~509 (2001).
66. Julian, J. P., M. W. Doyle, S. M. Powers, E. H. Stanley, and J. A. Riggsbee, “Optical water quality in rivers,” Water Resources Research, 44:W10411 (2008).
67. Law, D. J., A. J. Bale, and S. E. Jones, “Adaptation of focused beam reflectance measurement to in-situ particle sizing in estuaries and coastal waters.” Marine Geology, Amsterdam, 140(1-2): 47-59 (1997).
68. Li, Y., W. Huang, and M. Fang, “An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data,” Continental Shelf Research, 18:487~500 (1998).
69. Loisel, H., and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: A reexamination,” Limnology and Oceanography, 43(5):847~858 (1998).
70. Liu, C. C., K. L. Carder, R. L. Miller, and J. E. Ivey , “Fast and accurate model of underwater scalar irradiance,” Applied Optics, 41(24):4962~4984 (2002).
71. Lee, Z.P., “Models, parameters , and approaches that used to generate wide range of absorption and backscattering spectra,” Retrieved from: http://www .ioccg.org/groups/lee_data.pdf (2003).
72. Liu, C.C., J. Woods, “Prediction of ocean colour: Monte-Carlo simulation applied to a virtual ecosystem based on the Lagrangian Ensemble method,” International Journal of Remote Sensing, 25(5):921~936 (2004).
73. Lillesand, T. M., R. W. Kiefer, and J. W. Chipman, “Remote sensing and image interpretation,” John Wiley & Sons, 763pp (2004).
74. Li, X., T. Lai, W. Wang, Q. Xu, and J. Zhao,“Capacitance sensors for measuring suspended sediment concentration,” CATENA, 60:227~237 (2005).
75. Liu, C.C., R.L. Miller, K.L. Carder, Z.P. Lee, E.J. D. Sa and J.E. Ivey, “Estimating the underwater light field from remote sensing of ocean color,” Journal of Oceanography, 62(3):235~248 (2006).
76. Liu, C.C., J. G. Liu, C. W. Lin, A. M. Wu, S. H. Liu, and C. L. Shieh,“Image processing of FORMOSAT-2 data for monitoring South Asia tsunami. ” International Journal of Remote Sensing, 28(13):3093~3111 (2007).
77. Loisel, H., X. Meriaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnology and Oceanography, 52(2):739-752 (2007).
78. Liu, C.C., C.L. Shieh, C.A. Wu and M.L. Shieh, “Change detection of gravel mining on riverbeds from the multi-temporal and high-spatil-resolution Formosat-2 imagery,” River Research and Applications (2008).
79. McHenry, J. R., N. L. Coleman, J. C. Wills, C. E. Murphree, G. C. Bolton, O. W. Sansom, and A. C. Gill, “Performance of nuclear-sediment concentration gauges.” Proc., Isotopes in Hydrology SYmp., International Atomic Energy Agency, Vienna, 207-225 (1967).
80. Mertes, L. A. K., M. O. Smith, and J. B. Adams, “Estimating suspended sediment concentrations in surface waters of the Amazon River wetlands from Landsat images,” Remote Sensing of Environment, 43:281~301 (1993).
81. Mobley, C. D., B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields” Applied Optics, 32(36): 7484-7504 (1993).
82. Mobley, C. D., Light and Water – Radiative Transfer in Waters, Academic Press, pp.60-142, San Diego (1994).
83. Mobley, C.D., “Estimation of the remote-sensing reflectance from above-surface measurement,” Applied Optics, 38:7442~7455 (1999).
84. Mobley, C.D. and L.K. Sundman, “HYDROLIGHT 4.2 Technical Documentation,” Sequoia Scientific, Inc. (2001).
85. Mobley, C.D. and L.K. Sundman, “HYDROLIGHT 4.2 Users’ Guide,” Sequoia Scientific, Inc. (2001).
86. Mueller, J. L., Fargion, G.S. and McClain, C. R., Ocean Optics Protocols for Satellite Ocean Color Sensor Validation.,Revision 4, NASA/TM- 2003- 211621 (2003).
87. Miller, R. L., and B. A. McKee, “Using MODIS Terra 250m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sensing of Environment, 93:259~266 (2004).
88. Mckee, D., and A. Cumningham, “Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and sedwater constituents” Estuarine, Coastal and Shelf Science, 68:305-316 (2006).
89. Martinez, C., G.R. Hancock, and J.D. Kalma, “Compareison of fallout radionclide (caesium-137) and modeling approaches for the assessment of soil erosion rates for an uncultivated site in south-eastern Australia,” Geoderma, 151:128~140 (2009).
90. Nelson, M. E., and P. C. Benedict, “Measurement and analysis of suspended-sediment loads in streams,” Trans. ASCE, 116:891-918 (1950).
91. Novo, E. M. M., C. A. Steffen, and C. Z. F. Braga, “Results of laboratory experiment relating spectral reflectance to total suspended solids,” Remote Sensing of Environment, Vol. 36, pp.67-72 (1991).
92. Nellis, M. D., J. A. Harrington Jr., and J. Wu, “Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993,” Geomorphology, 21:281~293 (1998).
93. Odermatt, D., T. Heege, J. Nieke, M. Kneubuhler, and K. Itten, “Water quality monitoring for lake constance with a physically based algorithm for MERIS data,”Sensors, 8:4582-4599 (2008).
94. Petzold, T. J., “Volume Scattering Functions for Selected Ocean Waters, “ Light in the Sea, 152–174 (1977).
95. Prieur, L., and S. Sathyendranath, “An Optical Classification of Coastal and Oceanic Waters Based on the Specific Spectral Absorption Curves of Phytoplankton Pigments, Dissolved Organic Matter, and Other Particulate Materials,” Limnology and Oceanography, 26(4): 671~688 (1981).
96. Phillips, J. M., and D. E. Walling, “An assessment of the effect of sample collection, storage and resuspension on the representativeness of measurements of the effective particle size distribution of fluvial suspended sediment,” Water Research, 29(11):298 (1995a).
97. Phillips, J. M., and D. E. Walling, “Measurement in situ of the effective particle-size characteristics of fluvial suspended sediment by means of a field-portable laser backscatter probe: Some preliminary results,” Marine Freshwater Res., 46:349-357 (1995b).
98. Porto, P., D.E. Walling, and V. Ferro, “Validating the use of caesium-137 measurement to estimate soil erosion rates in a small drainage basin in Calabria, Southern Italy,” Journal of Hydrology, 248:93~108 (2001).
99. Peng, F., S. W. Effler, D. O’Donnell, M. G. Perkins, and A. Weidemann, “Role of minerogenic particles in light scattering in lakes and a river in central New York,” Applied Optics, 46(26):6577-6594 (2007).
100. Reddy, M. A., “Remote sensing for mapping of suspended sediments in Krishna Bay Estuary, Andhra pradesh, India,” International Journal of Remote Sensing, 14(11): 2215-2221 (1993).
101. Ritchie, J. C., and C. M. Cooper, “ Comparison of measured suspended sediment concentrations with suspended sediment concentrations estimated from Landsat MSS data,” International Journal of Remote Sensing, 9(3):379~388 (1988).
102. Richard C., L. Robin McCocks, and Ian R. Plimer, Encyclopedia of Geology, Oxford: Elsevier Limited (2005).
103. Stumpf, R. P., and J. R. Pennock, “Calibration of a general optical equation for remote sensing of suspended sediment in a moderatelyturbid turbid estuary,” Journal of Geophysical Research, 94(C10): 14363~14371 (1989).
104. Sutherland, T.F., P.M. Lane, C.L. Amos and J. Downing, “ The calibration of optical backscatter sensor for suspended sediment of varying darkness level,” Marine Geology, 162:587~597 (2000).
105. Salinas, S. V., C. W. Chang, and S. C. Liew, “Multiparameter retrieval of water optical properties from above-water remote sensing reflectance using the simulated annealing algorithm,” Applied Optics, 46(14):2727-2742 (2007).
106. Stramski, S., M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnology and Oceanography, 52(6):2418-2433 (2007).
107. Snyder, W. A., R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamels, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Applied Optics, 47(5):666-677 (2008).
108. Stavn, R. H. and S. J. Richter, “Biogeo-optics: particle optical properties and the partitioning of the spectral scattering coefficient of ocean waters,” Applied Optics, 47(14):2660-2679 (2008).
109. Topp, G.C., J.L. Davis, and A.P. Annan, “Electromagnetic determination of soil water content and electrical conductivity measurement using time domain reflectometry,” Water Resource Research, 16:574~582 (1980).
110. Topp, G.C., M. yanuka, W.D. Zebchuk, and S. Zegelin, “Determination of electrical conductivity using time domain reflectometry: soil and water experiments in coaxial lines,” Water Resource Research, 24:945~952 (1988).
111. Thorne, P. D., C. E. Vincent, P. J. Hardcastle and N. Pearson, “Measuring suspended sediment concentrations using acoustic backscatter devices,” Marine Geol., Amsterdam, 98:7-16 (1991).
112. Tassan, S.,”Local algorithms using SeaWiFS data for retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters.” Applied Optics, 33(12): 2369-2378 (1994).
113. Thorne, P.D., D.M. Hanes, “A review of acoustic measurement of small-scale sediment processes,” Continental Shelf Research, 22:603~632 (2002).
114. Tzortziou, M., A. Subramaniam, J. R. Herman, C. L. Gallegos, P. J. Neale, and L. W. Harding Jr., “Remote sensing reflectance and inherent optical properties in the mid Chesapeake Bay,” Estuarine, Coastal and Shelf Science, 72:16-32 (2007).
115. Ustin, S. L., Manual of Remote Sensing, 3 ed., John Wiley & Sons, Hoboken NJ, pp. 768-770 (2004).
116. Williams, J., “Suspended Sediment Determination in Estuarine Waters from Photometer and Secchi Disc Measurements,” Available from the National Technical Information Service (1975).
117. Wren, D. G., B. D. Barkdoll, R. A. Kuhnle, and R. W. Derrow, “Field techniques for suspended-sedimet measurement,” Journal of Hydraulic Engineering, ASCE, 126(2):97-104 (2000).
118. Wren, D. G., Surrogate techniques for suspended-sediment measurement Reno., NV April 30- May 2 (2002).
119. Walling, D.E., Q. he, and P.A. Whelan, “Using measurements to validate the application of the AGNPS and ANSWERS erosion and sediment yield models in two small Devon catchments,” Soil and Tillage Research, 69:27~43 (2003).
