進階搜尋

 
查詢範圍:「   」
顯示範圍:第筆 論文書目資料
顯示格式:全部欄位
共 8 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910234045
論文名稱(中文) 時域有限差分法於微波電路分析之應用
論文名稱(英文) The Application of Finite Difference Time Domain Method to Microwave Circuit Analysis
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 90
學期 2
出版年 91
研究生(中文) 李志信
學號 n2686428
學位類別 碩士
語文別 中文
口試日期 2002-06-24
論文頁數 103頁
口試委員 口試委員-黃正亮
指導教授-蔡智明
口試委員-徐敬文
口試委員-黃進芳
口試委員-孫卓勳
關鍵字(中) 普羅尼法
品質因數
入射波與反射波分離
時域有限差分
同軸完美匹配層
頻率相關時域有限差分
介質損耗
輪廓路徑法
邊界銜接
場源激發
微帶線電路
關鍵字(英) Seperation of the Incident Wave and the Reflecti
Prony's Method
Quality Factor
Microstrip Circuit
Contour Path Method
Source Excitation
Boundary Connection
Dielectric Losses
Frequency-Dependent Finite Difference Time Domai
Finite Difference Time Domain
Uniaxial Perfect Match Layer
學科別分類
中文摘要   近年來由於電腦計算能力越來越強,使得採用時域有限差分法來分析微波電路的相關研究越來越多。在計算過程中,需要吸收邊界條件將無窮空間截斷成有限計算範圍,並將散射的電磁波吸收,其中以完美匹配層的效果最為顯著。在時域模擬介電質損耗並不容易,因為常用來描述介電質損耗的形式為複數常數。不過,透過適當的曲線逼近技巧,在某頻帶範圍內,可用時域有限差分法模擬出相同的效果。

  本論文是由基本的理論開始,介紹時域有限差分法的演算結構,使用同軸完美匹配層做為吸收邊界條件,並結合多階Debye介質與導電率去近似複數常數的介電係數,配合傳輸線原理解離出入射波與反射波,來分析具有介電質耗損的微波電路。此外,利用Prony’s Method來計算諧振電路的品質因素,以及外差時域資料,減少計算時間,並得到相同結果。
英文摘要 Finite difference time domain (FDTD) method is an effective method that provides accurate analysis of microwave circuits. In the process of numerical computation of FDTD, absorbing boundary condition (ABC) must be introduced to truncate the infinite space and prevent wave from reflecting at the outer boundary. Among various ABC, perfectly matched layer, a highly effective absorber material, works well.

Lossy dielectrics are usually described by a constant complex permittivity which can not be directly used in transient FDTD calculations. However, frequency- dependent FDTD can accommodate a better approximation to a constant complex permittivity over a band of frequencies.

In this thesis, the research is based on the usage of FDTD with uniaxial perfectly matched layer in the analysis of microwave circuits. In the frequency-dependent FDTD, multi-order Debye material associated with conductivity is used to approximate a constant complex permittivity. A method to separate the incident wave and the reflective wave without extra input port simulation is adapted to compute scattering parameters of microwave circuits. Besides, the Prony’s method is combined with FDTD to calculate the quality factor of resonant circuits, and to reduce the computation time by extrapolating the transient data without losing the accuracy.
論文目次 第一章 序論 1
第二章 時域有限差分法. 3
2.1 有限差分架構與原理 3
2.2 馬克斯威爾方程式的時域有限差分法演算結構 6
2.3 網格色散現象與穩定性條件 12
第三章 吸收邊界條件. 13
3.1 吸收邊界條件的演進. 13
3.2 異方向性完美吸收層 18
3.3 同軸完美匹配層的差分方程式推導 24
3.4 完美匹配層用於離散空間的修正 29
第四章 介電質耗損與介質接面處理. 32
4.1 介電係數為頻率函數的介質 32
4.1.1 引用導電率來減少對記憶體使用量 34
4.1.2 與同軸完美吸收層的有限差分演算法整合 37
4.2 介質接面處裡 38
4.2.1 輪廓路徑法 39
4.2.2 介質接面的時域有限差分公式 40
第五章 場源激發. 42
5.1 激發源截面的空間分佈 42
5.2 激發源的時間變化 43
5.3 激發源的演算程序 44
第六章 微帶線電路特性的計算 47
6.1 傅立葉轉換的注意事項 47
6.2 微帶線特性的計算 48
6.2.1 微帶線的電壓與電流 48
6.2.2 等效介電常數 49
6.2.3 微帶線的特性阻抗 49
6.2.4 50Ω微帶線的模擬 50
6.3 S參數 54
6.3.1 入射波與反射波區分方式 54
6.3.2 電路模擬與比較 58
6.4 介電質損耗的電路模擬與量測結果比較 72
第七章 諧振電路的品質因數計算與時域資料外插. 75
7.1 品質因數 75
7.2 品質因數的數值計算模式 77
7.3 使用Prony's Method計算品質因數 80
7.3.1 Prony's Method 80
7.3.2 計算模式 81
7.3.3 程式模擬與比較 83
7.4 使用Prony’s Method外插時域資料 90
7.4.1 外插時域資料的實驗結果 90
第八章 結論與展望 96
參考文獻 98
參考文獻 [1] Kane S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equation in Isotropic Media,” IEEE Trans. Antennas Propagation, vol. 14, no. 3, pp. 300-307, May 1966.
[2] Leo Lapidus and George F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering, John Wiley & Sons Inc., New York, Chapter 2, 1982.
[3] Allen Taflove, Computational Electrodynamics the Finite-difference Time-Domain Method, Artech House, Boston, Chapter 4, 1995.
[4] A. Bayliss and E. Turkel, “Radiation Boundary Conditions for Wave-Like Equations,” Communications on Pure and Applied Mathematics, vol. 33, pp. 707-725, 1980.
[5] G.errit Mur, “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic Field Equations,” IEEE Trans. Electromagnetic Compatibility, vol. 23, no. 4, pp. 377-382, Nov. 1981.
[6] R. L. Higdon, “Absorbing Boundary Conditions for Difference Approximations to the Multi-Dimensional Wave Equations,” Mathematics of Computation, vol. 47, no. 176, pp. 437-459, Oct. 1986.
[7] Allen Taflove, Computational Electrodynamics The Finite-difference Time-Domain Method, Artech House, Boston, pp. 265-268, 1995.
[8] R. Holland and J. W. Williams, “Total-Field versus Scattered-Field Finite-Difference Codes: A Comparative Assessment,” IEEE Trans. Nuclear Science, vol. NS-30, pp. 4583-4588, 1983.
[9] Jean-Pierre Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of Computational Physics, vol. 114, pp.185-200, 1994.
[10] Daniel S. Katz, Eric T. Thiele, and Allen Taflove, “Validation and Extension to Three Dimensions of the Berenger PML Absorbing Boundary Condition for FD-TD Meshes,” IEEE Microwave and Guided Wave Letters, vol. 4, no. 8, pp.268-270, Aug. 1994.
[11] Zachary S. Sacks, David M. Kingsland, Robert Lee, and Jin-Fa Lee, “A Perfectly Matched Anisotroplic Absorber for Use as an Absorbing Boundary Condition,” IEEE Trans. Antennas and Propagation, vol. 43, no. 12, pp. 1460-1463, Dec. 1995.
[12] M. Okoniewski, M. Mrozowski, and M. A. Stuchly, “Simple Treatment of Multi-Term Dispersion in FDTD,” IEEE Microwave and Guided Wave Letters, vol. 7, no. 5, pp. 121-123, May 1997.
[13] Raymond J. Luebbers, Forrest P. Hunsberger, Karl S. Kunz, Ronald B. Standler, and Michael Scheider, “A Frequency-Dependent Finite-Difference Time-Domain Formulation for Dispersive Materials,” IEEE Trans. Electromagnetic Compatibility, vol. 43, no.3, pp. 222-227, Aug. 1990.
[14] Raymond J. Luebbers and Forrest Hunsberger, “FDTD for Nth-Order Dispersive Media,” IEEE Trans. Antennas and Propagation, vol. 40, no. 11, pp. 1297-1301, Nov. 1992.
[15] David F. Kelley and Raymond J. Luebbers, “Piecewise Linear Recursive Convolution for Dispersive Media Using FDTD,” IEEE Trans. Antennas and Propagation, vol. 44, no. 6, pp. 792-797, Jun. 1996.
[16] Raymond J. Luebbers, “Lossy Dielectrics in FDTD,” IEEE Trans. Antennas and Propagation, vol. 41, no. 11, pp. 1586-1588, Nov. 1993.
[17] Xiaolei Zhang and Kenneth K. Mei, “Time-Domain Finite Difference Approach to the Calculation of the Frequency-Dependent Characteristics of Microstrip Discontinuities,” IEEE Trans. Microwave Theory and Techniques, vol. 36, no. 12, pp. 1775-1787, Dec. 1988.
[18] Allen Taflove, Korada R. Umashankar, Benjamin Beker, Fady Harfoush, and Kane S. Yee, “Detailed FD-TD Analysis of Electromagnetic Fields Penetrating Narrow Slots and Lapped Joints in Thick Conducting Screens,” IEEE Trans. Antennas and Propagation, vol. 36, no. 2, pp. 247-257, Feb. 1988.
[19] Thomas G. Jurgens, Allen Taflove, Korada Umashankar, and Thomas G. Moore, “Finite-Difference Time-Domain Modeling of Curved Surfaces,” IEEE Trans. Antennas and Propagation, vol. 40, no. 4, pp. 357-366, Apr. 1992.
[20] David M. Sheen, Sami M.Ali, Mohamed D. Abouzahra, and Jin Au Kong, “Application of the Three-Dimensional Finite-Difference Time-Domain Method to the Analysis of Planar Microstrip Circuits,” IEEE Trans. Microwave Theory and Techniques, vol. 38, no. 7, pp. 849-857, Jul. 1990.
[21] An Ping Zhao, Antti V. Räisänen, and Srba R. Cvetkovic, “A Fast and Efficient FDTD Algorithm for the Analysis of Planar Microstrip Discontinuities by Using a Simple Source Excitation Scheme,” IEEE Microwave and Guided Wave Letters, vol. 5, no. 10, pp. 341-343, Oct. 1995.
[22] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C, 2nd edition, Cambridge University Press, New York, pp. 496-536, 1994.
[23] C. M. Furse and O. P. Gandhi, “Why the DFT is Faster Than the FFT for FDTD Time-to-Frequency Domain Conversions,” IEEE Microwave and Guided Wave Letters, vol. 5, no. 10, pp.326-328, Oct. 1995.
[24] Xiaolei Zhang, Jiayuan Fang, Kenneth K. Mei, and Yaowu Liu, “Calculations of the Dispersive Characteristics of Microstrips by the Time-domain Finite Difference Method,” IEEE Trans. Microwave Theory and Techniques, vol. 36, no. 2, Feb. 1988.
[25] Jiayuan Fang and Danwei Xeu, “Numerical Errors in the Computation of Impedances by the FDTD Method and Ways to Eliminate Them,” IEEE Microwave and Guided Wave Letters, vol. 5, no. 1, pp. 6-8, Jan. 1995.
[26] Mark A. Schamberger, Stevan Kosanovich, and Raj Mittra, “Parameter Extraction and Correction for Transmission Lines and Discontinuities Using the Finite-Difference Time-Domain Method,” IEEE Trans. Microwave Theory and Techniques, vol. 44, no. 6, pp. 919-925, Jun. 1996.
[27] David M. Pozar, Microwave Engineering, Addison-Wesley, New York, Chapter 7, 1993.
[28] Robert E. Collin, Foundations for Microwave Engineering, 2nd edition, McGraw-Hill, New York, Chapter 7, 1992.
[29] Sadahiko Yamashita and Mitsuo Makimoto, “The Q-Factor of Coaxial Resonators Partially Loaded with High Dielectric Constant Microwave Ceramics,” IEEE Trans. Microwave Theory and Techniques, vol. 31, no. 6, pp. 485-488, Jun. 1983.
[30] Giovanni B. Stracca and Anselmo Panzeri, “Unloaded Q-Factor of Stepped-Impedance Resonators,” IEEE Trans. Microwave Theory and Techniques, vol. 34, no. 11, pp. 1214-1219, Nov. 1986.
[31] Chi Wang, Ben-Qing Gao, and Ci-Ping Deng, “Q Factor of a Resonator by the Finite-Difference Time-Domain Method Incorporating Perturbation Techniques,” Electronics Letters, vol. 29, no.21, pp. 1866-1867, Oct. 1993.
[32] Chi Wang, Ben-Qing Gao, and Ci-Ping Deng, “Accurate Study of Q-Factor of Resonator by a Finite-Difference Time-Domain Method,” IEEE Trans. Microwave Theory and Techniques, vol. 43, no. 7, pp. 1524-1529, Jul. 1995.
[33] Zhiqiang Bi, Ying Shen, Keli Wu, and John Litva, “Fast Finite-Difference Time-Domain Analysis of Resonators Using Digital Filtering and Spectrum Estimation Techniques,” IEEE Trans. Microwave Theory and Techniques, vol. 40, no. 8, pp. 1611-1619, Aug. 1992.
[34] Supriyo Dey and Raj Mittra, “Efficient Computation of Resonant Frequencies and Quality Factors of Cavities via a Combination of the Finite-Difference Time-Domain Technique and the Padé Approximation,” IEEE Microwave and Guided Wave Letters, vol. 8, no. 12, pp. 415-417, Dec. 1998.
[35] Zhewang Ma and Yoshio Kobayashi, “FDTD Characterization of Planar Circular Resonators with Applications to the Design of Small-Sized Filters,” 1998 International Conference on Microwave and Millimeter Wave Technology Proceedings, pp. 974-977, 1998.
[36] I. Awai, Y. Oda, and Y. Okayama, “Calculation of External Q of a Resonator by FDTD Method,” Proc. 28th European Microwave Conference Amsterdam, pp. 232-236, 1998.
[37] Xiangying Wu, Ikuo Awai, Kouji Wada, Hiroyoshi Tagi, Takeshi Moriyoshi, and Kentaro Kisaka, “Analysis of Coplanar Waveguide Circuits by Use of the Finite Difference Time Domain Method,” Technical Report of IEICE, vol. 98, no. 518, pp. 19-26, Jan. 1999.
[38] Xiangying Wu, Ikuo Awai, Zhongyou Yan, Kouji Wada, and Takeshi Moriyoshi, “Quality Factors of Coplanar Waveguide Resonators,” Microwave Conference, 1999 Asia Pacific, pp. 670-673, 1999.
[39] Xiangying Wu and Ikuo Awai, “Numerical and Experimental Investigation on Quality Factors of Coplanar Waveguide Resonators,” IEICE Trans. Electronics, vol. E83-C, no. 12 , pp. 1923-1929, Dec. 2000
[40] J. A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto, “Computation of Resonant Frequencies and Quality Factors of Open Dielectric Resonators by a Combination of the Finite-Difference Time-Domain (FDTD) and Prony’s Methods,” IEEE Microwave and Guided Wave Letters, vol.2, no. 11, pp. 431-433, Nov. 1992.
[41] F. B. Hildebrand, Introduction to Numerical Analysis, 2nd edition, McGraw-Hill, New York, pp.457-462, 1974.
[42] F. B. Hildebrand, Introduction to Numerical Analysis, 2nd edition, McGraw-Hill, New York, pp.314-326, 1974.
[43] K. C. Gupta, Ramesh Garg, Inder Bahl, and Prakash Bhartia, Microstrip Lines and Slotlines, 2nd edition, Artech House Inc., Boston, pp. 181-182, 1996.
[44] Wai Lee Ko and Raj Mittra, “A Combination of FD-TD and Prony’s Methods for Analyzing Microwave Integrated Circuit,” IEEE Trans. Microwave Theory and Techniques, vol. 39, no. 12, pp. 2176-2181, Dec. 1991.
[45] Leo Lapidus and George F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering, John Wiley & Sons Inc., New York, Chapter 6, 1982.
[46] Takefumi Namiki, “A New FDTD Algorithm Based on Alternating-Direction Implicit Method,” IEEE Trans. Microwave Theory and Techniques, vol. 47, no. 10, pp. 2003-2007, Oct. 1999.
[47] Takefumi Namiki, “3-D ADI-FDTD Method–Unconditionally Stable Time-Domain Algorithm for Solving Full Vector Maxwell’s Equations,” IEEE Trans. Microwave Theory and Techniques, vol. 48, no. 10, pp. 1743-1748, Oct. 2000.
[48] Zhizhang Chen and Jiazong Zhang, “An Unconditionally Stable 3-D ADI-MRTD Method Free of the CFL Stability Condition,” IEEE Microwave and Wireless Components Letters, vol. 11, no. 8, pp. 349-351, Aug. 2001.
[49] Melinda Piket-May, Allen Taflove, and John Baron, “FD-TD Modeling of Digital Signal Propagation in 3-D Circuits with Passive and Active Loads,” IEEE Trans. Microwave Theory and Techniques, vol. 42, no. 8, Aug. 1994.

