進階搜尋

 
查詢範圍:「   」
顯示範圍:第筆 論文書目資料
顯示格式:全部欄位
共 12 筆
------------------------------------------------------------------------ 第 1 筆 ---------------------------------------------------------------------
系統識別號 U0026-0707201123582300
論文名稱(中文) 膽固醇型液晶拓印之光子晶體結構及其光學特性之探討
論文名稱(英文) Imprinting and Characterization of Photonic Crystal Constructions Fabricated from Cholesteric Liquid Crystals
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 方皓
學號 n36981286
學位類別 碩士
語文別 中文
口試日期 2011-06-23
論文頁數 70頁
口試委員 指導教授-劉瑞祥
口試委員-陳雲
口試委員-郭人鳳
口試委員-鍾宜璋
口試委員-謝慶東
關鍵字(中) 拓印
光聚合
液晶
對掌性
光子晶體
關鍵字(英) imprinting
photopolymerization
liquid crystals
chiral
photonic crystals
學科別分類
中文摘要 膽固醇型液晶為週期性螺旋結構,由於螺距約與光線波長相當,故可使特定波長之光線發生布拉格反射(Bragg reflection);而一般膽固醇液晶的形成是將手性分子溶解於向列型液晶中,藉由摻混在向列型液晶中的手性分子來誘導出膽固醇型液晶相。本研究以高分子拓印技術複印膽固醇液晶螺旋結構,藉此高分子模板誘導出膽固醇液晶相,並使具有特殊之光學性質。利用非手性且不具有液晶相的雙官能性單體4,4’-bis(6-(acryloyloxy)hexyloxy)-biphenyl (BAHB)與膽固醇型液晶均勻混和,經光聚合誘導相分離法及溶劑洗滌的步驟後,可複印出具膽固醇型液晶分子排列的手性網狀結構,之後重新填入向列型液晶,發現可成功誘導出膽固醇液晶相,並顯示出選擇性光反射的光學特性。本研究針對雙官能性單體的含量、cell元件厚度、及多次曝光的新製程參數,探討高分子網狀結構對液晶分子的誘導能力,找出在此製程下的最佳條件。結果發現,該高分子膜內部在不含液晶條件下即具有布拉格反射之光學特性,亦可藉由充填溶劑種類的改變調控反射光之波長。
英文摘要 Cholesteric liquid crystal (ChLC) spontaneously forms a photonic band structure and exhibit Bragg reflections when the periodicity of helix matches the wavelength of light. It is well-known that the helical arrangement of cholesteric liquid crystals is mainly induced by the chiral molecules. In this thesis, we conceived a new methodology for preparing chiral non-liquid crystalline polymer networks with achiral liquids, which imprint cholesteric liquid crystalline structure with photonic properties. A chiral polymer template was prepared by photopolymerizing an achiral and difunctional monomer of 4,4’bis(6-(acryloyloxy)hexyloxy)biphenyl (BAHB) that was dispersed within a chiral nematic pre-mixture, which was then subsequently removed by solvent. Upon injecting the achiral nematic liquid crystal into the polymer template cell, it was found to exhibit the cholesteric liquid crystal phase and perform selective light reflection property. The effects of monomer concentration, spacer thickness and multiple photocrosslinking times on the optical properties of the polymer film were investigated. Furthermore, we found that the polymer materials themselves served not only as a chiral template but also exhibited Bragg reflections property at the optimal condition. Tuning of color was achieved by making a refractive index contrast between the two periodic media of imprinted solid helical structure and the isotropic liquids that is filled it.
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號表 XI

第一章 緒論 1
1.1 前言 1
1.2 研究動機 2

第二章 原理與文獻回顧 3
2.1 液晶簡介 3
2.2 液晶的物理性質 5
2.2.1 液晶的光學異方性 5
2.2.2 溫度對向列相液晶之影響 8
2.3 液晶的分類 9
2.3.1 相形成條件 10
2.3.2 分子形狀 11
2.4 膽固醇型液晶概述 16
2.4.1 光學活性物質的效應 16
2.4.2 膽固醇型液晶的光學性質 17
2.4.3 膽固醇型液晶之光學紋理 20
2.5 液晶-聚合物混和薄膜之介紹 21
2.5.1 高分子分散型液晶薄膜(PDLC)簡介 21
2.5.2 高分子穩定膽固醇液晶薄膜(PSCT)簡介 22
2.6 光聚合反應 26