120. Warrick, J. A., L. A. K. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS, ”International Journal of Remote Sensing, 25(10):1995~2002(2004).
121. WETLabs, “Spectral Absorption and Attenuation Meter-ac-s User’s Guide,” WET Labs, Inc. (2006).
122. Wang, JianJun, XiXi Lu, and Yue Zhou,“Retrieval of suspended sediment concentration in the turbid water of the Upper Yangtze River using Landsat ETM+,”Chinese Science Bulletin, 52:273~280 (2007).
123. Whitmire, A. L., E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Optics express, 15(11):7019-7031 (2007).
124. Winter, C., M. Becker, V.B. Ernstsen, D. Hebbeln, A. Port, A. Bartholoma, B. Flemming, and M. Lunau, “In-situ observation of aggregate dynamics in a tidal channel using acoustics lader diffraction and optics, ” Journal of Coastal Research, 50:1173~1177 (2007).
125. Yang, X., “Manual on sediment management and measurement,” World meteorological organization- operational hydrology report No.47 (2003).
126. Zhang, H., C. Liu, B. He, M. Li, and Y. Yie, “Study on the quantitative model of suspended sediment from MODIS in the Yangtze River,” Geoinformatics 2008 and Joint conference on GIS and Built Environment: Monitoring and Assessment of Natural Resources and Environments (2008).
127. Zapata, F., “The use of environmental radionuclides as tracers in soil erosion and sedimentation investigations: recent advances and future developments,” Soil and Tillage Research, 69:3~13 (2002).

------------------------------------------------------------------------ 第 8 筆 ---------------------------------------------------------------------
系統識別號 U0026-1707201301313300
論文名稱(中文) 黏性泥沙在振盪流中沉降過程之研究
論文名稱(英文) Settling process of cohesive sediment under oscillation flow
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 董景嘉
學號 N86991192
學位類別 碩士
語文別 中文
口試日期 2013-06-24
論文頁數 65頁
口試委員 指導教授-黃煌煇
口試委員-陳陽益
口試委員-楊瑞源
口試委員-許文陽
關鍵字(中) 黏性泥沙
沉降速度
懸浮泥沙濃度
振盪流
關鍵字(英) cohesive sediment
settling velocity
suspended sediment concentration
oscillation flow
學科別分類
中文摘要   本研究主要以實驗方式進行黏性泥沙在靜止水體與振盪流中之沉降行為研究,觀測黏性泥砂在沉降過程中隨著時間運動之濃度變化,並對沉降速度進行量測,以及比較靜態與動態沉降試驗之差異,並且探討不同條件下所產生之沉降行為差異,歸納其可能影響沉降行為之參數。
  本研究運用於造波水槽內加裝隔板之方式,製造一類似U型管之空間,並且輔以造波系統在其一端推擠水體,達到所需之振盪流環境,並透過條件測試作業得振盪流條件之穩定範圍,總計進行五十七組沉降試驗,包含靜態條件與十八組振盪流條件與三種初始濃度條件之組合。試驗期間利用光學濁度計OBS於垂直深度上的排列來監測沉降過程的整體濃度衰減,運用沉降速度與懸浮泥沙濃度的相關性進行沉降速度之量化,並且使用超音波都卜勒流速儀ADV檢視區段內速度與擾動情形,引用雷諾擴散通量來量化其紊流擾動值。
  藉由檢視不同條件間的濃度時序列、沉降速度時序列以及沉降速度與濃度之關係,本研究歸納出沉降行為與懸浮泥沙濃度相關外,亦受振盪流流速以及初始濃度兩參數之影響:振盪流流速參數將使濃度衰減趨勢變緩以及造成沉降速度下降,其最大沉降速度隨雷諾擴散通量增加而衰減之趨勢代表沉降行為受振盪流速度與懸浮泥沙濃度的紊流擴散所影響;初始濃度參數於靜態條件與低流速條件影響尚不顯著,當流速條件提高,沉降速度將隨初始濃度條件增加呈現衰減之趨勢。
英文摘要    This study investigated the settling process of cohesive sediment under static water and oscillation flow. Suspended sediment concentration and settling velocity were measured in the experiment. It is attempted to investigate the parameters which influence settling behavior under different experimental conditions.
   The experiments were conducted in a wave-tank at Tainan Hydraulics Laboratory. Experimental setup was constructed by a U-tube-like space installing custom-made plates in wave-tank. Wave-maker was used to push water in wave flume and then generated oscillation flow. There are fifty-seven combinations of settling experiments which consisted of three initial concentration conditions and eighteen oscillation flow conditions, plus a static condition in this study. An array of OBS and an ADV were applied to measure the changes of concentration and velocity during settling process.
   From the experiments, the results concluded that settling behavior was not only influenced by concentration, but also by both velocity and initial concentration. The velocity of oscillation flow would slow down the settling behavior resulting in decreased settling velocity. The maximum settling velocity decreases with Reynolds number also indicated the influence of velocity of oscillation flow. On the other hand, the influence of initial concentration was unobvious at static condition and low velocity condition. Nevertheless, the settling behavior revealed a significant difference under high velocity condition. Settling velocity decreased as initial concentration increasing.
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 X
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 3
1-3 本文組織 5
第二章 實驗設備與配置 6
2-1 實驗設備 6
2-2 實驗配置 14
2-3 試驗條件 16
第三章 實驗方法與資料分析 21
3-1 實驗方法 21
3-2 資料分析 23
3-2-1 假設控制體積內之質量守恆來分析沉降速度 23
3-2-2 雷諾擴散通量(Reynolds flux)之分析方法 25
3-2-3 振盪流之衝程、週期、波高與流速之關係 29
3-2-4 無因次化參數 35
第四章 結果與討論 38
4-1 影響沉降行為之參數 38
4-2 沉降行為與流速之關係 44
4-3 沉降行為與初始濃度之關係 57
第五章 結論與建議 61
5-1 結論 61
5-2 建議 62
參考文獻 63
參考文獻 Agrawal, Y.C. and Pottsmith, H.C., “Instruments for particle size and settling velocity observations in sediment transport”, Marine Geology 168, pp.89-114., 2000.
Burt, T.N., “Field settling velocities of estuary muds. In: Mehta”, A.J. (Ed.), Estuarine Cohesive Sediment Dynamics. Springer-Verlag, pp. 126e-50., 1986.
Eisma, E., Dyer, K.R., van Leussen, W., “The in-situ determination of the settling velocity of suspended fine-grained sediment e a review.”, In: Burt, N., Parker, R., Watrts, J. (Eds.), Cohesive Sediments. John Wiley and Sons., 1997.
Fugate, D. C. and C. T. Friedrichs., “Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST”, Continental Shelf Research, 22, pp.1867-1886., 2002.
Fugate, D. C. and C. T. Friedrichs., “Controls on suspended aggregate size in partially mixed estuaries”, Estuarine, Coastal and Shelf Science, 58, pp.389-404., 2003.
Ha, H. K., “Acoustic measurements of cohesive sediment transport: suspension to consolidation”, The Faculty of the School of Marine Science, The College of William and Mary in Virginia, 2008.
Ha, H. K., W. Y. Hsu, J.P.Y. Maa, Y.Y. Shao and C.W. Holland., “Using ADV backscatter strength for measuring suspended cohesive sediment concentration”, Continental Shelf Research, 29, pp.1310-1316., 2009.
Ha H. K., and J. P. Y. Maa., “Effects of suspended sediment concentration and turbulence on settling velocity of cohesive sediment”, Geosciences Journal, 14 (2), pp.163-171., 2010.
9. Kwon, J.I., “Simulation of Turbidity Maximums in the York River, Virginia. Ph.D. Dissertation”, Virginia Institute of Marine Science, College of William and Mary., 2005.
Kwon, J.I., Maa, J.P.-Y., Lee, D.-Y., “A preliminary implication of the constant erosion rate model to simulate turbidity maximums in the York River, Virginia, USA”, In: Maa, J.P.-Y., Sanford, L.P., Schoellhamer, D.H.(Eds.), Estuarine and Coastal Fine Sediment Dynamics e INTERCOH 2003. Elsevier, Amsterdam, pp. 321-344.,2006.
Mantovanelli, A. and P. V. Ridd., “Devices to measure settling velocities of cohesive sediment aggregates: A review of the in situ technology”, Journal of Sea Research, 56, pp.199~226., 2006.
Maa, J. P. Y. and J. I. Kwon., Short Communication. “Using ADV for cohesive sediment settling velocity measurements”, Estuarine, Coastal and Shelf Science, 73, pp. 351-354., 2007.
Mehta, A.J., “Characterization of cohesive sediment properties and transport processes in estuaries”, In: Mehta, A.J. (Ed.), Estuarine Cohesive Sediment Dynamics. Springer-Verlag, pp. 290-325., 1986.
Owen, M.W., “A detailed study of the settling velocities of silt flocs”, Hydraulic Research Report,INT 78., 1970
Owen, M.W., “The effect of turbulence on the settling velocities of silt flocs”, Proc. 14th Congres Of IAHR, Paris 4, pp. D4-1–D4-5., 1971.
Owen, M.W., “Determination of the Settling Velocities of Cohesive Muds”, Report No. IT 161, Hydraulic Research Station, Wallingford., 1976.
Scully, M.E., “The Interaction Between Stratification, Circulation, and Sediment Transport in a Partially-mixed Estuary”, Ph.D. thesis, College of William and Mary, Virginia, 148 p., 2005.
Scully, M. E. and C. T. Friedrichs., “Sediment pumping by tidal asymmetry in a partially mixed estuary”, Journal of Geophysical Researc, 112, C07028, pp. 1-12~12-12., 2007.
Winterwerp, J.C., Van Kesteren, W.G.M., “Introduction to the physics of cohesive sediments in the marine environment”, In: Developments in Sedimentology, 56. Elsevier, Amsterdam, 2004.
W. Y. Hsu, H. H. Hwung, T. J. Hsu, A. Torres-Freyermuth and R. Y. Yang, “An experimental and numerical investigation on wave-mud interactions”, Journal of Geophysical Research: Oceans, Volume 118, Issue 3, pp. 1126-1141., 2013.