------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910371845
論文名稱(中文) 微波介電材料之備製與應用之研究
論文名稱(英文) Fabrication and Application of Microwave Dielectric Materials
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 91
學期 2
出版年 92
研究生(中文) 許正興
學號 N2888147
學位類別 博士
語文別 英文
口試日期 2003-06-19
論文頁數 214頁
口試委員 口試委員-黃啟原
口試委員-劉國雄
指導教授-魏炯權
口試委員-吳泰伯
口試委員-徐敬文
口試委員-孫卓勳
指導教授-黃正亮
口試委員-黃進芳
口試委員-吳朗
關鍵字(中) 微帶線
微波帶通濾波器
微波介電材料
介電薄膜
關鍵字(英) Microwave Dielectric Material
Microwave Bandpass Filter
Dielectric Thin Film
Microstrip Line
學科別分類
中文摘要 微波介電材料所製作之介電共振器具有高介電常數,高溫度穩定係數及低損失因子等特性,適合應用於微波濾波器、震盪器、天線與微波積體電路中。近年來由於高頻通訊元件快速之發展,元件之輕薄短小為其重要之研究目標。就縮小體積之多層陶瓷濾波器而言,降低燒結溫度便為發展介電材料之重要趨勢。此外,介電材料之積體化也亦為實現微波高頻元件之重要課題之一。本論文針對上述之方向做了下列三大部分進行探討與研究:

一、高品質因子,高溫度穩定性與高介電常數之微波陶瓷介電材料備製
[a] 嘗試在特性優良之(Zr,Sn)-TiO2介電材料中,加入不同的雜質以改善介電特性並達到降低燒結溫度之目的
[b] 不同摻雜對MgNb2O6微波介電材料之研究

二、介電薄膜之製作
利用自製之(Zr,Sn)-TiO2靶材以射頻磁控濺鍍法進行薄膜之製作,在不同之製程參數下,製作高品質之介電薄膜,經由進行各種不同之薄膜分析技術,以進行物理特性,電學特性之研究。

三、微波微帶濾波器之設計、分析與製作
以第一部份之研究成果為基礎,分析設計並製作應用於通訊系統中之微帶濾波器,並以compact hairpin型態來進行各種耦合方式之微帶濾波器。
英文摘要 Microwave dielectric resonators which are fabricated by high dielectric constant, low dielectric loss and good temperature stability of microwave dielectric materials are suitably applied in microwave filters, oscillators, antennas and microwave integral circuits (MICs). With the recent progress of microwave communication devices, miniaturization of microwave components for volume efficiency is a major research requirement. For the miniaturized multilayer ceramic filters, reduce the sintering temperature has become the important tendency to researched dielectric materials. In addition, the integration of dielectric materials are also become main studied for implement microwave devices. As mentioned above, the main research of this dissertation is divided three parts which preparation of low sintering temperature microwave dielectric resonators, fabrication of dielectric thin films and their applications on microwave planar filters.

1. Preparation for microwave dielectric resonator with high quality factor (Q×f), excellent temperature stability and high dielectric constant:

[ a ] Zirconium tin titanium oxide was investigated as a potentially useful dielectric material owing to its excellent dielectric properties. Properties improvement and reduce the sintering temperature of Zr0.8Sn0.2TiO4 dielectric materials have been achieved by amount various additions. The experimental results showed that small amount of additions attribute to sintering and grain growth.
[ b ] For producing miniaturized devices, multilayer structures with low sintering temperatures are needed to co-fire with low melting point electrodes. Using low melting dopants are generally the most effective and least expensive technique to reduce the sintering temperature. Since CuO and Fe2O3 are the popular sintering fluxes, these were chosen as a sintering aid to lower the firing temperature of the MgNb2O6 ceramics in this experiment. The microwave dielectric properties and the microstructures of CuO-doped and Fe2O3-doped MgNb2O6 ceramics were also investigated.

2. Fabrication of Dielectric Thin Films:

Due to thin-film technology has become a major requirement for integration since integrated circuits have been applied in today’s microwave communication system and dynamic random access memories. In this part, the electrical and physical properties of ZnO-doped (Zr0.8Sn0.2)TiO4 thin films were fabricated by rf magnetron sputtering have been researched. A ZST target was prepared and used for deposition. ZST thin films were deposited at different processing parameters. The dependence of the physical and electrical characteristics on rf power, substrate temperature and Ar/O2 ratios were also investigated.

3. Design and Fabrication of Microwave Filters:

Microwave planar filters are widely used in the communication circuits. In this part, analysis, design and fabrication of microwave hairpin planar filter were studied. The results of the first part are applied to constructed hairpin band-pass filter. The band-pass filter were constructed by using λ/2 microstrip resonators. Both mixed-coupling and cross-coupling structures were designed as the coupling instruments in the transformation electromagnetic energy. In addition, the coupled lines at the ends of a miniaturized hairpin resonator are used as a capacitor for the purpose of reducing its size. The compact hairpin filters are also implemented and characteristics compared with normal hairpin filters were also investigated in different substrate materials.
論文目次 CONTENTS
Abstract……………………………………………………………………….I
Contents……………………………………………………………………...V
Table Captions……………………….……………………………………..IX
Figure Captions………………………………………….…………………..X
Chapter 1 Generation Introduction………………………………………...1
1-1 Review Microwave Dielectric Materials and Resonators…………….1
1-2 Dielectric Thin Films…………………………………………………3
1-3 Deposition Techniques………………………………………………..5
1-4 Microwave Planar Filter……………………………………………...7
1-5 Outline of the Thesis………………………………………………….9
Chapter 2 Theory…………………………………………………………...12
2-1 Theory of Microwave Dielectric Properties…………………………12
2-2 Analysis and Measurement of Dielectric Resonator………………...15
2-3 Microstructure of Deposited Film…………………………………...21
2-4 Analysis of Electrical Properties of Films…………………………...22
2-4-1 I-V characteristic………………………………………………22
2-4-2 C-V characteristic……………………………………………..24
2-5 Basic Theory of Microwave Filter…………………………………..26

Chapter 3 Effect of Additives on Microstructures and Microwave Dielectric Properties of (Zr,Sn)TiO4 Ceramics ………..…..33