第三章 實驗部份 28
3.1 實驗藥品 28
3.2 實驗儀器 29
3.3 實驗步驟 30
3.3.1 雙官能性單體之合成 30
3.3.2 手性高分子模板之製備 31
3.3.3 選擇性光反射的測量 35
3.3.4 拓印高分子之型態分析 36

第四章 結果與討論 37
4.1 單體之鑑定 37
4.2 拓印高分子螺旋結構及其誘導能力之製程探討 39
4.2.1 單體在膽固醇液晶主體比例之探討 39
4.2.2 液晶層厚度之探討 48
4.2.3 曝光次數之探討 55
4.3 拓印高分子之光學性質探討 61
4.3.1 拓印高分子光學薄膜之溫度效應 61
4.3.2 拓印高分子與含浸溶劑之光學特性探討 64

第五章 結論 66

參考文獻 67

參考文獻 [1] 松山正一,角田市良合著,劉瑞祥譯,液晶之基礎與應用,(國立編譯館,1996).
[2] Meier, G., Sackmann, E., and Grabmaier, J. Applications of liquid crystals. Applied Crystallography.
[3] Huang, Y., Zhou, Y., Doyle, C., and Wu, S. T. Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility. Opt. Express 14, 1236-1242 (2006).
[4] Lub, J., Nijssen, W. P. M., Wegh, R. T., Vogels, J., and Ferrer, A. Synthesis and properties of photoisomerizable derivatives of isosorbide and their use in cholesteric filters. Advanced Functional Materials 15, 1961-1972 (2005).
[5] Lub, J., van de Witte, P., Doornkamp, C., Vogels, J. P. A., and Wegh, R. T. Stable Photopatterned Cholesteric Layers Made by Photoisomerization and Subsequent Photopolymerization for Use as Color Filters in Liquid Crystal Displays. Adv Mater 15, 1420-1425 (2003).
[6] Bobrovsky, A., and Shibaev, V. Novel type of combined photopatternable and electro-switchable polymer-stabilized cholesteric materials. J Mater Chem 19, 366-372 (2009).
[7] Comiskey, B., Albert, J., Yoshizawa, H., and Jacobson, J. An electrophoretic ink for all-printed reflective electronic displays. Nature 394, 253-255 (1998).
[8] Johnson, M., Zhou, G., Zehner, R., Amundson, K., Henzen, A., and Kamer, J. High Quality Images on Electronic Paper Displays. SID 05 Digest, 1666-1669.[9] Wu, S. T., and Yang, D. K. Reflective liquid crystal displays. (Wiley Chichester, UK, 2001).
[10] Broer, D., Lub, J., and Mol, G. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. (1995).
[11] Relaix, S., Bourgerette, C., and Mitov, M. Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal. Appl Phys Lett 89, 251907 (2006).
[12] Schadt, M., and Funfschilling, J. New liquid crystal polarized color projection principle. Japanese journal of applied physics 29, 1974-1984 (1990).
[13] Huang, Y. P., Shieh, H. P. D., and Wu, S. T. Applications of multidirectional asymmetrical microlens-array light-control films on reflective liquid-crystal displays for image quality enhancement. Applied optics 43, 3656-3663 (2004).
[14] 周彥伶,新穎性三成份液晶共聚高分子之合成及光學特性探討,國立成功大學化學工程研究所碩士論文,(2008)。
[15] 簡孜潔,含不同光致變及末端基團之液晶共聚高分子之合成及特性探討,國立成功大學化學工程研究所碩士論文,(2009)。
[16] Khoo, I. C., and Wu, S. T. Optics and nonlinear optics of liquid crystals. Vol. 1 (World Scientific Pub Co Inc, 1993).
[17] 葛聰智,聚合物穩定膽固醇液晶結構薄膜光電特性及繞射現象之研究,國立成功大學物理研究所博士論文,(2003)。
[18] 陳鈺雯,量測與電腦模擬雙穩態反射式聚合物穩定膽固醇液晶的反射特性,國立成功大學物理研究所博士論文,(2002)。
[19] 宋昀潔,含光致變性光學活性摻混物膽固醇液晶聚酯之光學特性探討,國立成功大學化學工程研究所碩士論文,(2010)。
[20] 楊博智,光學活性化合物之合成、物性探討及其在膽固醇型液晶元件之應用探討,國立成功大學化學工程研究所博士論文,(2007)。
[21] 謝峰銘,新穎性多彩膽固醇液晶與功能性材料之合成及特性研究,國立成功大學化學工程研究所博士論文,(2009)。
[22] Donald, A. M., Windle, A. H., and Hanna, S. Liquid crystalline polymers. (Cambridge Univ Pr, 2006).