You, Zai-Jin., “The effect of suspended sediment concentration on the settling velocity of cohesive sediment in quiescent water”, Ocean Engineering, 31, pp.1955~1965., 2004
黃鈺軒,「凝聚性沙質在水體沉降過程之研究」,國立成功大學水利及海洋工程研究所碩士論文,2009。
許文陽,「黏性泥沙動力特性之試驗與數值研究」,國立成功大學水利及海洋工程研究所博士論文,2012。

------------------------------------------------------------------------ 第 9 筆 ---------------------------------------------------------------------
系統識別號 U0026-2007201216482200
論文名稱(中文) 泥砂粒徑對輸砂模擬之影響分析
論文名稱(英文) Analysis of the Effects of Sediment Size on the Sediment Transport Simulation
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 林曉萱
學號 N86994093
學位類別 碩士
語文別 中文
口試日期 2012-06-28
論文頁數 56頁
口試委員 指導教授-詹錢登
口試委員-連惠邦
口試委員-羅偉誠
口試委員-張嘉玲
關鍵字(中) 泥砂粒徑
捲增
沉降
懸浮載濃度
關鍵字(英) sediment size
entrainment
deposition
suspended sediment concentration
學科別分類
中文摘要 颱風暴雨期間是輸砂的主要時期,大部分河流輸砂運移以懸浮載為主,因此有必要掌握及瞭解洪水期間之懸浮載濃度資料。若能藉由數學模式推估懸浮載濃度,將可有助於資料的補強及便利性。各數學模式中的泥砂粒徑大小會直接影響到泥砂相關參數,進而影響懸浮載濃度的演算,因此選擇適合之計算代表泥砂粒徑代入模式演算為一重要課題。
本研究以假設大自然中會傾向於沖淤平衡之狀態下,藉由當土砂之捲增及沉降量兩者相等時視為沖淤平衡,透過不同的坡度及水深變化,討論泥砂粒徑對於土砂捲增及沉降率之影響,並找出沖淤平衡時之泥砂粒徑範圍,訂定此粒徑為計算代表粒徑,最後代入地文性土壤沖淤模式中演算懸浮載濃度,以符合實測之懸浮載濃度資料為目標,驗證討論所選定之計算代表粒徑的合理性;並以曾文水庫集水區為本研究案例分析之地點。
結果顯示,比起捲增率,沉降率有較敏感的情形,不僅只針對於粒徑,坡度及水深的變動,都會使沉降率較捲增率敏感。透過找出沖淤平衡時之泥砂粒徑,訂定此粒徑為曾文水庫集水區之計算代表泥砂粒徑,經過分析後代表的河道粒徑範圍落於20 ~70 mm之間,而最後根據相關規劃報告書現地採樣之資料,採用特徵粒徑45.68 mm;坡地粒徑範圍則落於0.3 ~ 1.3 mm之間,因缺乏實際採樣之粒徑資料,因此直接各別代入模式演算;模擬之流量與懸浮載輸運率之率定曲線與實測比較,結果仍屬合理;顯示可透過此方法找出集水區之計算代表粒徑。
英文摘要 The period of typhoons and storms is the main period of sediment transport, which in most of the rivers gives priority to suspended load, therefore, it is necessary to grasp and understand the data of suspended sediment concentration in the flood period. If the suspended sediment concentration is estimated by the mathematical model, it will facilitate the reinforcement and convenience of the data. The sediment size in various mathematical models will directly affect the parameters related to the sediment particle. It will also affect the calculation of the suspended sediment concentration. Therefore, it is an important topic to select the appropriate introduction model of calculation representative sediment size to perform calculations.
In this study, it is assumed that the watershed would tend to be a balance of sediment erosion and deposition, by which is deemed when the sediment entrainment rate is equal to the deposition rate, through a variety of slopes and changes of water level, we can discuss the impact of sediment size on sediment entrainment rate and deposition rate, and find out the range of sediment size in the balance of sediment erosion and deposition; then this size is set to the calculation representative size, and finally introduced into the physiographic soil erosion–deposition model (PSED model) to calculate the suspended sediment concentration. Based on the data of suspended sediment concentration measured, the rationality of the calculation representative size selected is verified and discussed; on the other hand, Tseng-Wen Watershed is selected as the location for the analysis in this case study.
The result shows that, the deposition rate tends to be more sensitive when it is compared with the entrainment rate; besides the sediment size, the changes of the slope and the water level can also make the deposition rate more sensitive than the entrainment rate. Through finding out the sediment size in the balance of sediment erosion and deposition, the size is set to the calculation representative sediment size of the Tseng-Wen Watershed; through the analysis, the representative size range of river in the Tseng-Wen Reservoir Watershed is between 20~70 mm; finally, according to the field sampling data of relevant planning reports, the median diameter of 45.68 mm is adopted; while the size range of the slope is between 0.3~1.3 mm, since the size range data actually sampled is lacked, they can be individually and directly introduced into the model to perform calculations. After the comparison between the rating curve of discharge and suspended load sediment transport rate with the actual measurement and with simulated data, the results are reasonable, which indicates that the calculation representative sediment size of watershed can be found out by this method.
論文目次 摘要......I
Abstract......II
誌謝......IV
目錄......V
表目錄......VII
圖目錄......VIII
第一章 緒論......1
1-1 前言及目的......1
1-2 文獻回顧......2
1-2-1土砂生產量推估相關模式......2
1-2-2地文性土壤沖淤模式......4
1-2-3捲增及沉降相關研究......7
1-3 本文組織......9
第二章 泥砂捲增率及沉降率之探討......10
2-1 泥砂捲增率及沉降率方程式......10
2-2 案例分析對象......11
2-2-1地形......12
2-2-2地質與土壤......13
2-2-3氣候......15
2-3颱風事件分析......16
2-4 地文性土壤沖淤模式之格網劃分......19
2-5 探討粒徑對捲增率及沉降率之影響......22
2-5-1坡度變化影響粒徑......24
2-5-2水深變化影響粒徑......28
2-5-3選定計算代表粒徑......32
第三章 案例模擬分析......34
3-1 柯羅莎颱風事件......35
3-2 聖帕颱風事件......38
第四章 結論與建議......41
4-1 結論......41
4-2 建議......42
參考文獻......43
附錄A 地文性土壤沖淤模式......46
A-1 模式介紹......46
A-2模式建立......46
A-2-1水流演算......46
A-2-2土壤沖淤演算......49
A-3模式演算流程......55
參考文獻 1.中華水土保持學會,「石門水庫集水區治理效益評鑑」,台灣省石門水庫管理局,1989。
2.李亮廷,「集水區降雨特性、溪流流量及輸砂量變異分析─以陳有蘭溪流域為例」,國立成功大學水利及海洋工程研究所碩士論文,2008。
3.李振裕,「集水區水砂生產及輸送之整合研究」,國立成功大學水利及海洋工程研究所碩士論文,2004。
4.李鎮鍵、林昂、蔡元融,「莫拉克颱風引發土砂問題之研究─以曾文水庫集水區為例」,中華防災學刊,第二卷,第一期,第51-58頁,2010。
5.沈少文,「1970-2008年花蓮地區河川流量與輸砂量之頻率分析」,水保技術,第五卷,第三期,第152-166頁,2010。
6.阮香蘭,「石門水庫集水區之河相與輸砂特性之研究」,國立中興大學水土保持學系碩士論文,1992。
7.林孟龍,「颱風對蘭陽溪上游集水區懸移質生產特性的影響」,國立臺灣大學地理學研究所碩士論文,2000。
8.林俐玲,「覆蓋管理因子(C值)之評定」,中美陡坡地土壤流失量推估技術研究論文集,1995。
9.胡蘇澄、盧昭堯、吳益裕、陳台芳,「台灣中部蓮華池地區高粘土含量土壤之紋溝間沖蝕率」,林業試驗所研究報告季刊,第十卷,第一期,第 33-40頁,1995。
10.徐碧治,「降雨特性對洪水懸浮載濃度與懸浮載產砂量影響之研究」,國立成功大學水利及海洋研究所博士論文,2011。
11.馬明明,「台灣中部與台北地區降雨特性及沖蝕性關係之研究」,國立中興大學土木工程學系碩士論文,1995。
12.張明軒,「集水區輸砂量變化與沖積物預算之分析」,國立臺灣大學地理境資源研究所碩士論文,2005。
13.張瑞瑾、謝鑒衡、王明甫、黃金堂,「河流泥沙動力學」,水利電力出版社,武漢水利電力學院,1988。
14.梁惠儀、許振昆、林伯勳、鄭錦桐、冀樹勇,「極端暴雨事件於石門水庫集水區之土壤沖蝕量估算及探討」,中興工程季刊,第一百零六期,第5-15頁,2010。
15.陳金諾,「洪水對河道沖淤及棲地影響之研究」,國立成功大學水利及海洋研究所博士論文,2006。
16.陳建豪,「曾文水庫大埔水文站流量之研究」,國立成功大學水利及海洋研究所碩士論文,2007。
17.陳昱豪,「集水區泥砂產量推估及崩塌地植生復育率之研究」,國立中興大學水土保持學系碩士論文,2006。
18.陳翰霖、張瑞津,「曾文溪流域豪大雨事件的流量及輸砂量」,地理學報,第四十八期,第43-65頁,2007。
19.陳薔諾、蔡智恆、蔡長泰,「地文性土壤沖淤模式與通用土壤流失公式於集水區土壤沖蝕量和產砂量之模擬及比較」,台灣水利季刊,第五十一卷,第三期,第33-46頁,2003。
20.陳麗貞,「沖積平原之洪水沖淤模擬」,國立成功大學水利及海洋研究所碩士論文,2010。
21.黃宏斌,「遮蔽效應對混合粒徑輸砂量之影響探討」,農業工程學報,第五十四卷,第二期,第71-80頁,2008。
22.黃建智,「流域集水區非點源污染模式之研究」,國立成功大學環境工程學系碩士論文,2002。
23.黃重育,「潟湖對排水路排水能力影響之研究」,國立成功大學水利及海洋研究所碩士論文,2007。
24.經濟部水利署水利規劃試驗所,「水庫水理、水質、泥沙量測及運移機制分析」,2005。
25.經濟部水利署南區水資源局,「96年度曾文水庫集水區土地利用及保育防災監測計畫」,2007。
26.經濟部水利署南區水資源局,「曾文水庫集水區整體治理規畫」,2007。
27.歐陽元淳,「水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例」,台灣大學地理環境資源研究所碩士論文,2003。
28.蔡長泰、蔡智恆,「梯形寬頂堰堰流公式適用性之研究」,台灣水利季刊,第四十五卷,第二期,第 29-45頁,1997。
29.錢寧、萬兆惠,「泥沙運動力學」,第三版,科學出版社,新華書店,北京,1991。
30.謝佳玲,「不同土壤沖蝕模式推估土壤流失量之比較」,國立中興大學水土保持學系碩士論文,1998。
31.簡鉦哲,「地文性土壤沖淤模式之研究」,國立成功大學水利及海洋研究所碩士論文,2001。
32.Cao, Z. X., “Turbulent bursting-based sediment entrainment function,” J. Hydraul. Eng., Vol. 123, No. 3, pp. 233-236., 1997.