3-1 Introduction………………………………………………………….33
3-2 Experimental Procedures……………………………………………34
3-2-1 Sample Preparation……………………………………………34
3-2-2 Characteristics Analysis Measurement of Microwave
Dielectric Properties…………………………………………..35
3-3 Results and Discussions……………………………………………..35
3-4 Conclusions………………………………………………………….40
Chapter 4 Liquid Phase Sintering and Microwave Dielectric Properties
of MgNb2O6Ceramics…………………………………………..42
4-1 Introduction………………………………………………………….42
4-2 Experimental Procedures……………………………………………42
4-2-1 Sample Preparation……………………………………………42
4-2-2 Characteristics Analysis Measurement of Microwave
Dielectric Properties…………………………………………..43
4-3 Results and Discussions……………………………………………..44
4-4 Conclusions………………………………………………………….48
Chapter 5 RF Magnetron Sputtered Zr0.8Sn0.2TiO4 Thin Films…………50
5-1 Introduction………………………………………………………….50
5-2 Sputtering System…………………………………………………...52
5-3 Experimental Procedures……………………………………………53
5-3-1 Target Fabrication……………………………………………..53
5-3-2 Clean Substrate………………………………………………..53
5-3-3 Deposition Process……………………………………………54
5-3-4 Analysis of Physical and Chemical Properties of Films……...55
5-3-5 Analysis of Electrical Properties of Film……………………..55
5-4 Results and Discussions…………………………………………….56
5-4-1 Crystal Structure and Composition…………………………...56
5-4-2 Microstructure and Surface Morphology……………………..57
5-4-3 Electrical Properties of Zr0.8Sn0.2TiO4 Thin Films……………61
5-5 Conclusions…………………………………………………………63
Chapter 6 Planar Microstrip Bandpass Filter…………………………...65
6-1 Introduction…………………………………………………………65
6-2 Filter Structure and Resonance Conditions…………………………67
6-2-1 Analysis of Hairpin Filter Structure…………………………..67
6-2-2 Resonance Properties of Stepped Impedance
Hairpin resonator……………………………………………..68
6-3 Coupling Analysis…………………………………………………..72
6-4 Filter Design………………………………………………………...77
6-5 Performance of Experiment Filter…………………………………..83
Chapter 7 Conclusions and Future Works……………………………….87
7-1 Conclusions…………………………………………………………87
7-2 Future Works………………………………………………………..90
References………………………………………………………………….92
Tables……………………………………………………………………...101
Figures…………………………………………………………………….109
參考文獻 References
[1] R. D. Richtmyer, “Dielectric Resonators,” J. Appl. Phys., 10 (1939) 391-398.
[2] T. Konoike and H. Yamura, “Dielectric ceramic composition for microwave frequencies,” U. S. Patent No. 4,585,774, 1986.
[3] H. Tamura, T. Konoike, Y. Sakabe and K. Wakino, “Improved high-Q dielectric resonator with complex perovskite structure,” J. Am. Cerm. Soc., 67 (1984) C59-61.
[4] S. Kawashima, M. Nishida, I. Ueda and K. Ouchi, in Inst. Electronics Comm. Engers. Japan MW 80-29 (1980) 1.
[5] M. Onoda, K. Kuwata, K. Kaneta, K. Yoyama and S. Nomura, “Ba(Zn1/3Nb2/3)O3-Sr(Zn1/3Nb2/3)O3 solid solution ceramics with temperature stable high dielectric constant and low microwave loss,” Jpn. J. Appl. Phys., 21 (1982) 1707-1710.
[6] Y. C. Heiao, L. Wu and C. C. Wei, “Microwave dielectric properties of (Zr,Sn)TiO4 ceramics,” Mat. Res. Bull., 23 (1988) 1687-1692.
[7] S. Nishigaki, H. Kato, S. Yano and R. Kamimura, “Microwave dielectric properties of (Ba,Sr)O-Sm2O3-TiO2 ceramics,” Am. Ceram. Soc. Bull., 66 (1987) 1405-1410.
[8] K. Wakino, K. Minai and H. Tamura, “Microwave characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 dielectric resonator,” J. Am. Ceram. Soc., 67 (1984) 278-281.
[9] J. M. Wu and M. C. Chang, “Reaction sequence and effects of calcinations and sintering on microwave properties of (Ba,Sr)O-Sm2O3-TiO2 ceramics.” J. Am. Ceram. Soc., 73 (1990) 1599-1605.
[10] S. Kawashima, M. Nishida, I. Ueda and H. Ouchi, in the 87th Annual Meeting of the American Ceramic Society, Cincinnati, OH, 1985 (Electronics Division, paper No. 15-E-85).
[11] IEEE Standard Definition of Primary Ferroelectric Terms, ANSI/IEEE std. 180-1986.
[12] G. H. Haertiling and C. E. Land, “Hot-Pressed (Pb,La)(Zr,Ti)O3 Ferroelectric Ceramic for Electrooptic Applications,” J. Am. Ceram. Soc., 54 (1971) 1-11.
[13] G. H. Haertiling, “Improved Hot-Pressed Electrooptic Ceramics in the (Pb,La)(Zr,Ti)O3,” J. Am. Ceram. Soc., 54 (1971) 303-309.
[14] C. E. Land and P. S. Peercy, “Photoferroelectric Effects in PLZT Ceramics,” 22 (1978) 667-679.
[15] R. C. Buchanan, Ceramic Materials for Electronics, Marcel. Dekker. Inc., NewYork and Baesl, 1986.
[16] W. D. Smith and C. E. Land, “Scattering-Mode Ferroelectric-Photoconductor Image Storage and Display Devices,” Appl. Phys. Lett., 20 (1972) 169-171.
[17] M. Ishiad, S. Tsuida, K. Kimura, H. Matsunami and T. Tanaka, “Epitaxial Growth of Ferroelectric PLZT (Pb,La)(Zr,Ti)O3 Thin Films,” J. Cryst. Growth, 45 (1978) 393-398.
[18] G. H. Haertiling and C. B. McCampbell, “New Longtitudinal Display Mode for Ceramic Electrooptical Device,” Proc. IEEE, 60 (1972) 450-451.
[19] J. R. Maldonado and A. H. Meitzler, “Ferroelectric Ceramic Light Gates Operated in a Voltage-Controlled Mode,” IEEE Tran. Electron Devices, 17 (1970) 148-157.
[20] S. G. Varnado and W. D. Smith, “Electrooptic Ceramics as Wavelength Selection Devices in Dye Lasers,” IEEE J. Quantum Electronics, (1972) 88-89.
[21] R. E. Newnham, ”Crystal Structure of ZrTiO4,” J. Am. Ceram. Soc., 55 (1967) 409-413.
[22] F. J. Wu, T. Y. Tseng, ”Highly Oriented (Zr0.7Sn0.3)TiO4 Thin Films Grown by rf Magnetron Sputtering,” J. Am. Ceram. Soc., 81 (1998) 439-443.
[23] O. Nakagawara, Y. Toyota, M. Kobayashi, Y. Yoshino, and Y. Katayama, “Electrical Properties of (Zr,Sn)TiO4 dielectric Thin Film Prepared by Pulsed Laser Deposition,” J. Appl. Phys., 80 (1996) 388-392.
[24] Robert B.van Dover, L.F. Schneemeyer, “Deposition of Uniform Zr-Sn-Ti-O Films by On-Axis Reactive Sputtering,” IEEE. Elec. Dev. Lett., 19 (1998) 329-331.
[25] C. L. Huang and C. S. Hsu, “Fabrication of ZnO-Doped Zr0.8Sn0.2TiO4 Thin Films by RF Magnetron Sputtering,” J. Vac. Soc. Technol. A, 18 (2000) 2327.
[26] D. A. Chang, “Fabrication and Study of ZrTiO4-Based Dielectric Thin Films,” National Chiao Tung University, Dissertation for Doctor of Philosophy, (1995).
[27] T. Nakagawa, J. Yamaguchi, T. Usuki, Y. Matsui, M. Okuyama and Y. Hamakawa, “Ferroelectric Properties of RF Sputtered PLZT Thin Film,” Jpn. J. Appl. Phys., 18 (1979) 897-902.
[28] S.Y. Lee, “Design of Miniaturized Microwave Planar Filters with Extra Transmission Zeros,” National Cheng-Kung University, Dissertation for Doctor of Philosophy, (2000)
[29] S. B. Cohn, “Parallel-Coupled Transmission-Line-Resonator Filters,“ IRE Trans. Microwave Theory Tech., MTT-6 (1958) 223-231.
[30] E. G. Cristal and S. Frankel, “Hairpin-Line and Hybrid Hairpin-Line/Half-Wave Parallel-Coupled-line Filters,” IEEE Trans. Microwave Theory Tech., MTT-20 (1972) 719-728.
[31] A. E. Williams, “A Four-Cavity Elliptic Waveguide Filter,” IEEE Trans. Microwave Theory Tech., MTT-18 (1970) 1109-1114.
[32] R. Levy, “Filters with Single Transmission Zeros at Real or Imaginary Frequencies,” IEEE Trans. Microwave Theory Tech., MTT-24 (1976) 172-181.
[33] J. S. Hong and M. J. Lancaster, “Couplings of Microstrip Square Open-Loop Resonators for Cross-Coupled Planar Microwave Filters,” IEEE Trans. Microwave Theory Tech., MTT-44 (1996) 2099-2109.
[34] J. S. Hong and M. J. Lancaster, “Cross-Coupled Microstrip Hairpin-Resonator Filters,” IEEE Trans. Microwave Theory Tech., MTT-46 (1998) 118-122.
[35] M. Makimoto and S. Yamashita, “Bandpass Filters using Parallel Coupled Stripline Stepped Impedance Resonators,” IEEE Trans. Microwave Theory Tech., MTT-28 (1980) 1413-1417.
[36] M. Sagawa, K. Takahashi and M. Makimoto, “Miniaturized hairpin resonator Filters and Their Application to Receiver Front-End MIC’s,” IEEE Trans. Microwave Theory Tech., MTT-37 (1989) 1991-1997.
[37] J. S. Hong and M. J. Lancaster, “Theory and Experiment of Novel Microstrip Slow-Wave Open-Loop Resonator Filters,” IEEE Trans. Microwave Theory Tech., MTT-45 (1997) 2358-2365.
[38] S. B. Cohn, “Direct-Coupled-Resonator Filters,” Proceedings of the IRE, 45 (1957) 187-196.
[39] E. G. Cristal, “Tapped-Line coupled Transmission Lines with Applications to Interdigital and Combline Filters,” IEEE Trans. Microwave Theory Tech., MTT-23 (1975) 1007-1012.
[40] J. S. Wong, “Microstrip Tapped-Line Filter Design,” IEEE Trans. Microwave Theory Tech., MTT-27 (1979) 44-50.
[41] T. Ishizaki and T. Uwano, “A Stepped Impedance Comb-Line Filter Fabricated by using Ceramic Lamination Technique,” 1994 IEEE MTTs International Microwave Symposium Digest, 2, pp. 617-620.
[42] G. L. Matthaei, N. O. Fenzi, R. J. Forse and S. M. Rohlfing, “Hairpin-Comb Filters for HTS and Other Narrow-Band Applications,” IEEE Trans. Microwave Theory Tech., MTT-45 (1997) 1226-1231.
[43] H. J. Lee, K. S. Hong, S. J. Kim and I. T. Kim, “Dielectric Properties of AB2O6 Compounds at Microwave Frequencies (A=Ca, Mg, Mn, Co, Ni, Zn, and B=Nb, Ta),” Jpn. J. Appl. Phys., 36 (1997) L1318.
[44] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “ Introduction to Ceramics,” 2nd edition, Wiley, New York, (1986).
[45] G. Burns, “Solid State Physics,” (1985) 461.
[46] B. D. Silvermann, “Microwave Absorption in cubic Strontium Titanate,” Phys. Rev., 125 (1962) 1921-1930.
[47] C. H. Perry, D. J. McCarthy and G. Rupprecht, “Dielectric Dispersion of Some Pervoskite Zirconate,” Phys. Rev., 126 (1962) 1710-1721.
[48] K. Wakino, M. Murata and H. Tamura, “Far-Infrared Reflection Spectra of Ba(Zn,Ta)O3-BaZrO3 Dielectric Resonator Material.” J. Am. Ceram. Soc., 69 (1986) 34-37.
[49] W. E. Courtney, “Analysis and Evaluation of Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., MTT-18 (1970) 476-485.
[50] David K. Cheng, “Field and Wave Electromagnetics” 2nd edition, Addison Wesley, New York (1989) 406-410.
[51] B.W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive in the Millimeter Range,” IEEE Trans. Microwave Theory Tech., MTT-16 (1985) 402-406.
[52] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., MTT-33 (1985) 586-592.
[53] B. A. Movchan and A. V. Demshishin, “Fizika Metal, 28 (1969) 653.
[54] J. A. Thornton, “The Microstructure of Sputtered- Deposited Coating,” J. Vac. Sci. Technol. A 4, (1986) 3059-3065.
[55] R. C. Ross and R. Messier, “Microstructure and Properties of RF-Sputtered Amorphous Hydrogenated Silicon Film,” J. Appl. Phys., 52 (1981) 5329-5339.
[56] R. Messier and R. C. Ross, “Evolution and Microstructure in Amorphous hydrogenated Silicon,” J. Appl. Phys., 53 (1982) 6220-5225.
[57] R. Messier and R. C. Ross, “Revised Structure Zone Model for Thin Film Physical Structure,” J. Vac. Sci. Technol. A, 2 (1984) 500-503.
[58] Y. P. Wang, “Fabrication and Properties of rf-Sputtered Dielectric (Ba,Sr)TiO3 Thin Films and ZnO Varistors,” National Chiao Tung University, Dissertation for Doctor of Philosophy, (1998).
[59] S. M. Sze, Physics of Semiconductor Devices, 2nd, Wiley, New York, (1981).
[60] J. O’Dwyer, Theory of Electrical Conduction and Breakdown in Solid Dielectric, Clarendon, Oxford, England, (1973).
[61] P. Li and T. M. Lu, “Conduction Mechanism in BaTiO3 Thin Films,” Physical Review B, 43 (1991) 14261-14264.
[62] T. Mihara and H. Watanbe, “Electronic Conduction Characteristics of Sol-Gel Ferroelectric Pb(Zr0.4Ti0.6)O3 Thin film Capacitors: Part-I,” Jpn. J. Appl. Phys., 34 (1995) 5664.
[63] A. Grove, B. E. Deal, E. H. Show and C. T. Sah, “Investigation of Thermally Oxidised Silicon Surfaces Using Metal-Oxide-Semiconductor Structures,” Solid-State Electronics, 18 (1965) 145-163.
[64] D. G. Ong, Modern MOS Technology: Process, Devices and Design, McGraw-Hill Inc., (1994).
[65] G. Matthaei, L. Young and E. M. T Jones, “Microwave Filters, Impedance-Matching Networks and Coupling structures,” McGraw-Hill, New York, (1964).
[66] J. R. Montejo and J. Zapata, “Full-Wave Design and Realization of Multicoupled Dual-Mode Circular Waveguide Filters,” IEEE Trans. Microwave Theory Tech., MTT-43 (1995) 1290-1297.
[67] S. B. Cohn, “Dissipation Loss in Multi-Coupled Resonator Filters,” Proc. IRE, 47 (1957) 1342-1348.
[68] T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang and R. E. Newnham, “Effect of Glass Additions on BaO-TiO2-WO3 Microwave Ceramics,” J. Am. Ceram. Soc., 77 (1994) 1909-1916.
[69] H. Ikawa, A. Iwai, H. Kazayuki, Shimojima, K. Urabe and S. Udagawa, “Phase Transformation and Thermal Expansion of Zirconium and Hafnium Titinates and Their Solid Solutions,” J. Am. Ceram. Soc., 71 (1988) 120.
[70] G. Wolfram, H.E. Gobel, “Existance Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics (x+y+z=2),” Mater. Res. Bull., 16 (1981) 1455.
[71] R. Christoffersen, P.K. Davies, X. Wei, “Effect of Sn Substitution on Cation Ordering in (Zr1-xSnx)TiO4 Microwave Dielectric Ceramics,” J Am Ceram Soc 77 (1994) 1441.
[72] T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang and R. E. Newnham, “Effect of Glass Additions on (Zr,Sn)TiO4 for Microwave Applications,” J. Am. Ceram. Soc., 77 (1994) 2485.
[73] N. Michiura, T. Tatekawa, Y. Higuchi and H. Tamara, “Role of Donor and Acceptor Ions in the Dielectric Loss Tangent of (Zr0.8Sn0.2)TiO4 Dielectric Resonator Material,” J. Am. Chem. Soc., 78 (1995) 1793.
[74] R. Kudesia, A.E. Mchale, R.L. Snyder, “Effect of La2O3/ZnO Additions on Microstructure and Microwave Dielectric Properties of Zr0.8Sn0.2TiO4 Ceramics with Additives,” J Am Ceram Soc 77 (1994) 3215.
[75] C. L. Huang, M. H. Weng and H. L. Chen, “Effect of Additives on Microstructures and Microwave Dielectric Properties of (Zr,Sn)TiO4 Ceramics,” Mater. Chem. and Phys., 8996 (2001) 1-6.
[76] C.L. Huang, M.H. Weng, “Effect of CuO Addition on (Zr,Sn)TiO4 Microwave Dielectric Ceramics,” Mater. Res. Bull., 35 (2000) 1881-1888.
[77] C.L. Huang, C.C. You, B.C. Shen, “Microwave Dielectric Resonator Using Doped (Zr,Sn)TiO4 Ceramics ,” J Wave Mater Int., 10 (1995) 1-14.
[78] S. Ananta, R. Brydson and N. W. Thomas, “Synthesis Formation and Characterisation of MgNb2O6 Powder in a Columbite-like Phase,” J. Euro. Ceram. Sco., 19 (1999) 355-362.
[79] S. I. Hirno, Takashi, Hayashi, A. Hattori, “Chemical Processing and Microwave Characteristics of (Zr,Sn)TiO4 Microwave Dielectric,” J. Am. Ceram. Soc., 74 (1991) 1320.
[80] V. Tolmer, G. Desqardin, J. Am. Ceram. Soc., 80 (1997) 1981.
[81] W. S. Kim, T. H. Hong, E. S. Kim, and K. H. Yoon, “Microwave Dielectric Properties and Far Infrared reflectively Spectra of the (Zr0.8Sn0.2)TiO4 Ceramics with Additives,” Jpn. J. Appl. Phys., 37 (1998) 5367.
[82] C. L. Huang and C. S. Hsu, “Improved High-Q Microwave Dielectric Resonator Using ZnO and WO3-doped Zr0.8Sn0.2TiO4 Ceramics.” Mater. Res. Bull., 36 (2001) 1985-1993.
[83] C. L. Huang, M. H. Weng, C. C. Wu and C. C. Wei, "The Microwave Dielectric Properties and the Microstructures of V2O5 Modified Zr0.8Sn0.2TiO4 Ceramics," Jpn. J. Appl. Phys., 40, (2001) 698-702.
[84] A. E. Mchale and R. S. Roth, “Low-Temperature Phase Relationships in the System ZrO2-TiO2,” J. Am. Ceram. Soc., 69 (1986) 827-832.
[85] A. E. Mchale and R. S. Roth, “Investigation of the Phase Transition in ZrTiO4 and ZrTiO4-SnO2 Solid Solution,” J. Am. Ceram. Soc., 66 (1983) C-18-C-20.
[86] S. J. Chae, S. S. Park and S. G. Yoon, “Characterization of (Pb1-xLax)TiO3 Thin Films Grown by Radio-Frequency Magnetron Sputtering and Their Electrical Properties,” Integrated Ferroelectrics, 10 (1995) 63-72.
[87] Y. Fukuda, K. Aoki, K. Numata and A. Nishimura, “Current-Voltage Characteristics of Electron-Cyclotron-Resonance Sputter-Deposited SrTiO3 Thin Films,” Jpn. J. Appl. Phy., 33 (1994) 5255-5258.
[88] G. I. Zysman and A. K. Johnson, “Coupled Transmission Line Networks in an Inhomogeneous Dielectric Medium,” IEEE Trans. Microwave Theory Tech., MTT-17 (1969) 753-759.
[89] B. I. Bleaney and B. Bleaney, Electricity and Magnetism, 3rd edition, Oxford, (1976).
[90] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications,
1st edition, Wiley, (2001)
[91] J. S. Hong and M. J. Lancaster, “Design of Highly Selective Microstrip Bandpass Filter With a Single Pair of Attenuation Poles at Finite Frequencies,” IEEE Trans. Microwave Theory Tech., MTT-48 (2000) 1098-1107.
[92] R. M. Kurzok, “General Four-Resonator Filters at Microwave Frequencies,” IEEE Trans. Microwave Theory Tech., MTT-14 (1966) 295-296.