[23] Ozaki, M., Matsuhisa, Y., Yoshida, H., Ozaki, R., and Fujii, A. Photonic crystals based on chiral liquid crystal. physica status solidi (a) 204, 3777-3789 (2007).
[24] De Gennes, P. G., and Prost, J. The physics of liquid crystals. (Oxford University Press, USA, 1995).
[25] 謝慶東,生醫相容性及光學活性高分子之合成及應用探討,國立成功大學化學工程研究所博士論文,(2006)。
[26] Lin, T. H., Jau, H.C., Chen, C.H., Chen, Y.J., Wei, T.H., Chen, C.W., and Andy, Y.G.F. Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy. Appl Phys Lett 88, 061122 (2006).
[27] Xianyu, H., Faris, S., and Crawford, G. P. In-plane switching of cholesteric liquid crystals for visible and near-infrared applications. Applied optics 43, 5006-5015 (2004).
[28] Meyer, R. B. Effects of electric and magnetic fields on the structure of cholesteric liquid crystals. Appl Phys Lett 12, 281-282 (1968).
[29] Hirota, Y., Ji, Y., Serra, F., Tajbakhsh, A. R., and Terentjev, E. M. Effect of crosslinking on the photonic bandgap in deformable cholesteric elastomers. Opt Express 16, 5320-5331 (2008).
[30] Warner, M., Terentjev, E., Meyer, R., and Mao, Y. Untwisting of a cholesteric elastomer by a mechanical field. Physical Review Letters 85, 2320-2323 (2000).
[31] Doane, J. W., Vaz, N. A., Wu, B. G., and Zumer, S. Field Controlled Light-Scattering from Nematic Microdroplets. Appl Phys Lett 48, 269-271 (1986).
[32] 吳阜蒼,光異構性偶氮苯衍生物之合成及其在液晶顯示元件及光記錄薄膜之應用研究,國立成功大學化學工程研究所博士論文,(2005)。
[33] Tamaoki, N. Cholesteric liquid crystals for color information technology. Adv Mater 13, 1135 (2001).
[34] Kitzerow, H. S., and Crooker, P. P. Electric-Field Effects on the Droplet Structure in Polymer Dispersed Cholesteric Liquid-Crystals. Liq Cryst 13, 31-43 (1993).
[35] Crawford, G. P., and umer, S. Liquid crystals in complex geometries: formed by polymer and porous networks. (CRC, 1996).
[36] Khan, A., Shiyanovskaya, I., Schneider, T., Montbach, E., Davis, D. J., Miller, N., Marhefka, D., Ernst, T., Nicholson, F., and Doane, J. W. Progress in flexible and drapable reflective cholesteric displays. J Soc Inf Display 15, 9-16 (2007).
[37] 王建智,光學活性單體對高分子穩定化膽固醇液晶膜之誘導研究,國立成功大學化學工程研究所碩士論文,(2006)。
[38] 劉瑞祥著,感光性高分子,(復文書局,1987)。
[39] Sheppard, C. Approximate calculation of the reflection coefficient from a stratified medium. Pure and Applied Optics: Journal of the European Optical Society Part A 4, 665 (1995).
[40] Yoshida, H., Miura, Y., Tokuoka, K., Suzuki, S., Fujii, A., and Ozaki, M. In-plane pitch control of cholesteric liquid crystals by formation of artificial domains via patterned photopolymerization. Opt Express 16, 19034-19042 (2008).
[41] Guo, R. W., Li, K. X., Cao, H., Wu, X. J., Wang, G. J., Cheng, Z. H., Wang, F. F., Zhang, H. Q., and Yang, H. A. Chiral polymer networks with a broad reflection band achieved with varying temperature. Polymer 51, 5990-5996 (2010).
[42] Guo, J., Sun, J., Li, K., Cao, H., and Yang, H. Reflectance properties of polymer-stabilised cholesteric liquid crystals cells with cholesteryl compounds of different functionality. Liq Cryst 35, 87-97 (2008).