33.Itakura, T., Kishi, T., “Open channel flow with suspended sediments,” Journal of the Hydraulics Division, ASCE, Vol. 106, No. HY8, pp. 1325-1343, 1980.
34.Lee, D. Y., Lick, W. and Kang, S. W., “The entrainment and deposition of fine-grained sediments in Lake Erie,” J. Great Lakes Res., Vol. 7, pp.264-275., 1981.
35.Liu, W. C., Hsu, M. H., and Kuo, A. Y., “Modelling of hydrodynamics and cohesive sediment transport in Tanshui River estuarine system, Taiwan,” Marine Pollution Bulletin 44, pp.1076-1088, 2002.
36.Meyer, L. D., “How rain intensity affects interrill erosion,” Transactions, ASAE, pp. 1472-1475, 1981.
37.Mutchler, C.K. and Young, R.A., “Soil detachment by raindrops,” Proceedings of sediment-yield workshop, ARS-S-40, USDA, 1980.
38.Sharma, P. P., Gupta, S. C. and Foster, G. R., “Raindrop-induced soil detachment and sediment transport from interrill areas,” Soil Science Society America Journal, Vol. 59, pp. 727-734, 1995.
39.Shimizu, Y., Yamaguchi, H. and Itakura, T., “Three-Dimensional computation of flow and bed deformation,” Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 9, pp. 1090-1108, 1990.
40.Tasi, C. H. and Tasi, C. T., “Velocity and concentration distributions of sediment-laden open channel flow,” Journal of the America Water Resources Association, Vol. 36, No. 5, pp. 1075-1086, 2000.
41.Zhong D.Y., Wang G.Q., and Ding Y., “Bed sediment entrainment function
based on kinetic theory, ” Journal of Hydraulic Engineering, ASCE, Vol. 137, No. 2, pp. 222-233., 2011.

------------------------------------------------------------------------ 第 10 筆 ---------------------------------------------------------------------
系統識別號 U0026-2008201013444400
論文名稱(中文) 矩形等寬渠道中渾水水躍共軛水深關係之研究
論文名稱(英文) Study on Sequent-Flow-Depth Ratios of Hydraulic Jumps of Hyperconcentrated Flow in a Rectangular Chute
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 張良亦
學號 N8697411
學位類別 碩士
語文別 中文
口試日期 2010-05-27
論文頁數 79頁
口試委員 指導教授-詹錢登
口試委員-周憲德
口試委員-林俐玲
口試委員-王志賢
關鍵字(中) 渾水水躍
共軛水深比
含砂濃度
關鍵字(英) Hydraulic jump of hyperconcentrated flow
Sequent-flow-depth ratio
Sediment concentration
學科別分類
中文摘要 水躍是河道水流由超臨界流轉換成亞臨界流的過程,以往水躍研究拘限於清水水躍。台灣地區在颱風豪雨期間河道中的水流往往挾帶大量泥砂而形成渾水水流,有些地方會形成渾水水躍,因此本研究將探討渾水之水躍特性。
本研究主要分為三部份,首先簡要整理前人對清水水躍之研究成果,然後以冪定理流變模式及賓漢流體模式表示渾水之流變特性,進行理論推導矩形渠道上渾水水躍共軛水深比之關係式,並分別探討共軛水深比受渾水含砂濃度、水躍前的水流福祿數及渠床坡度的影響。最後進行矩形渠道上渾水水躍共軛水深比之敏感度分析,探討關係式中水躍前的水流福祿數、渠床坡度、運動黏滯係數、流動指數及比重量等五個參數對水躍共軛水深比之影響。
分析結果顯示,不論以冪定理流變模式或賓漢流體模式表示渾水水躍理論特性,其結果均顯示渾水含砂濃度越大,渾水水躍之共軛水深比越小;而在固定渾水濃度的情形下渾水水躍之共軛水深比會隨水躍前的水流福祿數的增加而增加,也會隨坡度的增加而增加。而敏感度分析結果顯示,水躍前的水流福祿數對水躍共軛水深比的影響較大。
英文摘要 Hydraulic jump is a natural phenomenon in which the supercritical flow is rapidly transformed into a subcritical flow in a channel. In the past, most of study focused on hydraulic jump of pure water. The heavy rainfall brought by typhoon in Taiwan often results in hyperconcentrated flows in channels, and some of hyperconcentrated flows are even to form hydraulic jumps. Due to the lack of knowledge on the hydraulic jump of hyperconcentrated flow, the present study is aimed to investigate the characteristics of hydraulic jumps for flows entrained with sediment.
This study involves three parts. Firstly, we briefly summarized the previous study on hydraulic jump of clear water are. Secondly, using the power-law and Bingham fluid model to describe the rheological properties of hyperconcentrated flows, we derived a theoretical relation of sequent-flow-depth ratio for a hydraulic jump of a hyperconcentrated flow, and discussed the effects of the Froude numbers、bottom slopes、kinematic viscosity、fluid index and specific weight on the sequent-flow-depth ratio. Finally, we conducted the sensitivity analysis for the sequent-flow-depth ratio.
No matter using the power-law model or the Bingham fluid model, the sequent-flow-depth ratio for hyperconcentrated flow decreases with the increase of sediment concentration in the flow. For the case of the same sediment concentration, the sequent-flow-depth ratio increases with the increase of the Froude number or the bottom slope. And the results of sensitivity analysis show that the influence of Froude number on sequent-flow-depth ratio is larger than other parameters.
論文目次 中文摘要 I
Abstract II
誌 謝 III
目 錄 IV
表目錄 VI
圖目錄 VII
符號表 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
1-3 研究方法與流程 2
1-4 本文架構 4
第二章 文獻回顧 5
2-1 清水水躍研究 5
2-2 渾水水躍研究 19
第三章 清水水躍之理論分析 25
3-1 雷諾傳輸定理 25
3-2 質量守恆 27
3-3 動量方程式 30
3-4 清水水躍特性之綜合分析 34
第四章 冪定理模式之水躍特性分析 41
4-1 渾水之流變模式 41
4-2 冪定理模式之渠床剪應力 44
4-3 冪定理模式之水躍共軛水深比關係式 47
4-4 參數敏感度分析 49
4-5 冪定理模式水躍共軛水深比與影響參數之比較分析 50
第五章 賓漢流體模式之水躍特性分析 58
5-1 賓漢流體模式之渠床剪應力 58
5-2 賓漢流體模式之水躍共軛水深比關係式 62
5-3 賓漢流體模式水躍共軛水深比與影響參數之比較分析 63
第六章 結論與建議 71
6-1 結論 71
6-2 建議 71
參考文獻 73
附錄A 渾水水躍共軛水深比關係式之推導 76
參考文獻 1. Belanger, J. B. (1828), “Essai sur la solution numeric de quelques problem relatifs an movement permanent des causcourantes” (in French) (“Essay on the numerical solution of some problems relative to the steady flow of water.”) Carilian-Goeury, Paris.
2. Berezin et al. (2001), “Hydraulic jump on shallow layers of non-Newtonian fluids.” Journal of Non-Newtonian Fluid Mechanics, Vol.101, p.139-148.
3. Bidone, G. (1819), “Observations sur le hauteur du ressaut hydraulique en 1818.” Report (in French) (“Observations on the height of the hydraulic jump in 1818”) Royal Academy of Science of Turin, Italy.
4. Chow, V. T. (1959). Open channel hydraulics. McGraw-Hill Book Company, New York.
5. Demetriou, J. D. (2005), “Unique length and profile equations for hydraulic jump in sloping channels.” 17th Canadian Hydrotechnical Conference, p.891-898, Canada.
6. Demetriou, J. D. (2006), “Tractive force along repelled hydraulic jump within inclined channel.” XXX Convegno di Idraulica et Construzioni IDRA, Italy.
7. Ead, S. A., Rajaratnam, N. (2002), “Hydraulic jump on corrugated beds.” Journal of Hydraulic Engineering, Vol. 128, No. 7, p.656-663.
8. Elevatorski, E. A. (1959). Hydraulic Energy Dissipators. McGraw-Hill Book Company, New York.
9. French, R. H. (1986). Open channel hydraulics. McGraw-Hill Book Company, New York.
10. Henderson, F. M. (1966). Open channel flow. Macmillan, New York.
11. Hughes, W. C., and Ernest Flack, J. (1984), “Hydraulic jump properties over a rough bed.” Journal of Hydraulic Engineering, Vol. 110, No. 12, p.1755-1771.
12. Jan, C. D. and Chang, C. J. (2009), “Hydraulic jump in an inclined rectangular chute contraction.” Journal of Hydraulic Engineering, Vol. 135, No. 11, p.949-958.
13. Ng, C. O. and Mei, C. C. (1994), “Roll waves on a shallow layer of mud modeled as a power-law fluid.” Journal of Fluid Mechanics, Vol. 263, p.151-183.
14. Ohtsu, I. and Yasuda, Y. (1991), “Hydraulic jump in sloping channels.” Journal of Hydraulic Engineering, Vol. 117, No. 7, p.905-921.
15. Press, M. J. (1961), “The hydraulic jump.” Engineering honours thesis presented to the University of Western Australia, Nedlands, Australia.
16. Rajaratnam, N. (1968), “Hydraulic jumps on rough beds.” Tans. Engineering Institute, Canada, 11(A-2), p.1-8.
17. Rajaratnam, N. and Subramanya, K. (1968), “Profile of the hydraulic jump” Journal of Hydraulic Division, Proc. ASCE, Paper, No. 5931, p.663-673.