------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910375050
論文名稱(中文) 應用微帶線結構於表面聲波濾波器之研究
論文名稱(英文) The Study of SAW Filter with Microstrip Structure
校院名稱 成功大學
系所名稱(中) 微電子工程研究所碩博士班
系所名稱(英) Institute of Microelectronics
學年度 91
學期 2
出版年 92
研究生(中文) 盧建彰
學號 q1690107
學位類別 碩士
語文別 中文
口試日期 2003-06-20
論文頁數 62頁
口試委員 指導教授-洪茂峰
口試委員-洪瑞鴻
指導教授-王永和
口試委員-陳茂雄
口試委員-陳立軒
關鍵字(中) 表面聲波
交叉指狀電極
方形耦合微帶線
壓電
關鍵字(英) interdigital transducer
surface acoustic wave
piezoelectric
square coupled microstrip
學科別分類
中文摘要 傳統的表面聲波濾波器(SAW Filter)若要應用於高頻範圍,除了必須選擇高傳播速度的基板外,尚需將交叉指狀電極(Interdigital Transducer , IDT)間的距離縮小至1μm以下,方能製作出可應用於GHz頻帶的表面聲波濾波器。有鑑於此,本論文中試著將方形耦合微帶線(square coupled microstrip)與交叉指狀電極結合,希望藉由方形耦合微帶線高頻的特性,將濾波器的使用頻率提昇,同時亦探討傳播速度遠遠不及電磁波的表面聲波在這個結構下扮演何種功能。

在本論文中,利用半導體製程中的微影、蒸鍍技術將濾波器製作於具有壓電性的鈮酸鋰(64°Y- LiNbO3)基板,及非壓電性的矽(SiO2/Si)基板上。同時利用IE3D軟體模擬電磁波在此種整合性結構濾波器的頻率響應,藉此與實驗值作一比較與分析。
英文摘要 The normal surface acoustic wave (SAW) filter is often used in the lower frequency range because of its low velocity. If the SAW filter wants to be operated in the GHz range , the distance between interdigital transducers (IDTs) must scale down to 1μm while selecting the high-speed propagation substrate. Therefore, the IDTs structure combined with square coupled microstrip is made. The high frequency response based on this structure is expected and the role-playing of the SAW in this structure will be analyzed.

In this paper, utilizing the semiconductor process including lithography and evaporation, the filter is fabricated on the piezoelectric and non-piezoelectric substrate, respectively. The experimental result is compared with simulation result by using IE3D software to simulate electromagnetic wave response.
論文目次 中文摘要……………………………………………………I
英文摘要……………………………………………………II
誌謝…………………………………………………………III
目錄…………………………………………………………IV
表目錄………………………………………………………VI
圖目錄………………………………………………………VII
目 錄
第一章 序論…………………………………………………1
1-1 研究背景……………………………………………1
1-2 研究動機……………………………………………2
第二章 表面聲波……………………………………………3
2-1 表面聲波原理………………………………………3
2-2 表面聲波元件的種類………………………………4
2-3 表面聲波濾波器……………………………………6
第三章 微帶線理論…………………………………………10
3-1 微帶線阻抗…………………………………………10
3-2 微帶線衰減…………………………………………11
3-3 微帶線的不連續性…………………………………12
3-4 微帶線諧振器的種類………………………………15
3-5 直接耦合與交錯耦合濾波器間的差異……………17
第四章 實驗過程……………………………………………20
4-1 基板與光罩選擇……………………………………20
4-2 濾波器製作…………………………………………20
4-3 元件量測……………………………………………23
第五章 結果與討論…………………………………………26
5-1 量測結果……………………………………………26
5-2 模擬結果……………………………………………27
5-3 實驗結果與比較……………………………………28
第六章 結論…………………………………………………31
參考文獻 ……………………………………………………61
參考文獻 [1] R.M. White and F.W. Voltmer, “Direct piezoelectric coupling to surface elastic waves”, Appl. Phys. Lett. , vol. 17,pp.314-316,1965.

[2] Andrew J. Sloodnik, JR, Thomas L. Szabo, Kenneth R. laske,"Miniature Surface Acoustic Wave Filter", Proc. IEEE Vol.67, No.1, pp.129-144, 1979.

[3]吳朗,"電子陶瓷—壓電陶瓷",全新科技,pp.2,1994。

[4] C.K. Campbell, "Surface Acoustic Wave Devices for Mobile and Wireless Communications", John Wiley & Sons, pp.161-168, 1997.

[5] C.K. Campbell, "Surface Acoustic Wave Devices for Mobile and Wireless Communications", John Wiley & Sons, pp.405, 1997.

[6]簡俊謙,"表面聲波元件之設計及其在寬頻震盪器之應用",國立
交通大學碩士論文,2000。

[7]吳朗,"電子陶瓷—壓電陶瓷",全新科技,pp.9,1994。

[8] C.K. Campbell, "Surface Acoustic Wave Devices for Mobile and Wireless Communications", John Wiley & Sons, pp.25-33, 1997.

[9] Y. Simizu, “The characteristics of SAW materials and the present status in Japanese industries”, Trans. Inst. Electron., Informat. And Communicat. Eng., Vol. J76-A, no. 2, pp.129, 1993.

[10] C.K. Campbell, "Surface Acoustic Wave Devices for Mobile and Wireless Communications", John Wiley & Sons, pp.34, 1997.

[11] S.H. Tsai, I.T. Tang, M.P. Houng, Y.H. Wang, "A Design Rule of Surface Acoustic Wave Filter", J.M.S.E., Vol.34, No.4, pp.231-238, 2002.

[12]張盛富、戴明鳳,"無線通信之射頻被動電路設計",全華科技,pp.3-9~3-17,1998。

[13] David M. Pozar, "Microwave Engineering", John Wiley & Sons, pp.160-163, 1998.

[14]張盛富,戴明鳳,"無線通信之射頻被動電路設計",全華科技,pp.3-31~3-46,1998。

[15] Donald R. J. White, "Electrical Filters Synthesis, design and Application ", Don White Consultants, Chapter 5, 1980.

[16] Jack Middlehurt, "Practical filter design", Prentice Hall, Chapter1-4, 1993.

[17] Ulrich H. Gysel, "New Theory and Design for hairpin Line Filters", IEEE Trans. Microwave Theory Tech., Vol. MTT-22, No.5, pp.523-531, 1974.

[18] Uwe Rosenberg and Walter Hagele, "Advance multimode cavity filter design using source/load resonance circuit cross couplings", IEEE Trans. Microwave and Guided Wave Letters. , Vol.2, pp.508-510, 1992.

[19] R. Levy and S.B. Cohn, "A history of microwave filter research, design and development", IEEE Trans. Microwave Theory Tech. , Vol. MTT-32, pp.1055-1067, 1984.

[20] S.J. Yao, R.R. Bonetti and A.E. William, "Generalized dual-plane multicoupled line filters", IEEE Trans. Microwave Theory Tech., Vol.41, pp2182-2189, 1993.

[21] David M. Pozar, "Microwave Engineering", John Wiley & Sons, pp.217-221, 1998.

------------------------------------------------------------------------ 第 4 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910404358
論文名稱(中文) 時域有限差分法之高頻串音分析
論文名稱(英文) High Frequency Crosstalk Analysis of PCB Layouts Using FDTD Method
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 91
學期 2
出版年 92
研究生(中文) 白家南
學號 n9690420
學位類別 碩士
語文別 中文
口試日期 2003-06-06
論文頁數 77頁
口試委員 指導教授-周榮華
召集委員-簡來成
口試委員-趙隆山
關鍵字(中) 傳輸線
微帶線
馬克斯威爾方程式
關鍵字(英) PML
Prony's Method
coplanar strips
microstrips
FDTD
學科別分類
中文摘要 隨著印刷電路板佈線密度的增加及CPU時脈頻率的增高,電磁干擾(EMI)、電磁耐受性(EMS)與電磁耦合等電磁相容性(EMC)的相關問題,成為未來PCB發展的重要關鍵因素之一。而本文所欲探討之現象,主要是電磁耦合所導致的串音問題,文中針對不同的傳輸線結構,如microstrips、coplanar strips與修正型微帶線等,採用全波馬克斯威爾方程式,用完美匹配層(PML)的邊界條件以時域有限差分法(FDTD)分析之。
就microstrips而言,串音電場值隨著導體寬度的增加及導線間距的增加而降低,且其接地方式因為迴路面積固定而較coplanar strips為佳。而就coplanar strips之結構而言,串音電場值隨著導體寬度的增加而降低;但若增加導線間距時,串音電場值則在5~15GHz頻段內會隨著導線間距增加,迴路面積增大而增加。另外,對電場源而言,rise time較小(訊號上升速度較快)之電場源其串音現象較為嚴重;反之,對於一個rise time較大之電場源,其串音電場值則隨著頻率之增加而漸趨弱小。
對於接地構形,coplanar strips之接地參考線越接近信號線時,串音電場值較小,串音問題能獲得較佳之改善;而對於修正型微帶線結構,由於基板上導線與下接地線成對稱,互感值較小而能有效減低串音現象。另外,對PCB之基板而言,由於串音電場隨著自容量增加而減小,故介電常數大者為佳;但介電常數較小者在某些諧頻時decay較快。
英文摘要 With the increasing density of printed circuit board (PCB) layouts and higher CPU clock frequency, the EMC problem becomes one of the dominant factors of future PCB development. In this thesis, a finite difference time domain (FDTD) numerical method is used to simulate the crosstalk, the trace-to-trace coupling which distorts the signal integrity, between PCB lands for different PCB layouts including microstrips and coplanar strips in frequency ranges up to 20GHz. And Maxwell’s equations are chosen to simulate the crosstalk phenomena, and perfectly matched layers (PML) are used as the absorbing boundary condition.

For microstrips, the crosstalk electric fields decrease as the width of metal lines and the distance between two different metal lines increase. And for coplanar strips, the crosstalk electric fields also decrease as the width of metal lines increase, but it would increase when the distance between different metal lines increase because of the increase of the loop area. In addition, for sources of the PCB circuits, the smaller the rise time is, the more serious the crosstalk phenomena are.

Additionally, for grounding, when the grounding lines of coplanar strips are as near as signal lines as possible, the crosstalk electric fields are smaller. And for modified microstrips, the phenomenon of crosstalk can be reduced because signal lines and grounding lines are symmetric with the substrate. Furthermore, it is observed that the crosstalk can be reduced by using appropriate layouts, and the nonsynchronous phenomenon caused by different mode velocities can be reduced by proper arrangement of ground planes.
論文目次 目錄 I
表目錄 III
圖目錄 IV
符號說明 IX

一、前言 1
二、數值方法 5
2-1 馬克斯威爾方程式(Maxwell’s Equations) 5
2-2 時域有限差分法(FDTD)理論 7
2-3 準確性與穩定性 9
2-4 邊界條件之選擇 10
三、串音分析 14
3-1 串音分析模型 14
3-2 電場源 14
3-3 頻譜轉換方法 15
四、結果與討論 19
4-1 Microstrips 19
4-2 Coplanar strips 20
4-2-1 3-coplanar strips 20
4-2-2 3-coplanar strips 21
4-3 接地構形 22
4-3-1 coplanar strips之參考接地線 22
4-3-2 修正型微帶線 24
4-4 基板材質 25
五、結論 26
參考文獻 28
參考文獻 [1] Gravelle, L. B. and Wilson, P. F., “EMI/EMC in Printed Circuit Boards-A literature Review”, IEEE Trans. on EMC, vol. 34, no. 2, pp.109~116, 1992.
[2] Hill, D. A., Cavcey, K. H. and Johnk, R. T., “Crosstalk Between Microstrip Transmission Lines”, IEEE Trans. on EMC, vol. 36, no. 4, pp.314~321, 1994.
[3] Gupta, K. C., Garg, R. and Bahl, I. J, Microstrip Lines and Slotlines, Artech House, Dedham, MA, 1979.
[4] Paul, C. R., “Derivation of Common Impedance Coupling from the Transmission Line Equations”, IEEE Trans. on EMC, vol. 34, no. 3, pp.315~319, 1992.
[5] Paul, C. R., “Modeling electromagnetic interference properties of printed circuit boards”, IBM J. Res. and Develop., vol. 33, no. 1 pp.33~50, 1989.
[6] Khan, R. L. and Costache, G. I., “Finite Element Method Applied to Modeling Crosstalk Problems on Printed Circuit Boards”, IEEE Trans. on EMC, vol. 31, no. 1, pp.5~15, 1989.
[7] Rainal, A. J., “Transmission properties of various styles of printed wiring boards”, Bell System Tech. J., vol. 58, pp.995~1026, 1979.
[8] Theune, D., Thiele, R., John, W. and Lengauer, T., “Robust Methods for EMC-Driven Routing”, IEEE Trans. on Computer-Aided Design of Integrated and Systems, vol. 13, no. 11, pp.1366~1378, 2001.
[9] Gordon, C. and Roselle, K. M., “Estimating Crosstalk in Multiconductor Transmission Lines”, IEEE Trans. on Components, Packaging, and Manufacturing Technology – Part B, vol. 19, no. 2, pp.273~277, 1996.
[10] Sohn, Y. S., Lee, J. C., Park H. J. and Cho S. I., “Empirical Equations on Electrical Parameters of Coupled Microstrip Lines for Crosstalk Estimation in Printed Circuit Board”, IEEE Trans. on Advanced Packaging, vol. 24, no. 4, pp.521~527, 2001.
[11] Cheng, D. K., Field and Wave Electromagnetics, Addison Wesley, Reading, Mass., 1983.
[12] Yee, K. S., “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations”, IEEE Trans. on Antennas and Propagation, vol. 14, pp.302~307, 1966.
[13] Taflove, A., Umashankar, K. R., Beker, B., Harfoush, F. and Yee, K. S., “Detailed FD-TD Analysis of Electromagnetic Fields Penetrating Narrow Slots and Lapped Joints in Thick Conducting Screens”, IEEE Trans. on Antennas and Propagation, vol. 36, no. 2, pp.302~307, 1966.
[14] Sadiku, M. N. O., Numerical Techniques in Electromagnetics, CRC Press, Boca Raton, Fla., pp.179~187, 1992.
[15] Taflove, A., Computational Electrodynamics: The Finite-Difference Time- Domain Method, Artech House, Boston, pp.81~106, 1995.
[16] Engquist, B. and Majda, A., “Absorbing Boundary Conditions for the Numerical Simulation of Waves”, Mathematics of Computation, vol. 31, pp.629~651, 1977.
[17] Mur, G., “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic Field Equations”, IEEE Trans. on EMC, vol. 23, pp.377~382, 1981.
[18] Trefethen, L. N. and Halpern, L., “Well-Posedness of One-Way Wave Equations and Absorbing Boundary Conditions”, Mathematics of Computation, vol. 47, pp.421~435, 1986.
[19] Moore, T. G., Blaschak, J. G., Taflove, A. and Kriegsmann, G. A., “Theory and Application of Radiation Boundary Operators”, IEEE Trans. on Antennas and Propagation, vol. 36, no.12, pp.1797~1812, 1988.
[20] Higdon, R. L., “Numerical Absorbing Boundary Conditions for the Wave Equation”, Mathematics of Computation, vol. 49, pp.65~90, 1987.
[21] Berenger, J. P., “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves”, Journal of Computational Physics, vol. 114, pp.185~200, 1994.
[22] Berenger, J. P., “Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves”, Journal of Computational Physics, vol. 127, pp.363~379, 1996.
[23] Paul, C. R., Introduction to Electromagnetic Compatibility, Wiley, New York, 1992.
[24] Odate, Y., Usami, T., Otsuka, K. and Suga, T., “A Measurement and Simulation of Transmission Lines on Microstrip and Stacked-Pair Structure for High Speed Signals”, IEEE Electronic Components and Technology Conference, pp.526~529, 2000.
[25] Montrose, M. I., EMC and the Printed Circuit Board : Design, Theory, and Layout Made Simple, IEEE Press, New York, 1999.
[26] Schamberger, M. A., Kosanovich, S. and Mittra, R., “Parameter Extration and Correction for Transmission Lines and Discontinuities Using the Finite-Difference Time-Domain Method”, IEEE Trans. on Microwave Theory and Techniques, vol. 44, no. 6, pp.919~925, 1996.
[27] Pereda, J. A., Vielva, L. A., Vegas, A. and Prieto A., “Computation of Resonant Frequencies and Quality Factors of Open Dielectric Resonators by a Combination of the Finite-Difference Time-Domain and Prony’s Methods”, IEEE Microwave and Guided Wave Letters, vol. 2, no. 11, pp.431~433, 1992.
[28] Tsui, James, Digital Techniques for Wideband Receivers, Artech House, Boston, pp.400~407, 1995.

------------------------------------------------------------------------ 第 5 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911090634
論文名稱(中文) 微帶線佈局對表面聲波帶通濾波器響應之研究
論文名稱(英文) The Study of SAW Filter Response with Microstrip Layout
校院名稱 成功大學
系所名稱(中) 微電子工程研究所碩博士班
系所名稱(英) Institute of Microelectronics
學年度 92
學期 2
出版年 93
研究生(中文) 張文宗
學號 Q1691111
學位類別 碩士
語文別 中文
口試日期 2004-06-18
論文頁數 77頁
口試委員 指導教授-王永和
口試委員-王水進
口試委員-陳英忠
口試委員-洪瑞鴻
指導教授-洪茂峰
關鍵字(中) 表面聲波
濾波器
壓電
微帶線
交叉指狀電極
關鍵字(英) interdigital transducer
piezoelectric
microstrip
surface acoustic wave
學科別分類
中文摘要   粹取外部構裝及微帶線等效的研究雖然可以較精確的計算元件效能降低的因素,但過程複雜且所得的也是一近似結果而已,並無法完全反應元件的響應。而當封裝或微帶線設計改變時,原本的的模型就必須重新設計及分析,這是比較麻煩的地方。本論文提出一種逆算的方法,直接從量測結果來粹取等效參數,並利用半導體製程來驗證此法的正確性及和傳統理論分析的差異。
  微帶線構裝佈局是一般表面聲波濾波器和外界訊號連接的管道,所以其長度及寬度的設計就會影響濾波器的響應。而微帶線也可以經由設計達成電感、電容等被動元件的完成,進而補償濾波器的損失。本論文除了說明設計微帶線佈局之外也提出一些特殊的微帶線結構來改善表面聲波帶通濾波器的響應特性。


英文摘要   Although the researches of parameters extraction from package and microstrip can determinate the performance decreasing factors, but the process is complex and
the result is also an approximation, which can not show the real frequency response exactly. When the type of package or the design of microstrip has changed, the
original model must be re-designed and analyzed, this is the reason why we feel boring. In this thesis, we propose a new method to extract parameters from the
measurement. Also, we use semiconductor process to prove our validity and comparing the difference with traditional theory.
  The microstrip layout is usually the path between our saw device and systematic signal, how we design affect the response of our filter. However, we can compose
passive components through our design, which compensate the insertion loss. The thesis not only interprets how we design microstrip layout but also brings up some
microstrip structure to improve our performance.


論文目次 目錄
第一章序論------------------------------------------7
1-1 研究背景-----------------------------------------------7
1-2 研究動機-----------------------------------------------8
第二章表面聲波濾波器理論----------------------------------10
2-1 表面聲波原理-------------------------------------------10
2-2 表面聲波帶通濾波器-------------------------------------11
2-2-1 基本原理---------------------------------------------11
2-2-2 等效電路及其分析-------------------------------------15
2-2-3 帶通等效電路物理意義-------------------------------------------------19
2-3 網路分析與等效電路參數粹取-----------------------------------------21
2-3-1 S參數矩陣----------------------------------------------------------------21
2-3-2 傳輸(ABCD)矩陣--------------------------------------------------------23
2 -3-3 等效參數粹取過程------------------------------------------------------24
第三章微帶線理論-------------------------------------------28
3-1 微帶線基本特性--------------------------------------------------------------28
3-1-1 微帶線結構------------------------------------------------------------------28
3-1-2 微帶線特性------------------------------------------------------------------28
3-1-3 微帶線損失-------------------------------------------------------------------30
3-2 微帶線的不連續性------------------------------------------------------------30
3-2-1 終端開路的傳輸線---------------------------------------------------------31
3-2-2 直角彎曲----------------------------------------------------------------------32
3-2-3 穿孔式微帶線---------------------------------------------------------------33
3-3 微帶線設計---------------------------------------------------------------------34
2
3-3-1 等效電感長度設計----------------------------------------------------------34
3-3-2 等效電容長度設計-----------------------------------------------------------35
第四章實驗與討論-------------------------------------------------------------------36
4-1 等效電路參數計算與模擬響應----------------------------------------------36
4-2 元件製作流程-------------------------------------------------------------------37
4-3 元件量測參數轉換-------------------------------------------------------------39
4-4 微帶線對表面聲波帶通濾波器的影響-------------------------------------39
第五章結論--------------------------------------------------- 43
參考文獻-----------------------------------------------------------------------------------73

參考文獻 參考文獻
[1] R.M. White and F.W. Voltmer, “Direct piezoelectric coupling
to surface elastic waves”, Appl. Phys. Lett. , Vol. 17,pp.314-316,1965.
[2] 吳朗,"電子陶瓷—壓電陶瓷",全新科技,pp.2,1994。
[3] D. P. Morgan, " History of SAW Devices ", Frequency Control
Symposium, Proceedings of the IEEE International, pp.439-460,
1998.
[4] Andrew J. Slobodnik, JR, Thomas L. Szabo, Kenneth R. laske, "
Miniature Surface Acoustic Wave Filter ", Proc. IEEE Vol.67, No.1,
pp.129-144, 1979.
[5] C. K. Cambell, " Surface Acoustic Wave Devices for Mobile and
Wireless Communication ", Academic Press, INC. 1998.
[6] Ivan D. Arramov, Z. Davko and G. Georgiev, " A Surface Acoustic
Wave Comb Spectrum Oscillator for Sensor Application ", IEEE
Trans. Ultrason. Ferroelec. Freq. Contr., Vol. UFFC-38, No.3,
pp.334-336, 1991.
[7] S.H. Tsai, I.T. Tang, M.P. Houng, Y.H. Wang, "A Design Rule of
Surface Acoustic Wave Filter", J.M.S.E., Vol.34, No.4, pp.231-238,
2002.
[8] 湯譯增," 應用於展頻系統之新型微波低損失頻寬甚大表面聲波
濾波器",國立成功大學碩士論文,2001.
[9] W.R. Smith, H.M. Gerard, J.H. Collins, T.M. Reeder, and H.J. Shaw, "
Analysis of Interdigital Surface Wave Transducers by Use of
Equivalent Circuit Model ", IEEE Trans. Microwave Theory and
74
Techniques, Vol. MTT-17, No.11, pp.856-864, Nov. 1969.
[10] 陳漢珍," 可積體化表面聲波帶拒濾波器之研製",國立成功大
學碩士論文,2002.
[11] 吳朗,電子陶瓷(壓電),全新科技圖書,1994.
[12] Michel Feldmann and Jeannie H’enaff, " Surface Acoustic Wave for
Signal Processing ", Artech House, 1989.
[13] J. Koike, K. Shimoe, and H. Ieki, "1.5Ghz Low-Loss Surface
Acoustic Wave Filter Using ZnO/Sapphire Substrate", Jpn. J. Appl.
Phys. Vol. 32 pp. 2337-2340, 1993.
[14] David M. Pozar, "Microwave Engineering", John Wiley &
Sons, 1998.
[15]Jia - Sheng Hong, “Microstrip Filters for RF/Microwave Application”,
John Wiley & Sons,2001.
[16] 張盛富,戴明鳳,"無線通信之射頻被動電路設計",全華科技,
pp.3-31~3-46,1998。
[17] Kai Chang,” RF and Microwave Wireless Systems” ,John Wiley &
Sons,2000.
[18] Inder Bahl, Prakash Bhartia, “Microwave Solid State Circuit
Design”, John Wiley & Sons, 2003.
[19] Mark Cavin,Nancy Eisenhauer and Donald C. Malocha,”Parameter
Extraction of SAW Resonator Equivalent Circuit Parameters and
Package Parasitics”, IEEE Frequency Control Symposium,1992.
75
[20] 李信忠," 電子構裝之電氣特性模型的建立與信號完整性分析
",國立成功大學碩士論文,2000.
[21] 柯志祥, " 電子構裝電氣特性之電磁模擬與量測" ,
國立成功大學碩士論文,1999.
[22] 林冠諭, " 封裝寄生效應對表面聲波元件效能的影響" ,
國立中山大學碩士論文,2000.
[23] Reinhold Ludwig and Pavel Bretchko “RF Circuit Design : Theory
and Application”,Prentice Hall,2000.
[24] Otto Schwelb, E.L. Adler, and J.K. Slaboszewicz, “Modeling,
Simulation, and Design of SAW Grating Filters”, IEEE Transactions
on Ultrasonics. Ferroelectrics. And Frequency Control., Vol.37
No.2 ,1990.
[25] Masanori Koshiba, Seiitchi Mitobe, ”Equivalent Network for SAW
Gtrating”, IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control., Vol .35 No.25,1988.
[26] Kiyoshi Inagawa, and Masanori Koshiba, “Equivalent Network for
SAW Interdigital Transducers”, IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control.,Vol.41 No.3, 1994.
[27] M. Makimoto, S. Yamashita, ”Microwave Resonators and Filters for
Wireless Communication: Theory, Design and Application”,
Springer, 2001.
[28] Ken – ya Hashimoto, ”Surface Acoustic Wave Devices in
Telecommunications”, Springer, 2001.
76
[29] Donald R. J. White, "Electrical Filters Synthesis, design and
Application ", Don White Consultants, Chapter 5, 1980.
[30] S.J. Yao, R.R. Bonetti and A.E. William, "Generalized dual-plane
multicoupled line filters", IEEE Trans. Microwave Theory Tech.,
Vol.41, pp2182-2189, 1993.
[31] R. Levy and S.B. Cohn, "A history of microwave filter research,
design and development", IEEE Trans. Microwave Theory Tech. ,
Vol. MTT-32, pp.1055-1067, 1984.
[32] Uwe Rosenberg and Walter Hagele, "Advance multimode cavity
filter design using source/load resonance circuit cross couplings",
IEEE Trans. Microwave and Guided Wave Letters. , Vol.2,
pp.508-510, 1992.
[33] Jack Middlehurt, "Practical filter design", Prentice Hall, Chapter1-4,
1993.
[34] Kai Chang, “Microwave Solid-State Circuits and Application”, John
Wiley & Sons, 1994.
[35] John L. Prince, “High Frequency Characterization of Electronic
Packaging”, Kluwer Academic Publishers, 1998.
[36] Tai-SAW Technology Co., Ltd, “Approval Sheet for Product
Specification ” , TST Part No.TA308.
[37] Rajesh Mongia, Inder Bahl and Prakash Bhartia, ”RF and
Microwave Coupled-Line Circuit”, Artech House, 1999.
[38] Roger B. and Dylan F. Willams, “Comments on Conversions
between S, Z, Y, h, ABCD, and T Parameters which are Valid for
Complex Source and Load Impedances”, IEEE Trans. Microwave
Theory Tech., Vol.43, No.4, 1995.
77
[39] Thorvaldsson, “Method of Arbitrary Interconnection of Building
Blocks for SAW Devices”, IEEE Ultrasonics Symp., 1995.
[40] V. Krishnaswamy, J. F. Rosenbaum, S. S. Horwitz, and R. A. Moore,
“Film Bulk Acoustic Wave Resonator and Filter Technology”, IEEE
Trans. MTT-S Dig.,1992.
[41] K.M. Lakin, G. R. Kline, and K. T. McCrron, “High Q Microwave
Acoustic Resonators and Filters”, IEEE Trans. MTT-S Dig,
Vol.41,1993.
[42] 袁杰, ”高頻電路分析與設計”, 高立出版社, 1997.
[43] B. A. Auld, “Acoustic Fields and Wave in Solids”, New York,1973.
[44] J. H. Hines and D. C. Malocha, “A Simple Transducer Equivalent
Circuit Parameter Extraction Technique.”, IEEE Ultrasonics
Symp.,1993