18. Shu and Zhou (2006), “Characteristics of a hydraulic jump in Bingham fluid.” Journal of Hydraulic Research, Vol.0, No.0, p.1-6.
19. Silvester, R. (1964), “Hydraulic jump in all shapes of horizontal channels.” Journal of Hydraulic Division, ASCE, Vol. 90, No. 1, p.23-55.
20. Subramanya, K. (1997). Flow in open channels. McGraw-Hill Book Company New York.
21. Tevzadze and Kukhalashvili (1991), “Calculation of conjugate depths of a hydraulic jump.” Translated from Gidrotekhnicheskoe Stroitel’stvo, No.12, p.45-47.
22. Wan, Z. (1982), “Bed material movement in hyperconcentrated flow.” Series Paper 31. Inst. Hydrodynamics and Hydraulic Engineering, Technical University of Denmark.
23. Wu, S. and Rajaratnam, N. (1995), “Free jump, submerged jump and wall jets.” Journal of Hydraulic Research, Vol. 33, No. 2, p.197-212.
24. 王志賢 (2007),「泥砂顆粒組成對黏姓土石流體流變參數影響之研究」,國立成功大學水利及海洋工程研究所博士論文。
25. 余昌益 (1996),「高含砂水流流變參數之實驗研究」,國立成功大學水利及海洋工程研究所碩士論文。
26. 陳弘殷 (1998),「阿公店水庫淤泥之流變特性」,國立成功大學水利及海洋工程研究所碩士論文。
27. 張家榮 (2008),「斜坡矩形束縮渠道斜震波及水躍研究」,國立成功大學水利及海洋工程研究所博士論文。
28. 詹錢登、張家榮 (2005) “斜坡矩形束縮渠道上的水躍特性” 中國土木水利工程學刊,Vol. 17(2),第227-233頁,台灣。
29. 錢寧、萬兆惠 (1983),「泥砂運動力學」,科學出版社,北京。
30. 謝平成 (1997),「明渠水力學」,曉園出版社,台北。

------------------------------------------------------------------------ 第 11 筆 ---------------------------------------------------------------------
系統識別號 U0026-2707201110012900
論文名稱(中文) 降雨特性對洪水懸浮載濃度與懸浮載產砂量影響之研究
論文名稱(英文) Impact of Rainfall Characteristics on Suspended Sediment Concentration and Sediment Yield during Storms
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 徐碧治
學號 n8893103
學位類別 博士
語文別 中文
口試日期 2011-07-15
論文頁數 144頁
口試委員 指導教授-蔡長泰
口試委員-許銘熙
口試委員-楊錦釧
口試委員-蔡光榮
口試委員-劉正千
口試委員-蕭政宗
口試委員-蔡長泰
關鍵字(中) 入滲量
臨前降雨指數
超滲雨量
尖峯懸浮載濃度
產砂量
預測公式
荖濃溪
地文性土壤沖淤模式
關鍵字(英) Infiltration
antecedent precipitation index
excess rainfall
peak suspended sediment concentration
sediment yield
prediction formulas
Laonong River
PSED model
學科別分類
中文摘要 豪雨期間之高含砂濃度的洪水現象,影響水利設施與水資源利用。因為洪水之懸浮載輸運率與變量流水理性質有關,故流量-懸浮載率定曲線只代表一粗略的平均關係。應用集水區沖蝕及沉滓輸運數學模式可推測較可靠的懸浮載輸運率。但數學模式演算較為費時。故為降雨期間水資源利用之需要,應發展可迅速推測懸浮載濃度及產砂量的方法。
每一個集水區的地形、地貌、土壤、地質與水系分佈等地文特性造成該集水區獨特之降雨期間土壤沖淤與沉滓輸運特性,因此對特定之集水區在每一降雨事件過程中的懸浮載輸運與產砂量主要受降雨特性的影響,本研究旨在發展特定集水區降雨事件之降雨特性與懸浮載尖峯濃度與產砂量之關係,建立特定集水區降雨事件懸浮載尖峯濃度與產砂量之預測模式,以提供水利設施之運轉策略之研擬。
因降雨事件之雨量需超過初期損失量及入滲量,才會形成地表逕流沖蝕地表土壤挾運入河,本研究發展降雨期間以入滲係數及降雨強度計算入滲量的方法。由於土壤含水量影響入滲率,故由歷史降雨事件之臨前降雨指數 及水文站流量歷線之基流分離,可得出水文站集水區之 與入滲係數的關係式,並應用於預測降雨事件發生期間之集水區入滲係數及入滲率。
本研究由有關洪水期間之懸浮載量測報告推論影響降雨事件之懸浮載尖峯濃度之重要因子包括降雨事件之第一個尖峯降雨強度 、降雨沖蝕因子 及臨前降雨指數 ;由有關降雨事件之產砂量量測報告之檢討,推論影響降雨事件之懸浮載產砂量的重要因子包括降雨事件之降雨量 、懸浮載產砂量因子 及臨前降雨指數 。
本研究以高屏溪上游主流荖濃溪六龜水文站集水區為測試案例,探討上述懸浮載尖峯濃度及產砂量預測方法之實用性。因六龜站雖有流量歷線記錄,但沒有連續的懸浮載量測記錄,因此本研究應用地文性土壤沖淤模式模擬1998 -2004共9場降雨事件以檢定模式參數,並以1995與2001之2場降雨事件驗證模式參數之檢定結果,顯示地文性土壤沖淤模式及本研究發展之變動入滲率可有效模擬降雨期間之入滲率及洪流現象。
由上述9場檢定事件模擬之懸浮載輸運率歷線及產砂量之分析結果,檢定適用於六龜水文站之懸浮載尖峯濃度及產砂量之預測公式,進而以2場降雨事件驗證,顯示預測公式具有良好的實用性。發生於民國98年之莫拉克颱風豪雨,雖沒有流量記錄以驗證洪水流量模擬結果,但由模擬結果之懸浮載尖峯濃度及產砂量與預測公式預測值頗符合,顯示具有良好的實用性。
英文摘要 During storm events, high suspended sediment concentration in flood waters affects hydraulic facilities and use of water resources. As the suspended sediment transport rate is related to hydraulic properties of unsteady flows, the discharge-suspended sediment transport rate rating curve can only reflect an average relationship between them roughly. A more credible suspended sediment transport rate can be predicted by using mathematical models for erosion-deposition in catchments and sediment transport. In light of time-consuming calculations of these mathematical models, however, methods capable of estimating suspended sediment concentration and sediment yield rapidly should be developed to meet needs for use of water resources during storm events.
Catchments’ physiographical characteristics, including topography, landform, soil and stream patterns, lead to unique characteristics of soil-deposition and sediment transport in the catchments during storm events, therefore, for a specific catchment, the suspended sediment transport and sediment yield are mainly affected by rainfall characteristics during every storm event. This study is intended to develop a correlation of rainfall characteristics with suspended sediment peak concentration and sediment yield and to build a model for estimating suspended sediment peak concentration and sediment yield for a specific catchment during storm events, so as to assist in working out the operational strategies of hydraulic facilities.
During storm events, the rainfall will generate surface runoffs that scour the surface soil and bring the soil into rivers only after exceeding the initial loss and infiltration, thus, a method is developed in this study to estimate the infiltration by using infiltration coefficients and rainfall intensity. As soil moisture has impact on the infiltration rate, the relation between the antecedent precipitation index and the infiltration coefficient of catchments in an observation station can be concluded from in the past storm processes and base flow separation of the flow hydrograph of the observation station, and such relation can be used to predict the infiltration coefficient and infiltration rate of the catchments when storm events occur.
In this study, it is concluded from measurement reports on suspended sediment in storm processes that important factors affecting peak suspended sediment concentration also include the first peak rainfall intensity , rainfall erosion factor and antecedent precipitation index during storm events. Through examination of measurement reports of sediment yield during storm events, it is concluded that important factors that affect suspended sediment yield should include rainfall amount , suspended sediment yield factor and antecedent precipitation index during storm events.
This study focuses on the catchment of Liau-Kwei observation station along Laonong River — a mainstream in the upper reaches of Gaoping River—as a pilot example to explore applicability of the aforesaid methods for estimating peak suspended sediment concentration and sediment yield. Given that Liau-Kwei observation station has records of flow hydrograph but does not have continuous measurement records of suspended sediment, this study adopts the Physiographic Soil Erosion-Deposition Model to simulate nine storm events during 1998-2004 to examine the parameters used in the model, and selects two storm events occurring in 1995 and 2001 respectively to verify examination results of the parameters. The results show that the Physiographic Soil Erosion-Deposition Model and the variable infiltration rate developed in this study are effective in simulating infiltration rate and flooding during storm events.
Based on the above-mentioned analysis results of simulated suspended sediment transport rate hydrograph and sediment yield during the examined nine storm events, the study examines the prediction formulas applicable to peak suspended sediment concentration and sediment yield at Liau-Kwei observation station and verifies the formulas with two storm events, and the results indicate good applicability of these formulas. Though no flow measurement data is available to validate simulation results of flood flows for the storm event occurring during Typhoon Morakot in 2009, the prediction formulas still indicate good applicability as the relation between peak suspended sediment concentration and rainfall characteristics factors conforms to the prediction formulas, based on the simulation results.