------------------------------------------------------------------------ 第 6 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200913450001
論文名稱(中文) 設計具抑制寄生響應的新型微帶線帶通濾波器
論文名稱(英文) Design of Novel Microstrip Bandpass Filters With Spurious Responses Suppression
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 陳盟升
學號 n2694110
學位類別 碩士
語文別 中文
口試日期 2007-07-06
論文頁數 86頁
口試委員 口試委員-陳一鋒
口試委員-張法憲
指導教授-李炳鈞
口試委員-李文熙
關鍵字(中) 寄生響應
濾波器
微帶線
關鍵字(英) Microstrip
Filter
Spurious Response
學科別分類
中文摘要 微帶線濾波器存在著寄生響應(Spurious Responses) 造成導通帶和截止帶在頻率軸上不斷重複出現。本文探討寄生響應產生的原因、出現的位置以及抑制的方式。本文提出一種具有抑制寄生響應的新型微帶線帶通濾波器,主要是利用兩個非對稱型式的步階阻抗諧振器所構成。藉由在二分之一波長諧振器上,設計不同的阻抗比及長度比,使高階寄生響應會相互抵消,因此濾波器具有寬廣的截止帶。並利用HFSS軟體分析比較對稱型式及非對稱型式的濾波器,證明非對稱型式的濾波器具有較寬的截止帶,此外模擬分析零度和180度饋入,發現使用零度饋入技術可在截止帶兩側插入零點並保持相同的導通帶響應與寄生響應抑制範圍不變。
在實作方面,分別將濾波器實現在FR4、氧化鋁與BaZn2Ti4O11 (BZT)等三種基板上,所設計的濾波器中心頻率為1.5 GHz、頻寬為8%、Shape Factor小於2、截止帶頻率為基本諧振頻率的5倍以上。並另外將此濾波器設計在2.4GHZ下,中心頻率為2.4 GHz、頻寬為10%。模擬和量測結果顯示,濾波器頻率、頻寬都與模擬非常相近。1.5 GHz的濾波器在抑制寄生響應方面FR4基板上可被抑制到5.41f0、Al2O3基板上可被抑制到5.09f0、BZT基板上可被抑制到4.55f0處。另外,2.4 GHz的濾波器在FR4基板上寄生響應可被抑制到4.58f0,略小於1.5GHZ時的範圍。但上述的濾波器其Shape Factor皆大於2。
英文摘要 In general, the microstrip bandpass filters (BPF) suffer the problems of spurious responses in which the passbands and stopbands appear alternatively in the frequency spectrum. Suppressing the spurious responses effectively will remove the necessity of extra low-pass filters in front of or behind the bandpass filters. In this thesis we investigated the causes of the spurious responses and proposed a modified microstrip bandpass filter to enhance the capability of spurious responses suppression by using asymmetric stepped-impedance resonators. By choosing the proper stepped-impedance ratio and length ratio for the stepped-impedance resonators, the spurious responses beyond the desired passband can be suppressed effectively, resulting in the BPF with broad stopband. The HFSS simulation was first used to analyze the BPFs with symmetric and asymmetric stepped-impedance ratios and length ratios. The results showed that the stopband of asymmetric filters is wider that that of symmetric filters. The simulation also demonstrated that the spurious response suppression was almost the same for both zero degree and 180 degree signal feeds. The BPFs with spurious response suppression were realized on FR4, Al2O3 and BaZn2Ti4O11(BZT) substrates, respectively. The BPFs were designed with the characteristics of the center frequencies of 1.5 and 2.4 GHz, 8% bandwidth and the stopband with the suppression frequency five times over the center frequency. The measured results of the BPFs agreed with the simulations. However, the measured loss was larger than that of simulation due to fabrication errors. The shape factor of the filters was larger than two, which is a little bit over the accepted value for practical industry bandpass filters and needs further improvement in the future.
論文目次 摘 要 V
目錄 IX
表目錄 XI
圖目錄 XII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 6
1.3 論文架構 7
第二章 相關原理與文獻討論 8
2.1 微帶線濾波器 8
2.1.1 微帶線(Microstrip) 8
2.1.2 微帶線諧振器的種類 16
2.1.3 微帶線諧振器的損耗與品質因數 18
2.1.4 微帶線諧振器間的耦合型態與耦合係數 19
2.1.5 Tapped Line 饋入設計 25
2.1.6 濾波器特性指標 27
2.1.7 耦合係數法設計帶通濾波器程序 29
2.2 寄生響應(SPURIOUS RESPONSE) 30
2.2.1 平行耦合微帶線與寄生響應 30
2.2.2 理查轉換(Richards’s transformation)與寄生響應 33
2.2.3 傳輸線諧振器與寄生響應 35
2.3 步階阻抗諧振器(SIR) 38
2.3.1 二分之一波長SIR的寄生響應位置 39
2.3.2 四分之一波長SIR的寄生響應位置 39
第三章 濾波器設計與模擬 41
3.1 新型步階阻抗諧振器結構 41
3.2 濾波器規格及設計 42
3.2.1 濾波器設計與模擬 43
第四章 結果與討論 68
4.1 FR4基板濾波器之製作 68
4.1.1 FR4基板電路之製作步驟 68
4.1.2 U=0.5之帶通濾波器 69
4.1.3 U=0.34之帶通濾波器 71
4.1.4 2.4GHZ濾波器之製作 73
4.2 AL2O3基板濾波器之製作 75
4.2.1. Al2O3基板電路之製作步驟 75
4.2.2. Al2O3基板實做結果 76
4.3 BZT基板濾波器之製作 78
第五章 結論與未來發展 80
參考文獻 83
參考文獻 [1] M.Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication :Theory, Design and Application: Springer, 2001.
[2] S.-C. Lin, P.-H. Deng, Y.-S. Lin, C.-H. Wang, and C. H. Chen, "Wide-stopband microstrip bandpass filters using dissimilar quarter-wavelength stepped-impedance resonators," Microwave Theory and Techniques, IEEE Transactions on, vol. 54, pp. 1011-1018, 2006.
[3] K. F. Chang and K. W. Tam, "Miniaturized cross-coupled filter with second and third spurious responses suppression," Microwave and Wireless Components Letters, IEEE, vol. 15, pp. 122-124, 2005.
[4] A. Manchec, C. Quendo, E. Rius, C. Person, and J. F. Favennec, "Synthesis of dual behavior resonator (DBR) filters with integrated low-pass structures for spurious responses suppression," Microwave and Wireless Components Letters, IEEE, vol. 16, pp. 4-6, 2006.
[5] W.-H. Tu and K. Chang, "Compact second harmonic-suppressed bandstop and bandpass filters using open stubs," Microwave Theory and Techniques, IEEE Transactions on, vol. 54, pp. 2497-2502, 2006.
[6] W.-H. Tu and K. Chang, "Compact microstrip bandstop filter using open stub and spurline," Microwave and Wireless Components Letters, IEEE vol. 15, pp. 268-270, 2005.
[7] J.-S. Park, J.-S. Yun, and D. Ahn, "A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance," Microwave Theory and Techniques, IEEE Transactions on, vol. 50, pp. 2037-2043, 2002.
[8] D. Ahn, J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," Microwave Theory and Techniques, IEEE Transactions on, vol. 49, pp. 86-93, 2001.
[9] J.-T. Kuo, S.-P. Chen, and M. Jiang, "Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses," Microwave and Wireless Components Letters, IEEE, vol. 13, pp. 440-442, 2003.
[10] T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, "New microstrip Wiggly-Line filters with spurious passband suppression," Microwave Theory and Techniques, IEEE Transactions on, vol. 49, pp. 1593-1598, 2001.
[11] T. Lopetegi, M. A. G. Laso, F. Falcone, F. Martin, J. Bonache, J. Garcia, L. Perez-Cuevas, M. Sorolla, and M. Guglielmi, "Microstrip "wiggly-line" bandpass filters with multispurious rejection," Microwave and Wireless Components Letters, IEEE, vol. 14, pp. 531-533, 2004.
[12] W.-H. Tu and K. Chang, "Miniaturized dual-mode bandpass filter with harmonic control," Microwave and Wireless Components Letters, IEEE vol. 15, pp. 838-840, 2005.
[13] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications: Wiley-Interscience, 2001.
[14] R. G. K.C. Gupta, Inder Bahl, Bhartia Microstrip Lines and Slotlines, 2 ed.: Artech House, 1996.
[15] P. A. Rizzi, Microwave Engineerung Passive Circuit, 1988.
[16] P. B. Andrew R. Brown, and Gabriel M. Rebeiz, "Microwave and Millimeter-wave High-Q Micromachined Resonators," 1999.
[17] R. W. Rhea, HF Filter Design & Computer Simulation, 1994.
[18] J. S. Wong, "Microstrip Tapped-Line Filter Design," Microwave Theory and Techniques, IEEE Transactions on, vol. 27, pp. 44-50, 1979.
[19] Matthaei, G. L, E. M. T. Jones, and L. Young, Microwave filters, impedance-matching networks, and coupling structures: Artech House, 1982.
[20] D. M. Pozar., Microwave engineering wiley-interscience, 2004.
[21] I. B. Rajesh mongia, Prakash Bhartia, Rf And Microwave Copled-Line Circuits: Artech House, 1999.
[22] 吳盈德, "Novel Coupled Bandpass Filters with Wide Rejection Band in Application of the Sub-Harmonic Mixer," 2005.
[23] M. Makimoto and S. Yamashita, "Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators," Microwave Theory and Techniques, IEEE Transactions on, vol. 28, pp. 1413-1417, 1980.
[24] S.-Y. Lee and C.-M. Tsai, "New cross-coupled filter design using improved hairpin resonators," Microwave Theory and Techniques, IEEE Transactions on, vol. 48, pp. 2482-2490, 2000.
[25] M. SAGAWA, M. MAKIMOTO, and S. YAMASHITA, "A Design Method of Bandpass Filters Using Dielectric-Filled Coaxial Resonators," 1985.
[26] C.-M. Tsai, S.-Y. Lee, and C.-C. Tsai, "Performance of a planar filter using a 0 degree feed structure," Microwave Theory and Techniques, IEEE Transactions on, vol. 50, pp. 2362-2367, 2002.
[27] C. L. Hsu and J. T. Kuo, "A Two-Stage SIR Bandpass Filter With an Ultra-Wide Upper Rejection Band," Microwave and Wireless Components Letters, IEEE, vol. 17, pp. 34-36, 2007.
[28] C.-M. Tsai, S.-Y. Lee, and H.-M. Lee, "Transmission-line filters with capacitively loaded coupled lines," Microwave Theory and Techniques, IEEE Transactions on, vol. 51, pp. 1517-1524, 2003.