論文目次 中文摘要 Ⅰ
Abstract Ⅲ
誌謝 Ⅵ
目錄 Ⅶ
表目錄 Ⅹ
圖目錄 ⅩⅠ
符號說明 ⅩⅥ

第一章 緒論
1-1緣起與目的1
1-2文獻回顧 3
1-2.1降雨逕流 3
1-2.2降雨初期損失與入滲 5
1-2.3懸浮載濃度 7
1-2.4懸浮載輸運率及集水區產砂量 9
1-3研究方法 12
1-4研究架構 13
1-5本文組織 16

第二章 理論分析
2-1懸浮載支配因子 18
2-1.1懸浮載尖峯濃度支配因子 18
2-1.2懸浮載產砂量支配因子 22
2-2超滲雨量 24
2-2.1降雨初期損失量 25
2-2.2入滲量 27
2-2.3入滲率 31
2-3地文性土壤沖淤模式 33
2-3.1集水區格網佈置 33
2-3.2降雨-逕流演算:水深與流量 34
2-3.3 土壤沖淤演算:懸浮載體積濃度及底床變動 36
2-3.4演算方法 42

第三章 荖濃溪集水區地表逕流現象分析
3-1荖濃溪集水區 44
3-1.1集水區概況 44
3-1.2格網佈置 45
3-2水文資料 51
3-2.1降雨事件 51
3-2.2六龜水文站流量歷線分析 51
3-3集水區超滲雨量 61
3-3.1計算方法 61
3-3.2計算結果與討論 64
3-4驗證 79

第四章 荖濃溪懸浮載輸運現象之模擬
4-1演算結果與討論 81
4-1.1演算結果與實測值比較 87
4-1.2懸浮載產砂量 92
4-1.3修改型通用土壤流失公式(MUSLE)之比較 93
4-2懸浮載濃度歷線與川流式水資源利用 96
4-3懸浮載輸運率歷線 100
4-4小結 104

第五章 洪水懸浮載尖峯濃度與產砂量之研究
5-1預測模式之檢定 107
5-1.1懸浮載尖峯濃度 108
5-1.2懸浮載產砂量 110
5-2驗證 112
5-2.1懸浮載尖峯濃度 112
5-2.2懸浮載產砂量 114
5-3超大豪雨之應用--莫拉克颱風 115
5-4小結 118

第六章 結論與建議
6-1結論120
6-2建議 121

參考文獻123
附錄A 140
附錄B 141
作者簡歷 143
參考文獻 1. 高屏溪流域管理委員會,「96年高屏溪流域管理工作執行年報」,第25頁,2008。
2. 台灣省水利局,「高屏溪治理規劃報告」,1981。
3. 經濟部水利署南區水資源局,曾文水庫水質調查及改善後計畫,2003。
4. 經濟部水利署南區水資源局,「曾文水庫集水區泥砂產量推估模式計劃」,2004。
5. 經濟部水利署南區水資源局,「高屏溪攔河堰高濁度缺水分析及改善策略檢討計劃」,台南,2007。
6. 王如意,「應用水文學」,中國土木水利工程學會1998。
7. 王毓麒,「分布型水文模式於消洪減災及未量測集水區逕流歷線之推估」,國立成功大學水利及海洋研究所博士論文,2006。
8. 王惟盈,「後龍溪河口水質與懸浮顆粒之調查與分析研究」,國立聯合大學防災科技研究所碩士論文,2007。
9. 江介倫,葉家勳、黃國禎,「台灣地區河川懸浮載空間分佈特性探討」,第十六屆水利工程研討會,2007,第804-811頁,2007。
10. 江陽聖,陳錕山,梁隆鑫,王志添,「以SPOT影像及數值地形模型推估集水區產砂量」,第十二卷,第四期,第447-456頁,2007。
11. 朱怡亭,「玉峰集水區颱風暴雨中心與崩塌地時空分布對河川懸移質輸砂濃度的影響」,國立臺灣大學地理環境資源研究所碩士論文,2007。
12. 何智武,「台灣河川上游集水區之泥砂來源與控制」,中華水土保持學報,第十五卷,第一、二期,第15-25頁,1984。
13. 汪正忠,「山坡地開發對逕流、入滲及泥砂產量影響之研究」,第十九卷,第二期,第63-74頁,1988。
14. 林三益,「水文學」,大揚出版社,第6-17頁,2001。
15. 林永禎,徐貴新,「實用水文學」,高立圖書,第196-197頁,2005。
16. 林孟龍,「颱風對於蘭陽溪上游集水區懸移質生產特性之影響」,地理學報,第三十三卷,第39-53頁,2003。
17. 林彥均,「混合流況下非均質動床之數值模擬」,國立成功大學水利及海洋研究所碩士論文,2009。
18. 林俐玲,「覆蓋管理因子(C值)之評定」,中美陡坡地土壤流失量推估技術研究論文集,1995。
19. 林偉雄,「荖濃溪斷層做為台灣南部新、古第三系界限斷層的檢討」,經濟部中央地質調查所彙刊,第十二號,第1-24頁,1999。
20. 金雁海,柴建華,朱智紅,「內蒙古黃土丘陵區次降雨條件下坡面土壤侵蝕影片因子研究」,水土保持研究,第十三卷,第六期,第192-194頁,2006。
21. 吳慶現,郭聯德, 經濟部水利署水利規劃試驗所96年度成果發表會,2007。
22. 胡蘇澄,盧昭堯,吳益裕,陳台芳,「台灣中部蓮華池地區高黏土含量土壤之紋溝間沖蝕率」,林業試驗所研究報告季刊,第十卷,第一期,第33-40頁,1995。
23. 徐碧治,「季節強烈對比地區之年懸浮載時間分佈: 荖濃溪」,南榮學報,ppB12-1-20,2008。
24. 許盈松,蔡俊鋒,魏綺瑪,黃宏莆,「水庫泥砂濁度與濃度率定關係研究—以石門水庫為例」,農業工程學報,第五十三卷,第一期,第62-71頁,2007。
25. 張瑞瑾、謝鑒衡、王明甫、黃金堂,「河流泥砂動力學」,水利電力出版社,武漢水利電力學院,1988。
26. 黃中信,「三爺溪流域綜合治水建置合適滯洪池設施之效益評析」,國立成功大學碩士論文,2007。
27. 楊道昌,游保杉,「目標函數對連續型降雨逕流模式率定之影響」,台灣水利,第四十五卷,第四期,第66-73頁,1997。
28. 蔡長泰,白進忠,「曾文溪之懸浮載輸運量」,第八屆水利工程研討會,第321-328頁,1996。
29. 蔡長泰,蔡智恆,「梯形寬頂堰堰流公式適用性之檢討」,台灣水利季刊,第四十五卷,第二期,第29-45頁,1997。
30. 萬鑫森、黃俊義,「台灣坡地土壤沖蝕」,中華水土保持學報,第二十卷,第二期,第17-45頁,1989。
31. 潘成忠,上官周平,「黃土區土壤質地對坡面產流產砂過程的影響」,中華水土保持學報,第三十五卷,第一期,第45-52頁,2004。
32. 劉培娟,馬文貴,楊吉華,孫友,李建偉,陳安強,「魯中南山區徑流小區不同坡度條件下四種植被的水土流失規律研究」,第十四卷,第六期,第357-359頁,2007。
33. 錢寧、萬兆惠,「泥砂運動力學」,第三版,科學出版社,新華書店,北京,1991。
34. 盧光輝,「降雨沖蝕指數之修訂」,中華水土保持學報,第三十卷,第二期,第87-94頁,1999。
35. 謝明霖,「遙測技術應用於懸浮載泥砂濃度定量估算之研究」,國立成功大學水利及海洋研究所博士論文,2009。
36. Agrawal Y. C. and Pottsmith, H. C., ” Laser diffraction particle sizing in STRESS”, Continental Shelf Res., 14(10/11), pp1101-1121,1994.
37. Ariathurai, R. and Arulanandan, K, ” Erosion rates of cohesive soils”, Journal of the Hydraulics Division, ASCE, 104(HY2), pp279-283, 1978.
38. Asselman, N., ” Suspended sediment dynamics in a large drainage basin: the river Rhine.”, Hydrological Processes, 13, pp1437-1450, 1999.
39. Asselman, N., ” Fitting and interpretation of sediment rating curve.”, Journal of Hydrology, 234, pp228-248, 2000.
40. Ayalon, A., Miryam, B.M. and Eytan, S., ” Rainfall-recharge relationships within a karstic terrain in the Eastern Mediterranean semi-arid regions, Israel: and characteristics”, Journal of Hydrology, 207, pp18-31, 1998.
41. Bathurst, J.C., ” Physically-based distributed modeling of an upland catchment using the Systeme Hydrologique European “, Journal of Hydrology, 87, pp103-123, 1986.
42. Bastin, G..B., Lorent, C. Duque and M. Gevers, ” Optimal Estimation of the Average Areal Rainfall and Optimal Selection of Rain Gauge Locations” , Water Resources Research, 20(4), pp463-470, 1984.
43. Bearsley, D.B., Huggins, L.F. and Monke, E.J., ” ANSWERS: a model for watershed planning”, Transaction of the ASCE, 23, pp938-944,1980.
44. Bell, V.A., and Moore, R.J. , ” A grid-based distributed flood forecasting model for use with weather radar data: Part 1,Formation”, Hydrology and Earth System Sciences, 2(2-3), pp261-281, 1988A.
45. Bell, V.A. and Moore, R.J., ” A grid-based distributed flood forecasting model for use with weather radar data: Part 1,Case Studies”, Hydrology and Earth System Sciences, 2(2-3), pp283-298, 1988B.
46. Bergtrom, S., ” The HBV model-its structure and applications”, SMHI Report RH, No.4, Norrkoping, 1992.
47. Black, K.P., and Rosenberg, M.A.,” Suspended sand measurements in a turbulent Environment: Field comparison of optical and pump sampling techniques”, Coast Engrg., 24, pp137-150, 1994.
48. Black, K.P. and Rosenberg, M.A.,” Suspended sand measurements in a turbulent environment: Field comparison of optical and pump sampling techniques”, Coastal Engineering, 24, pp137-150, 1994.
49. Bosman, J.J., Van der Velden ETJM, C.H., Hulsbergen, ” Sediment concentration measurement by transverse suction”, Coastal Engineering, 11, pp353-370, 1987.
50. Bricknell, B.R., Imhoff, J.G., Donigian, A.S. and Johanson, R.G., ” Hydrological simulation program-RORTRAN(HSPF)”,User’s Manual for release 11. EPA-600/R-97/080.United States Environmental Protection Agency, Athens, GA, 1997.
51. Campell, F.B. and Bauder, H.A., “A rating curve method for determining silt-discharge of stream,”Trans. –Am, Geophys. Union, 21, pp603-607, 1940.
52. Cerda, A., ” Seasonal changes of infiltration rates in a Mediterranean scrubland on limestone”, Journal of Hydrology, 198, pp209-225, 1997.
53. Chen, S.C., Chien S., Ferng, J.W. and Wu, C.M., ” Development of Soil Erosion Index Model in Taiwan Watershed”, Journal of Chinese Soil and Water Conservation, 29(3), pp233-247, 1998.
54. Chen, C.N., Tasi, C.H. and Tasi, C.T., ” Simulation of sediment yield from watershed by physiographic soil erosion-deposition model”, Journal of Hydrology, 327, pp293-303, 2006.
55. Childs, E.C. and Bybordi, M.,” The vertical movement of water in stratified porous material.1.infiltration”, Water Resources Research, 5(2), pp446-459, 1969.
56. Chow, J.A., Maidment, D.R. and Mays, L.W., Applied Hydrology
, McGraw-Hill,United States, pp153-155, 1988.
57. Chu, X., and Marino, M.A., ” Determination of ponding condition and infiltration into layered soils under unsteady rainfall”, Journal of Hydrology, 313, pp195-227, 2005.
58. Cunge,J.A.,” Two-dimensional Modeling of Floods Plans”, chap.17 of Unsteady Flow in Open Channels,vol2,edited by K. Mahmood and Yerjevich, Water Resources Publications, P.O.Box303, Fort Collins, Colorado. 80522, U.S.A. ,1975.
59. Dadson, S.J., Hovius, N., Chen, H, Dade, W.B., Hsieh, M.L., Willett, S.D., Ching, H.J., Horng, M.J., Chen, M.J., Stark, C.P., Lague, D. and Lin, J.C., Links between erosion, runoff, variability and seismicity in the Taiwan orogen, Nature, 426, pp648-651, 2003.
60. Dendy, F.E. and Bolton, G.C.,” Sediment yield-runoff-drainage area relationship in the United States”, Journal of Soil and Water Conservation, 31, pp264-266, 1976.
61. Druce, J.D.,” Insights from a history of seasonal flow forecasting with a conceptual hygrologic model”, Journal of Hydrology , 249, pp102-112, 2001.
62. Duan, N., ” Smearing estimate: a nonparametric retransformation method” Journal of the American Statistical Society ,78, pp605-610, 1983.
63. Einstein, H.A., Anderson, A.G. and Johnson, J.W., ” A Distinction Between Bed-Load and Suspended-Load in Natural Streams”, Trans., Am., Geophys., Union, vol.21,pt. 2, 1940.
64. Ferguson, R.I., ” River loads underestimated by rating curves.”, Water Resources Research, 22, pp74-76, 1986.
65. Flanagan, D.C., Ascough II, J.C., Nearing, M.A., and Laflen, J.M., ” The water erosion prediction project(WEPP) model”, In: Harmon, R.S., Doe III,W.W.(Eds.), Landscape Erosion and Evolution Modeling. Kluwer Academic , New York, pp145-199, 2001.
66. Fourier, F., ” Climat et erosion: Ia relation entre I’erosion du sol par I’eau et les precipitation atmospheriques ”, Presses Universitaires de France, p203, 1960.
67. Freeze, R.A. and Harlan, R.L.,” Blueprint for a physically-based digitally-simulated hydrologic response model”, Journal of Hydrology 9, pp237-258, 1969.
68. Garcia, M.H.,”Sedimentation Engineering”, Manual 110,ASCE,20,2007.
69. Graf, Hydraulics of Sediment Transport , pp189-194,1971A.
70. Graf, Hydraulics of Sediment Transport , pp235-238,1971B.
71. Green, W.H. and Ampt, G.A. , ” Studies on soils physics, part Ι,the flow of air and water through soils”, J. Agric. Sci., 4(1), pp1-24, 1911.
72. Gregory, K.J. and Walling, D.E., Drainage Basin Form and Process, London, Arnold, pp458, 1973.
73. Hairsine, P.B., Sander, G.C., Rose, C.W., Parlange, J.-Y., Hogarth, W.L. and Lisle,I., ” Unsteady soil erosion due to rainfall impact: a model of sediment sorting on the hillslope”, Journal of Hydrology, 220, pp115-128, 1999.
74. Hansen, V.E., Israelson, O.A. and Stingham, G., Irrigation Principles and Pratice, New York,pp52,1980.
75. Horton, R.E., ” Analysis of runoff plot experiments with varying infiltration capacity”, Trans.Am.Geophys.Union, 20, pp693-711, 1939.
76. Hrissanthou V., ” Estimate of sediment yield in a basin without sediment data”, CARENA , 64, pp333-347, 2005.
77. Hsu, P.C., Chen , C.N. and Tsai,C.T. ” Impact of Rainfall Characteristics on Suspended Sediment Transport and Sediment Yield In Laonong River,Taiwan”, International Symposium in Pacific Rim, Taipei, Taiwan , pp169-179, 2010.
78. Hsu, P.C., Chen , C.N. and Tsai,C.T., “Real-time Prediction of the Peak Suspended Sediment Concentration and Sediment Yield of the Lao-Nung River during Storms Using Rainfall Characteristics Factors”, International Journal of Sediment Research,26(2),pp163-180,2011.
79. Itakura, T. and Kishi, T.,” Open channel flow with suspended sediments”, Journal of Hydraulics Division, ASCE, vol.106, No.HY8, pp1325-1343, 1980.
80. Jarocki, W., A Study of sediment, translated from Polish (1957), Nat. Sci. Found. and U.S. Dept. of Int., Washington , D.C, 1963.
81. Jeje, L.K., Ogunkoya, O.O. and Oluwatimlehin, J.M., “ Variation in suspended sediment concentration during storm discharge in three small streams in upper osun basin, central western Nigeria”, Hydrological Processes, 5, pp361-369,1991.
82. Knisel, W.G.,” CREAMS: A Field Scale Model for Chemicals , Runoff and Erosion from Agricultural Management Systems ”, USDA,1980.
83. Kothyari, U.C., Tiwari, A.K. and Singh, R.,” Estimation of temporal variation of sediment yield from small catchments through the kinematic method”, Journal of Hydrology, 203, pp39-57, 1997.
84. Kumar, S. and Rastogi, R.A.,”A Conceptual catchment model for estimating suspended sediment flow”, Journal of Hydrology, 98, pp155-163, 1987.
85. Law, D.J., Bale, A.J. and Jones, S.E. , ”Adaptation of focused beam reflectance measurement to in-situ particle sizing in estuaries and coastal waters”, Marine Geol., Amsterdam, 140(1-2), pp47-89,1997.
86. Lambin, E.F. and Ehrlich, D.,”Land-cover change in sub-saharan Africa(1981-1991): Application of change index based on remotely sensed surface temperature and vegetation indices at a continental scale”, Remote Sensing of Environment, 61, pp181-200,1997.
87. Lee,K.T. and Yen,B.C.,”Geomorphology and kinematic-wave based hydrograph derivation”, J.Hydr. Engrg, ASCE, 123(1),pp73-80,1997.
88. Lee, H.Y. and Singh,V.,P.,” Prediction of sediment yield by coupling Kalman filter with instantaneous unit sediment graph ”, Hydrological Processes, 13, pp2861-2875,1999.
89. Lee, H.Y. , Hsieh, H.M. and Yang,C.T., User’s Manual for NETSTARS (Network Sediment Transport Model for Alluvial River Simulation)
,ppD-35,2003.
90. Leopold, L.B. and Maddock, T.,” The Hydraulic geometry of stream channels and some physiographic implications”, U.S. Geol. Survey, Prof. Paper 252,1953.
91. Li,X.T.,Lai,W.,Wang,Q.Xu and Zhao,J.,”Capacitance sensors for measuring suspended sediment concentration”, Catena, 60, pp227-237 ,2005.
92. Li, Y.W. and Fang, M.,” An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data”, Continental Shelf Res., 18, pp487-500, 1998.
93. Linsley, R.L. and Franzin, J.B., Water Resources ,2ND ed. McGrow-Hill Book Company, N.Y. U.S.A., pp13, 1995A.
94. Linsley, R.L. and Franzin, J.B., Water Resources ,2ND ed. McGrow-Hill Book Company, N.Y. U.S.A., pp43, 1995B
95. Linsley, R.L.,Kohler,M.A.and Paulhus,J.L., Hydrology for Engineers ,2ND ed. McGrow-Hill Book Company, N.Y. U.S.A., pp405-408, 1975A.
96. Linsley, R.L.,Kohler,M.A.and Paulhus,J.L., Hydrology for Engineers ,2ND ed. McGrow-Hill Book Company, N.Y. U.S.A., pp257-260, 1975B
97. Linsley, R.L.,Kohler,M.A.and Paulhus,J.L., Hydrology for Engineers ,2ND ed. McGrow-Hill Book Company, N.Y. U.S.A.,pp230-233,1975C.
98. Mchenry,J.R.,Coleman,N.L.,Wills,J.C.,Murphree,C.E.,Bolton,G.C.,Sansom,O.W. and Gill,A.C,”Performance of nuclear-sediment concentration gauges”, Proc., Isotopes in Hydrology SYmp., International Atomic Energy Agency, Vuenna, pp207-225.,1967.
99. Meade, R.H., Yuzyk, T.R.and Day, T.J., ” Movement and storage of sediment in rivers of the United States and Canada. In: Surface Water”, Hydrology. Geological Society of America, Boulder, Colorado, pp255-280, 1990.
100. Mehta A.J.,Hayter,E.J., Parker,W.R.,Krone R.B. and Teeter, A.M.M”Cohesive sediment transport I:process description”,Journal of Hydraulic Engineering,115(8),pp1076-1093,1989.
101. Meyer,L.D.,”How rain intensity affects interrial erosion”,Transaction,ASAE,pp1472-1475, 1981.
102. Meyer-Peter, E. and Muller, R., Formula for bed-load transport, Proceeding of International Association for Hydraulic Research, 2nd meeting, Stockholm, 1948.
103. Michel, C., Andreassin,V. and Perrin,C.,”Soil Concentration Service Curve Number method :how to mend a wrong soil moisture accounting procedure ”, Water Resources Reasearch, 41, 2005.
104. Milliman, J.D. and Meade, R.H.,”World-wide delivery of river sediment to the oceans”, Journal of Hydrology, 91, pp1-21,1983.
105. Mimikou, M. and Rao, A.R., “Regional monthly rainfall-runoff model”, Journal of Water Resource Planning and Management”, 109(1), pp75-83, 1983.
106. Mishra, S.K., Tyagi, J.V., Singh, V.P. and Singh, R., ” SCS-CN-based modeling of sediment yield”, Journal of Hydrology, 324, pp301-322, 2006.
107. Misra, R.K. and Rose, C.W., Annual for use of program GUEST , Division of Australian Environmental Studies Report, Griffith University, Brisbane, Qid,1990.