------------------------------------------------------------------------ 第 7 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200914001480
論文名稱(中文) 薄膜微帶線與介間物質在微波被動元件之研究
論文名稱(英文) Study of Thin Film Microstrip Line and Metamaterial on Microwave Passive Devices
校院名稱 成功大學
系所名稱(中) 微電子工程研究所碩博士班
系所名稱(英) Institute of Microelectronics
學年度 95
學期 2
出版年 96
研究生(中文) 吳宏偉
學號 q1893106
學位類別 博士
語文別 英文
口試日期 2007-05-29
論文頁數 149頁
口試委員 口試委員-張守進
召集委員-雷添福
口試委員-許渭州
口試委員-朱俊勳
口試委員-葉文冠
口試委員-莊賦祥
口試委員-劉文超
指導教授-蘇炎坤
指導教授-翁敏航
關鍵字(中) 薄膜微帶線
低介電
微波量測
介間物質
關鍵字(英) Low K
thin film microstrip line
metamaterial
microwave measurement
學科別分類
中文摘要 本論文主要分成三大部分:(a) 低介電薄膜微帶線之製備;(b) 低介電材料之微波量測;(c) 介間物質與多頻帶微波濾波元件之設計。
(a) 低介電薄膜微帶線之製備與研究
在第一部份中,本論文提出一種製作於低介電材料上之薄膜微帶線,並探討其微波特性與平均功率承載能力(Average Power Handling Capability, APHC)。該薄膜微帶線之介電層係使用低介電常數(Low K)材料-Polyimide。在製程上,我們使用低成本的標準矽晶(Standard Low Resistivity Silicon, LRS, )作為基板;將Polyimide旋鍍約20µm至表面具有2µm鋁金屬之LRS上,再使用sputter濺鍍約2µm之鋁金屬至Polyimide上。成功製作出線寬為60µm,長度為2000µm之薄膜微帶線。在損失機制與平均功率承載能力的分析上,我們將探討在1-50GHz間,外加dc-Bias的變化對於薄膜傳輸線之有效介電常數、損耗正切與平均功率承載能力的影響。該薄膜微帶線可廣泛應用於射頻積體電路(Radio Frequency Integrated Circuit, RFIC)中。
(b) 低介電材料之微波量測
在第二部份中,本論文使用有限接地面之微帶線結構(Microstrip line)作為量測該低介電材料微波特性之方法。藉由高頻on-wafer與傳輸線結構之高頻量測技術,可準確地確認該低介電材料在無偏壓與偏壓情況下之微波特性與最大功率承載能力。特別是在加入偏壓下之研究,其可有效評估RF SoC的可能性。
(c) 介間物質與多頻帶微波濾波元件之設計。
在第三部份中,本論文提出介間物質(metamaterial)結構,其為一種能夠產生負導磁係數或負介電係數之自然或人造物質,可用於改變特定電磁波的傳播現象。介間物質結構應用在微波元件上是目前應用於無線通訊射頻前端中極具前瞻性的技術之一。本論文以互補式分離式環形共振器(Complementary Split Ring Resonator,CSRR)結構為主,設計並應用該CSRR於微波濾波元件上,並評估製作於矽基板上之可行性。另外,本論文亦使用步階式阻抗共振器設計具有多頻帶特性之濾波元件,以符合無線區域網路之規格。
最後,本論文亦對系統晶片整合技術(SoC)提出一些建議與未來工作方向。
英文摘要 This dissertation divides into three parts: (a) Preparation of thin film microstrip line using low K dielectrics; (b) microwave measurements of the low K dielectric materials and (c) design of filter with metamaterial and with multi-band performance.
(a) Preparation of thin film microstrip line using low K dielectrics
In the first part of the dissertation, we propose a detailed fabricating process and characterization of thin film microstrip line (TFML) on low K polyimide. By incorporating a spin-on dielectric polyimide and sputtering of aluminum, the TFML is fabricated on low cost low resistivity silicon (LRS) substrate ( ), the TFML with a thickness of 20μm polyimide dielectric layer presents attenuation losses of 0.385 dB/mm at 25 GHz and 0.438 dB/mm at 50 GHz. Effective dielectric constants, loss tangent and average power handling capability (APHC) of TFML on polyimide are carefully investigated and discussed. Additionally, the microwave characteristics of the dc-biased TFML were studied. This characterization of the TFML can be extensively applied on the interconnection of radio frequency integrated circuit (RFIC).
(b) Microwave measurements of the Low K dielectric materials
In the second part of the dissertation, we present a novel finite ground microstrip line to develop and to measure the microwave properties of TFML. By using the high frequency on-wafer and transmission line measurement technique, the low K dielectric can be accurately determined in the microwave properties and APHC under the condition for without dc-bias and with dc-bias. Especially in the case with dc-bias that can effectively evaluate the possibility of RF SoC.
(c) Filter design with metamaterial and with multi-band performance
In the third part of the dissertation, we discuss the propagation characteristics of single complementary split-ring resonator (CSRR) in planar transmission media. We also applied the periodic CSRRs to suppress the harmonics of the conventional dual-mode ring bandpass filter (BPF) by using the propagation characteristics of the periodic CSRRs. Additionally, we present a dual-band filter using stepped impedance resonator (SIR). The BPF has good dual-passband performances at 2.4 / 5.2 GHz and high isolation between the two passbands. The dual-band BPF has a smaller area and lower insertion loss in comparison of previous works.
Finally, some suggestions are made in the future work on technology for system on chip (SoC).
論文目次 摘要 i
Abstract iii
Acknowledgement v
Contents vii
Table Content x
Figure Content xi
Chapter 1 General Introduction 1
1.1 Background 1
1.2 General review of thin film microstrip line (TFML) 2
1.3 Dielectric theory 3
1.4 Microwave measurement for dielectric material 4
1.5 Basic theory of microwave filters 5
1.6 Organization of this dissertation 6
Chapter 2 Fabrication of Low Loss Thin Film Microstrip Line (TFML) on Low Resistivity Silicon for RF Applications 17
2.1 Introduction 17
2.2 Fabrication process of TFML 19
2.3 Measured results and discussions 22
2.4 Summary 24
Chapter 3 Microwave Properties of Thin Film Microstrip Line For RF Applications 33
3.1 Introduction 33
3.2 Experimental 34
3.3 Results and Discussions 37
3.4 Summary 39
Chapter 4 Equivalent Lumped Elements of DC-Biased Thin Film Microstrip Line in Monolithic Microwave Integrated Circuits (MMICs) 49
4.1 Introduction 49
4.2 Experimental 50
4.3 Results and discussions 51
4.4 Summary 53
Chapter 5 Average Power Handling Capability (APHC) of DC-biased Thin Film Microstrip Line on Polyimide Substrate 60
5.1 Introduction 60
5.2 Characterization 61
5.3 Experiments 62
5.4 Summary 64
Chapter 6 Propagation Characteristics, Equivalent Circuit and Wide Bandgap Enhancement in Complementary Split Ring Resonator (CSRR) Based Microstrip Filtering Devices 69
6.1 Introduction 69
6.2 Propagation Characteristics of CSRR 70
6.3 An Accurate Equivalent Circuit for Etched Resonator with Effective Negative Permittivity 74
6.3.1 Equivalent Circuit for Single-cell CSRR 74
6.3.2 Results 77
6.4 A Compact Narrow-Band Microstrip Bandpass Filter with a Complementary Split-Ring Resonator 78
6.4.1 Design Procedure 78
6.4.2 Results and Discussions 79
6.5 Improved Stopband of the Dual-Mode Ring Bandpass Filter Using Periodic Complementary Spilt-Ring Resonators 81
6.5.1 Design of a BPF with Wide Stopband 81
6.5.2 Simulated and Measured Results 82
6.6 Summary 83
Chapter 7 Spurious Suppression in Bandpass Filters with EBG Cells for Multi-Chip-Module (MCM) 101
7.1 Introduction 101
7.2 Parallel Coupled BPF with C-shaped EBG 102
7.2.1 Design Procedure 102
7.2.2 Fabrication and Measured Results 104
7.3 Spurious Suppression of a Dual-Mode Bandpass Filter Using Simple C-Shaped EBG Cells 105
7.3.1 Design Procedure 105
7.3.2 Simulated and Measured Results 107
7.4 Spurious Suppression of a Parallel Coupled Microstrip Bandpass Filter with Simple Ring EBG Cells on the Middle Layer 109
7.4.1 Design Procedure 109
7.5 Summary 111
Chapter 8 Design of Novel Dual-Band Bandpass Filters Using Stepped Impedance Resonators (SIRs) 125
8.1 Introduction 125
8.2 Design Procedure 126
8.3 Results and Discussion 128
8.4 Summary 128
Chapter 9 Conclusion and Future Work 134
9.1 Conclusion 134
9.2 Future work 136
References 137
List of Publications 143
Vita 149
參考文獻 [1] R. R. Tummala, E. J. Rayaszewski, Microelectronic Packaging Handbook, Van Nostrand Reinold, New York, 1989.
[2] J. Baliga, “System-in-package uses silicon substrate,” Semicond. Int., vol. 27, no. 9, pp. 32, Aug. 2004.
[3] J. F. Luy and P. Russer, Silicon-Based Millimeter-Wave Devices, ser. Springer Series in Electronics and Photonics. Berlin, Germany: Springer-Verlag, 1994.
[4] J. Y. C. Chang, A. A. Abidi, and M. Gaitan, “Large suspended inductors on silicon and their use in a 2-μm CMOS RF amplifier,” IEEE Electron Device Lett., vol. 14, no. , pp. 246-248, 1993.
[5] H. S. Gamble, B. M. Armstrong, S. J. N. Mitchell, Y. Wu, V. F. Fusco, and J. A. C. Stewart, “Low-loss CPW lines on surface stabilized high-resistivity silicon,” IEEE Microw. Guided Wave Lett., 9, (1999), pp. 395-397.
[6] K. T. Chan, A. Chin, S. P. McAlister, C. Y. Chang, J. Liu, S. C. Chien, D. S. Duh, and W. J. Lin, “Low RF noise and power loss for ion-implanted Si having an improved implantation process,” IEEE Electron. Device Lett., 24, (2003), pp. 28-30.
[7] K. J. Herrick, T. A. Schwarz, and L. P. B. Katehi, “Si-micromachined coplanar waveguides for use in high-frequency circuits,” IEEE Trans. Microw. Theory Tech., 46, (1998), pp. 762-768.
[8] G. E. Ponchak, A. Margomenos, and L. P. B. Katehi, “Low-loss CPW on low-resistivity Si substrates with a micromachined polyimide interface layer for RFIC interconnects,” IEEE Trans. Microw. Theory Tech., 49, (2001), pp. 866-870.
[9] L. L. W. Leung, W. C. Hon, and K. J. Chen, “Low-loss coplanar waveguides interconnects on low-resistivity silicon substrate,” IEEE Trans. Comp., Packag., Manufact. Technol., 27, (2004), pp. 507-512.
[10] G. E. Ponchak and A. N. Downey, “Characterization of thin film microstrip lines on polyimide,” IEEE Trans. comp. pack. Manufact. Technol., 21, (1998), pp. 171-176.
[11] G. E. Ponchak and L. P. B. Katehi, “Measured attenuation of coplanar waveguide on CMOS grade silicon substrate with polyimide interface layer,” IEE Electron. Lett., 34, (1998), pp. 1327-1329.
[12] G. E. Ponchak, “RF transmission lines on silicon substrate,” in Proc. 29th Eur. Microwave Conf., Oct. 1999, pp. 158–161.
[13] G. Six, G. Prigent, G. Dambrine, and H. Happy, “Fabrication and characterization of low-loss TFMS on silicon substrate up to 220 GHz,” IEEE Trans. Microw. Theory Tech., 53, (2005), pp. 301-305.
[14] K. Nishikawa, S. Sugitani, K. Inoue, T. Ishii, K. Kamogawa, B. Piernas, and K. Araki, “Low loss passive components on BCB-based 3-D MMIC technology,” in IEEE MTT-S Int. Microwave Symp. Dig., (2001), pp. 1881–1884.
[15] J. Kim, Y. Qian, G. Feng, P. Ma, M. F. Chang, and T. Itoh, “Millimeter wave silicon MMIC interconnect and coupler using multilayer polyimide technology,” IEEE Trans. Microw. Theory Tech., 48, (2000), pp. 1482–1486.
[16] W. S. Kim, T. H. Hong, E. S. Kim and K. H. Yoon, “Microwave Dielectric Properties and Far Infrared Reflectively Spectra of the (Zr0.8, Sn0.2) TiO4 Ceramics with Additives,“ Jpn. J. Appl. Phys., 37, (1998), pp. 5367-5371.
[17] R. Kudesia, A. E. Mchale and R. L. Snyder, “Effect of LaO2/ZnO Additives on Microstructure and Microwave Dielectric Properties of Zr0.8Sn0.2TiO4 Ceramics,“ J. Am. Ceram. Soc., 77, (1994), pp. 3215-3220.
[18] T. C. Edwards, Foundations for Microstrip Circuit Design, John Wiley & Sons, Inc., West Sussex, England, 1992.
[19] J. F. Luy, K. M. Strohm, H. E. Sasse, A. Schuppen, J. Buechler, M. Wollitzer, A. Gruhle, F. Schaffler, U. Guettich, and A. Klaaben, “Si/SiGe MMIC's,” IEEE Trans. Microw. Theory Tech., (1995), pp. 705-714.
[20] Y. Kwon, H. T. Kim, J. H. Park, and Y. K. Kim, “Low-loss micromachined inverted overlay CPW lines with wide impedance ranges and inherent airbridge connection capability,” IEEE Microw. Wireless Compon. Lett., (2001), pp. 59-61.
[21] G. Six, G. Prigent, G. Dambrine, and H. Happy, “Fabrication and Characterization of Low-Loss TFMS on Silicon Substrate Up to 220 GHz,” IEEE Trans. Microw. Theory Tech., (2005), pp. 301-305.
[22] Zeland Software, Inc., IE3D Simulator, 1997.
[23] Eternal Inc., http://www.eternal.com.tw
[24] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd Edition, Artech House, 1996.
[25] D. M. Pozar, Microwave Engineering, 2nd Edition, John Wiley & Sons, Inc., 1998.
[26] H. W. Wu, M. H. Weng, Y. K. Su, R. Y. Yang and C. Y. Hung, “Characteristics of Low K Thin Film Microstrip Line on Standard Lossy Silicon Substrate for RFICs,” Microw. Opt. Tech. Lett., (2007). pp 79-83.
[27] HFSS simulator, Ansoft, Palo Alto, CA.
[28] L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, V. K. Varadan, Microwave Electronics, John Wiley & Sons, Inc., West Sussex, England, 2004.
[29] R. A. Pucel, D. J. Masse, and C. P. Harteig, “Losses in Microstrip,” IEEE Trans. Microw. Theory Tech., 16, (1968), pp. 342-350.
[30] J. Lee, W. Ryu, J. Kim, J. Lee, N. Kim, J. Pak, J. M. Kim, and J. Kim, “Microwave Frequency Interconnection Line Model of a Wafer Level Package,” IEEE Trans. Adv. Packag., 25, (2002), pp. 356-364.
[31] R. E. Collin, Foundations for Microwave Engineering, McGraw-Hill, Inc., 1992.
[32] J. Baliga, “System-in-package uses silicon substrate,” Semicond. Int., 27, (2004), p. 32.
[33] K. Nishikawa, S. Sugitani, K. Inoue, T. Ishii, K. Kamogawa, B. Piernas and K. Araki, “Low loss passive components on BCB-based 3-D MMIC technology,” in IEEE MTT-S Int. Microw. Symp. Dig., (2001), pp. 1881–1884.
[34] J. Kim, Y. Qian, G. Feng, P. Ma, M. F. Chang and T. Itoh, “Millimeter wave silicon MMIC interconnect and coupler using multilayer polyimide technology,” IEEE Trans. Microw. Theory Tech., 48, (2000), pp. 1482–1486.
[35] International technology roadmap for semiconductors (ITRS), radio frequency and analog/mixed-signal technologies for wireless communications chapter, pp.2-3, 2006 update.
[36] H. W. Wu, Y. K. Su, R. Y. Yang, M. H. Weng and Y. D. Lin, “Fabrication of low loss thin film microstrip line on low resistivity silicon for RF applications,” Microelectronics Journal, 38, (2007), pp. 304-309.
[37] V. V. Levenets, R. E. Amaya, N. G. Tarr, T. J. Smy and J. W. M. Rogers, “Characterization of silver CPWs for applications in silicon MMICs,” IEEE Electron Device Lett., 26, (2005), pp. 357-359.
[38] I. J. Bahl and K. C. Gupta, “Average power-handling capability of microstrip lines,” IEE Microwaves, Optics and Acoustics, 3, pp. 1-4, 1979.
[39] I. J. Bahl, “Average power handling capability of multiplayer microstrip lines,” Int. J. RF Microw. CAE, 11, (2001), pp. 385–395.
[40] W. Y. Yin and X. T. Dong, “Wideband characterization of average power handling capabilities of some microstrip interconnects on polyimide and polyimide/GaAs substrates,” IEEE Trans. Adv. Packag., 28, (2005), pp. 328–336.
[41] W. Y. Yin, X. T. Dong, J. Mao, L. W. Li, “Average power handling capability of finite-ground thin-film microstrip lines over ultra-wide frequency ranges,” IEEE Microw. Wireless Compon. Lett., 15, (2005), pp. 715–717.
[42] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech., 47, (1999), pp. 2075–2084.
[43] F. Martín, F. Falcone, J. Bonache, R. Marqués, and M. Sorolla, A new split ring resonator based left handed coplanar waveguide, Appl. Phys. Lett., 83, (2003), pp. 4652–4654.
[44] F. Falcone, T. Lopetegi, J. D. Baena, R. Marqués, F. Martín, and Mario Sorolla, Effective negative-ε bandgap microstrip lines based on complementary split ring resonators, IEEE Microw. Wireless Compon. Lett., 14, (2004), pp. 280-282.
[45] F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, R. Marqués, F. Martín, and M. Sorolla, Babinet principle applied to the design of metasurfaces and meta-materials, Phys. Rev. Lett., 93, (2004), pp. 197401-4.
[46] J. García-García, F. Martín, E. Amat, F. Falcone, J. Bonache, I. Gil, T. Lopetegi, M. A. G. Laso, A. Marcotegui, M. Sorolla, and R. Marqués, Microwave filters with improved bandgap based on sub-wavelength resonators, IEEE Trans. Microw. Theory Tech., 53, (2005), pp. 1997-2006.
[47] R. Y. Yang, M. H. Weng, H. W. Wu, H. D. Hsueh and M. P. Houng, Dual-mode ring bandpass filter using defected ground structure with a wider bandgap, IEICE Trans. Electron. Paper, vol. E87-C, (2004), pp.2150-2157.
[48] M. H. Weng and H. W. Wu, Bandgap improvement of a dual-mode ring bandpass filter, Microw. Opt. Tech. Lett., 44, (2005), pp, 247-249.
[49] R. Ian, P. M. Melinda, and P. K. Kelly, Photonic bandgap structures used as filters in microstrip circuit, IEEE Microw. Guided Wave Lett., 8, (1998), pp. 336-338.
[50] R. Qiang, Y. Wang, and D. Chen, A novel microstrip bandpass filter with two cascaded PBG structure, Antennas and Propagation Society International Symposium, 2001 IEEE, 2, pp. 510-513.
[51] X. Ying and A. Alphones, Propagation characteristics of complementary split ring resonator (CSRR) based on EBG structure, Microw. Opt. Tech. Lett., 47, (2005), pp, 409-412.
[52] H. Y. D. Yang, Characteristics of guide and leaky waves on multilayer thin-film structures with planar material gratings, IEEE Trans. Microw. Theory Tech., 45, (1997), pp. 428-435.
[53] N. W. Ashcroft and N. D. Mermin, Solid State Physics., New York: Saunders College Publishing, 1976.
[54] S. G. Mao, S. L. Chen, and C. W. Huang, Effective electromagnetic parameters of novel distributed left-handed microstrip lines, IEEE Trans. Microw. Theory Tech., 35, (2005), pp. 1515-1521.
[55] J. S. Hong and M. J. Lancaster, Bandpass characteristics of new dual-mode microstrip square loop resonators, IEE Electron. Lett., vol. 31, (1995), pp.891-892.
[56] M. Matsuo, H. Yabuki, and M. Makimoto, Dual-mode stepped-impedance ring resonator for band-pass filter applications, IEEE Trans. Microw. Theory Tech., 49, (2001), pp. 1235-1240.
[57] G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, Planar negative refractive index media using L-C loaded transmission lines, IEEE Trans. Microw. Theory Tech., 50, (2002), 2702.
[58] S. B. Cohn, “Parallel-coupled transmission line resonator filter,” IEEE Trans. Microwave Theory & Tech., (1958), 6, 223-231.
[59] R. Qiang, Y. Wang, and D. Chen, A novel microstrip bandpass filter with two cascaded PBG structure, IEEE Antennas and Propagation Society International Symposium, (2001), 2, 510-513.
[60] M. H. Weng and H. W. Wu, Stopband improvement of a dual-mode ring bandpass filter, Microwave & Optical Technology Lett., 44, (2005), 247-249.
[61] D. Ahn, J. S. Park, C. S. Kim, Y. Qian, and T. Itoh, A design of the low-pass filter using the novel microstrip defected ground structure, IEEE Trans. Microwave Theory Tech., 49, (2001), 86-93.
[62] G. L. Matthaei, L. Young, E. M. T. Jone, Microwave Filters, Impedance-Maching Networks and Coupling Strustures, New York, McGraw Hill, 1980.
[63] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, Artech House, 1999.
[64] M. H. Weng, H. W. Wu, R. Y. Yang, and M. P. Houng, “High Spurious Suppression of the Dual-Mode Patch Bandpass Filter Using Defected Ground Structure,” IEICE Trans. Electronics Lett., E87-C, (2004), pp. 1738-1740.
[65] S. Wu and B. Razavi, “A 900-MHz/1.8-GHz CMOS receiver for dualband applications,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2178–2185, Dec. 1998.
[66] J. Ryynänen, K. Kivekäs, J. Jussila, A. Pärssinen, and K. A. I. Halonen, “A dual-band RF front-end for WCDMA and GSM applications,” IEEE J. Solid-State Circuits, 36, (2001), pp. 1198–1204.
[67] J. T. Kuo, T. H. Yeh, and C. C. Yeh, “Design of microstrip bandpass filters with a dual-passband response,” IEEE Trans. Microw. Theory Tech., 53, (2005), pp. 1331–1337.
[68] X. Guan, Z. Ma, P. Cai, Y. Kobayashi, T. Anada, and G. Hagiwara, “Synthesis of dual-band bandpass filters using successive frequency transformations and circuit conversions,” IEEE Microw. Wireless Compon. Lett., 16, (2006), pp. 110–112.
[69] M. Makimoto and S.Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., 28, (1980), pp. 1413–1417.
[70] T. H. Huang, H. J. Chen, C. S. Chang, L. S. Chen, Y. H. Wang, and M. P. Houng, “A novel compact ring dual-mode filter with adjustable second-passband for dual-band applications,” IEEE Microw. Wireless Compon. Lett., 16, (2006), pp. 360–362.
[71] S. F. Chang, J. L. Chen, and S. C. Chang, “New dual-band bandpass filters with step-impedance resonators in comb and hairpin structures,” in Asia–Pacific Microwave Conf., (2003), pp. 793–796.
[72] S. Sun and L. Zhu, “Compact dual-band microstrip bandpass filter without external feeds,” IEEE Microw. Wireless Compon. Lett., 15, (2005), pp. 644–646.
[73] J. S. Hong and M. J. Lancaster, “Development of new microstrip pseudo-interdigital bandpass filters,” IEEE Microw. Guided Wave Lett., 5, (1995), pp. 261-263.
[74] M. H. Weng, H. W. Wu, and C. Y. Hung, “A compact pseudo-interdigital SIR bandpass filter with improved out-of-band,” Microw. Opt. Tech. Lett., 47, (2005), pp. 462-464.
[75] C. F. Chen, T. Y. Huang, C. P. Chou, and R. B. Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw. Theory Tech., 54, (2006), pp. 1945–1952.