108. Moore, R.,J.,”A Dynamic Model of Basin Sediment Yield”, Water Resources Research, 20, pp89-103,1984.
109. Moran, P. A.P., ” Dams in a serious with a continuous release ”, J. Appl. Prob.4,pp380-388, 1971.
110. Morgan,R.P.C.,Quinton,J.N.,Smith,R.E.,Govers,G.,Poesen,J.,Auserwald,K.,Chisei,G.,Torri,D. and Styezen,M.E.,” The European Soil Erosion Model(EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments”, Earth Surface Processes and Landforms, 23, pp527-544,1998.
111. Mossa, J.,” Discharge-sediment dynamics of the lower Mississippi River”, Transactions-Gulf Coast Association of Geological, pp303-314,1988.
112. Mossa, J.,” Sediment dynamics in the lowermost Mississippi River”, Engineering Geology, 45, pp457-479,1996.
113. Musgrave, G.W.,” The quantitative evaluation of factors in water erosion, a first approximation”, Journal Soil and Water Conservation, 2, pp133-138, 1947.
114. Mutchler, C.K. and Yong, R.A.,”Soil detachment by raindrops”, Proceedings of sediment-yield workshop,ARS-S-40,USDA,1975.
115. Neitsh, S.L., Amold, J.G., Kiniry, J.R., Williams, J.R. and King K.W.,” Soil and Water Assessment Tool Theoretical Documentation. Version 2000.RWRI Report TR-191”, Texas, Water Resources Institute College Station, TX, 2002.
116. Nordin, C.F., and Dempster, G.R., ” Vertical Distribution of Velocity and Suspended Sediment” ,Middle Rio Grande, New Mexico, U.S. Geol. Survey, Prof. Paper 462-B,1963.
117. Novotny, V. and Olem, H.,”Water Quality: Prevention Identification, and Management of Diffuse Pollution”, Wiley, New York, 1994.
118. Pan, T.Y, Wang, R.Y. and Lai, J.S.,”A deterministic linearized recurrent neural network for recognizing the transition of rainfall-runoff processes”, Advanced in Water Resources, 30, pp1797-1814, 2007.
119. Parchure, T.M. and Mehta, A.J.,” Erosion of soft cohesive sediment deposits”, Journal of Hydraulic Engineering, ASCE,111(10),pp1308-0326, 1985.
120. Parlange, J.-Y., Hogarth, W.L., Rose, C.W., Sander, G.C., Hairsine, P. and Lisle, I. , ” Addendum to unsteady soil erosion model”, Journal of Hydrology, 217, pp149-156, 1999.
121. Philip, J.R.,” The Theory of infiltration: 1, The infiltration equation and its solution”, Soil Sci., 83(5), pp345-357,1957.
122. Phillips, J.M., Webb, B.W., Walling, D.E. and G.J.L., Leeks, “ Estimating the suspended sediment loads of river in the LOIS study area using infrequent samples”, Hydrological Processes ,13, pp1035-1050,1999.
123. Picouet, C., Hingray, B. and Olivery, J.C.,” Empirical and conceptual modeling of the suspended sediment dynamics in a large tropical African river: the Upper Niger river basin”, Journal of Hydrology, 250, pp19-39, 2001.
124. Plate, E.J., Ihringer, J. and Lutz, W. , ” Operation models for flood calculation”, Journal of Hydrology, 100, pp489-506, 1988.
125. Rendon-Herrero, O.,” Unit Sediment Graph”, Water Resources Research, 14, pp889-901,1978.
126. Restrepo, J.D., Kjerfve, B., Hermelin, M. and Restrepo, J.C., ” Factors Controlling sediment yield in a major South American drainage basin: the Magdalena River ,Colombia”, Journal of Hydrology, 316, pp213-232, 2006.
127. Rovira, A., and Batalla, R.J.,” Temporal distribution of suspended sediment transport in a Mediterranean basin: The Lower Tordera (NE SPAIN),” Geomorphology, 79, pp58-71, 2006.
128. Schmidt, K.H., and Morche, D.,”Sediment output of effective discharge in two small high mountain catchments in the Bavarian Alps, Germany” , Geomorphology, 80, pp131-145,2006.
129. Seeger, M., Errea, M.-P., Begueria, S., Arnaez, J., Marti, C. and Garcia-Ruiz, J.M. ,” Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish Pyrenees”, Journal of Hydrology, 288, pp299-311,2004.
130. Sharma, P.P., Gupta,S.C. and Foster G.R.,”Raindrop-induced soil detachment and sediment transport from interrial areas”,Soil Science Society America Journal,59,pp727-734,1995.
131. Sheridan,M.F.,and Macias,J.L.,PC software for 2-dimensional gravity-driven flows: Application to Colima ND ei Chichon Volcanoes, Mexico, Proc. Sceond International Meeting on Volcanology, Colima,Mexico,5,1992.
132. Sherman, L.K.,” Stream-flow from rainfall by the Unit Graph Method”, Enging. News Rec., 108, pp501-505, 1932.
133. Shimizu, Y., Yamaguchi, H. and Itakura, T.,” Three Dimensional computation of flow and bed deformation”, Journal of Hydraulic Engineering, ASCE, 116(9), pp1090-1108, 1990.
134. Simon, A., Dickerson, W. and Heins, A., ” Suspended-sediment transport rates at the 1.5-year recurrance interval for ecoregions of the United States: transport conditions at the bankfull and effective discharge?”, Geomorphology , 58, pp243-262, 2004.
135. Stephensin, D., and Meadows, M.E., Kinematic Hydrology and Modelling, Elsevier science Publishing Co. Inc, New York, U.S.A., 1986.
136. Syvitski, J.P.M., Peckham, S.D., Hilberman, R. and Mulder, T.,” Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective”, Sediment. Geol., 162, pp5-24, 2003.
137. Teisson, C.,” Cohesive suspended sediment transport: feasibility and limitations of numerical modeling”, Journal of Hydraulic Resaerch, 29(6), pp755-769, 1991.
138. Thorne, P.D., Vincent, C.E., Hardcastle, P.J. and Pearson,N.,”Measuring suspended sediment concentration using acoustic backscatter devices”, Marine Geology, Amsterdam, 98, pp7-16,1991.
139. Topp, G.C., Davis, J.L. and Annan A.P.,”Electromagnetic determination of soil watr content and electrical conductively measurement using time domain refleectometry”, Water Resources Research,16, pp574-582, 1980.
140. Tsai, C.H. and Tsai, C.T.,” Velocity and concentration distribution of sediment-laden open channel flow”, Journal of the American Water Resources Association,36(5),pp1075-10786,2000.
141. Unny, T.E. and Karmeshu,” Stochastic nature of output from conceptual reservoir model cascades”, Journal of Hydrology, 33, pp161-180, 1984.
142. U.S. Army Corps. of Engineers (USACE), HEC-HMS user’s manual,2001.
143. Vanoni, V.”Sedimentation Engineering’, Chap.IV.sec-C.,Manual 54,ASCE,New York,USA,1975.
144. Vericat, D. and Batalla, R.J.,”Sediment transport in a large impounded river: The lower Ebro, NE Iberian Peninsula”, Geomorphology, 79, pp72-92, 2006.
145. Verstraeten, G. and Poesen, J.,” Factors Controlling sediment yield from small intensively cultivated catchments in a temperate humid climate”, Geomorphology, 40, pp123-144, 2001.
146. Walling, D.E.,” Suspended sediment and solute yields from a small catchment prior to urbanization.” In:Gregory,K.J.Walling, D.E.(Eds.), Fluvial Processes in Instrumented Watersheds,vol.64. Institute of British Geographers, pp141-147, 1974.
147. Walling, D.E.,” Suspended sediment and solute response characteristics of river Exe, Devon, England”, In: Davision-Arnott, R., Nickling, W. (Eds.), Research in Fluvial System. Geoabstracts, Norwich, pp167-197, 1978.
148. Walling, D.E. and Webb, B.W., Sediment availability and the prediction of storm-period sediment yields, In: Walling, D.E. (eds.) , Recent Developments in the Explanation and Prediction of Erosion and Sediment Yield, England: IAHS Publication , pp327-337 , 1982.
149. Walling, D.E. and Fang, D.,” Recent trends in the suspended sediment loads of the world’s rivers”, Global and Planetary Change, 39, pp111-126, 2003.
150. Wang, X.P., Cui, Y., Pan, Y.X., Li, X.R. and Yu, Z., ” Effects of rainfall characteristic on infiltration and redistribution patterns in revegetation-stabilized desert ecosystems”, Journal of Hydrology, 358, pp134-143, 2008.
151. Williams, J.R., ” Sediment yield prediction with universal equation using runoff energy factor. Present and Prospective Technology for Predicting Sediment Yield and Sources. Proceeding of the Sediment Yield Workshop, USDA Sedimentation Laboratory, Oxford, Mississippi, November 28-30, 1972, ARS-S-40. USDA-Agricultural Research Service, Washington, DC, pp244-252, 1975.
152. Williams, J.R. and Berndt, H.D., ” Sediment yield prediction based on watershed hydrology”, Trans.Am.Soc.Agric.Eng., 20, pp1100-1104,1977.
153. Williams, J.R.,” A sediment graph model based on an instantaneous unit sediment graph”, Water Resources Research, 14, pp659-664, 1978.
154. Williams, G..P. , ” Sediment concentration versus water discharge during single hydrologic events in rivers” , Journal of Hydrology, 111, pp89-106, 1989.
155. Wischmeier, W.H. , Smith, D.D. and Uhland R.E.,” Evaluation of factors in the soil loss equation” ,Agr. Eng., 39, pp458-462, 1958.
156. Woolhiser, D.A., Simulation of Unsteady Overland Flow, Chap. 12 In: Unsteady Flow in Open Channels (Eds. K. Mahmood and Y. Yevjevich), Water Resources Publication, Forts Collins, U.S.A, 1975.
157. Wu, J., Zhang, R. and Yang, J.H.,” Aalysis of rainfall-recharge relationships”, Journal of Hydrology, 177, pp143-160, 1996..
158. Yu, P.S. , ” Real Time Grid Based Distributed Rainfall-Runoff Model for Flood Forecasting With Weather Radar”, PhD, Thesis, University of Birmingham, 1987.

 


如您有疑問,請聯絡圖書館
聯絡電話:(06)2757575#65773
聯絡E-mail:etds@email.ncku.edu.tw