------------------------------------------------------------------------ 第 8 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915222811
論文名稱(中文) 開迴路諧振器型式GSM微帶線雙頻濾波器設計
論文名稱(英文) Design of GSM Dual-Band Pass Microstrip Filters Using Open-Loop Resonators
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 張家瑋
學號 n2696107
學位類別 碩士
語文別 中文
口試日期 2009-07-20
論文頁數 64頁
口試委員 口試委員-陳一鋒
口試委員-張法憲
口試委員-李文熙
指導教授-李炳鈞
關鍵字(中) 微帶線
濾波器
雙頻
諧振器
關鍵字(英) resonator
filter
microstrip
dual-band
學科別分類
中文摘要 製作微帶線雙頻帶濾波器,電路設計者必須了解到諧振器諧波發生位置及諧振器耦合架構,接下來則要克服兩個頻帶在輸入及輸出端的匹配問題。為了解決兩個頻帶匹配問題,文中利用到四分一波長阻抗轉換器和外部品質因數的關係式,有效的提出設計的方法。而本論文是利用均勻阻抗方形諧振器的效應來設計二倍頻雙頻濾波器,然後再增加輻射阻抗來改變偶模態發生位置,提高倍頻的自由度。最後再使用曲折的方式改變諧振器的結構並針對其耦合係數做分析,並且利用增加傳輸零點提高電路的止帶效果,最後再針對其零點發生位置進行定義,利用此種結構的方式可以有效降低面積,提高電路效能。
二倍頻與非整數倍頻都是採用FR-4基板來實現,而曲折方式雙頻濾波器則是採用氧化鋁基板來設計,其面積可縮小45%的面積。
英文摘要 To produce a dual-band pass microstrip filter, a circuit designer must understand determine the location that suppression oscillation frequencies of resonators and takes place and the coupling structure of resonators, and next have to overcomesolve the match problem of dual bands in the input and output ends. In order to solve the match problem, an effective design method using a quarter-wavelength impedance converter and a correlation formula of external quality factor is proposed in this study. The uniform impedance square resonator is used to design the double-frequency dual-band filter. The study showed that the even-mode impedance can be changed freely. Finally, a folding method was used to change the structure of the resonator. Analysis of the coupling coefficients was performed. The results showed that the behavior of the stop band of the circuit could be improved by adding extra transmission zero point. The proposed structure could effectively reduce the area of the circuit and promote the performance of the circuit.
To realize the folding dual-band filters, the FR4 boards and the Al2O3 boards were used. The experiments showed that both the integer and non-integer second harmonics could be excited successfully and the effective area was reduced by 45%.
論文目次 中文摘要 I
英文摘要 II
致 謝 III
目 錄 IV
圖 目 錄 VIII
目 表 錄 IX
第一章 緒論 1
1-1 研究動機 1
1-2 相關文獻 2
1-3 研究目的 2
1-4 章節介紹 3
第二章 耦合濾波器的基本原理 4
2-1 濾波器的諧振種類 4
2-1-1 Patch諧振器 4
2-1-2 四分之一波長短路微帶線諧振器 4
2-1-3 二分之一波長開路微帶線諧振器 5
2-2 耦合係數的基本定義 6
2-2-1 廣義的耦合係數定義 6
2-2-2 電場耦合 7
2-2-3 感磁場耦合 8
2-2-4 混和耦合 10
2-2-5 影響耦合係數之參數 11
2-3 饋入點的設計方式 12
2-4 濾波器設計流程 14
2-5 雙頻濾波器相關原理 15
2-5-1 諧振器耦合雙頻濾波器原理 15
2-5-2 均勻阻抗諧振器(UIR) 16
2-5-3 雙頻耦合係數萃取 18
2-5-4 外部Q值的理論計算 19
2-5-5 外部Q值的模擬萃取數值 20
2-5-6 阻抗轉換器 22
第三章 雙頻濾波器設計與模擬 25
3-1 二倍頻的設計實例 25
3-1-1 對稱跟斜對饋入比較 30
3-1-2 Loss tangent對電路的影響 31
3-2 非整整數倍頻設計 33
3-3 非整數倍頻的設計實例(900MHZ/1500MHZ) 37
3-4 曲折式濾波器設計 38
3-5 曲折式雙頻濾波器設計實例 45
第四章 雙頻濾波器實作與模擬比較 52
4-1 二倍頻雙頻濾波器實作 52
4-2 非整數倍頻的製作 55
4-3 曲折式雙頻帶濾波器 57
第五章 結論與未來展望 62
參考文獻 [1] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, "A miniaturized monolithic dual band filter using ceramic laminationtechnique for dual mode portable telephones," 1997.
[2] L. C. Tsai and C. W. Hsue, "Dual-band bandpass filters using equal-length coupled-serial-shunted lines and Z-transform technique," IEEE Transactions on Microwave theory and Techniques, vol. 52, pp. 1111-1117, 2004.
[3] C. Y. Chen and C. Y. Hsu, "A simple and effective method for microstrip dual-band filters design," IEEE Microwave and Wireless Components Letters, vol. 16, pp. 246-248, 2006.
[4] S. Sun and L. Zhu, "Coupling dispersion of parallel-coupled microstrip lines for dual-band filters with controllable fractional pass bandwidths," 2005, p. 4.
[5] S. Sun and L. Zhu, "Compact dual-band microstrip bandpass filter without external feeds," IEEE microwave and wireless components letters, vol. 15, pp. 644-646, 2005.
[6] J. Lee, M. S. Uhm, and I. B. Yom, "A dual-passband filter of canonical structure for satellite applications," IEEE microwave and wireless components letters, vol. 14, pp. 271-273, 2004.
[7] P. Lenoir, S. Bila, F. Seyfert, D. Baillargeat, and S. Verdeyme, "Synthesis and design of asymmetrical dual-band bandpass filters based on equivalent network simplification," IEEE Transactions on Microwave Theory and Techniques, vol. 54, p. 3090, 2006.
[8] S. B. Cohn, "Parallel-coupled transmission-line-resonator filters," Microwave Theory and Techniques, IRE Transactions on, vol. 6, pp. 223-231, 1958.
[9] E. G. Cristal and S. Frankel, "Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters," IEEE Transactions on Microwave Theory and Techniques, vol. 20, pp. 719-728, 1972.
[10] J. S. Hong, "Couplings of asynchronously tuned coupled microwave resonators," IEE Proceedings-Microwaves, Antennas and Propagation, vol. 147, pp. 354-358, 2000.
[11] J. S. Hong and M. J. Lancaster, "Couplings of microstrip square open-loop resonators forcross-coupled planar microwave filters," IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 2099-2109, 1996.
[12] N. Militaru, M. G. Banciu, and G. Lojewski, "Broadband Planar Filters with Enhanced Couplings Using Defected Ground Structures," 2006.
[13] J. S. Wong, "Microstrip Tapped-Line Filter Design," Microwave Theory and Techniques, IEEE Transactions on, vol. 27, pp. 44-50, 1979.
[14] Y. S. Lin, C. H. Wang, C. H. Wu, and C. H. Chen, "Novel compact parallel-coupled microstrip bandpass filters with lumped-element K-inverters," IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 2324-2328, 2005.
[15] C. H. Wu, Y. S. Lin, C. H. Wang, and C. H. Chen, "Novel microstrip coupled-line bandpass filters with shortened coupled sections for stopband extension," IEEE Transactions on Microwave Theory and Techniques, vol. 54, pp. 540-546, 2006.
[16] C. G. Montgomery, R. H. Dicke, and E. M. Purcell, Principles of microwave circuits: Iet, 1987.
[17] J. S. Hong, M. J. Lancaster, and L. Ebook, Microstrip filters for RF/microwave applications: Wiley New York, 2001.

 


如您有疑問,請聯絡圖書館
聯絡電話:(06)2757575#65773
聯絡E-mail:etds@email.ncku.edu.tw