------------------------------------------------------------------------ 第 2 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200910460640
論文名稱(中文) 光聚合高分子在蛋白質分析上的應用
論文名稱(英文) Applications of Photopolymer for Protein Analysis
校院名稱 成功大學
系所名稱(中) 化學系碩博士班
系所名稱(英) Department of Chemistry
學年度 91
學期 2
出版年 92
研究生(中文) 周孟寬
學號 l3690139
學位類別 碩士
語文別 中文
口試日期 2003-07-21
論文頁數 105頁
口試委員 指導教授-陳淑慧
口試委員-周禮君
口試委員-楊重熙
關鍵字(中) 光聚合高分子應用
蛋白質分析
關鍵字(英) applications of photopolymer
protein analysis
學科別分類
中文摘要 本研究的目的是利用光聚合高分子材料分別應用於不同分析裝置上,如生物晶片、質譜等。由於光聚合高分子材料具有快速聚合、聚合位置與形狀選擇性高、高分子表面可依需要進行不同的衍生化、高分子為多孔性的材料具有相當大的表面積可增加與分析物接觸的面積等多種優點,所以可將光聚合高分子材料應用於分析工具上,提高分析工作效率。
本研究中將光聚合高分子形成在玻璃基材的微流體晶片管道中,以製作成阻擋閥(frit)來阻擋填充於晶片管道中的靜相顆粒,使其可進行晶片上的固相翠取與濃縮。實驗結果證明以光聚合高分子所形成於晶片上的阻擋閥,在玻璃晶片上確實可以有效的阻擋5μm大小的C18顆粒,所形成之高分子的孔洞大小由電子顯微鏡觀察顯示約為1μm。
光聚合高分子的另一項應用是製作可拋棄式的生化分子濃縮純化吸管尖,本研究利用光聚合高分子將不同種類的靜相材料,如C18顆粒及金屬離子親和層析靜相,固定於微量吸管尖中,取代目前被廣泛使用於樣品濃縮去鹽的Zip-TipsTM。由介質輔助雷射脫附離子源-飛行時間質譜儀對胜肽樣品的測試結果證明在濃縮去鹽方面最大可達到約五倍的濃縮效果。在金屬離子親和層析吸管尖的應用方面,實驗結果顯示所製成之金屬離子親和層析濃縮吸管尖可將磷酸化的胜肽由酪蛋白消化物中濃縮萃取出來,以增強磷酸化胜肽的質譜訊號強度。此外,所開發之濃縮吸管尖具備高效能、使用方便、成本低廉以及修飾胜肽之選擇性等,是目前市面上產品未具有的優勢。
英文摘要 This study is focused on the fabrication of photopolymers and their applications for the fabrication of biochips and sample preparation to facilitate protein analysis using mass spectrometry. Owing to the inherent advantages of photopolymers, such as speedy polymerization, feasibility for fabrication on a defined area, large surface area and variable surface modifications, photopolymers have been widely investigated for many applications.
In the first part of this study, the photopolymer was used to fabricate a frit for packing chromatographic C18 beads along the microchannel for chip-based solid phase extraction. Results show that the fabricated photopolymers had a pore size of around 1μm and was capable of holding 5μm of C18 beads.
The second part of this study is to use photopolymer in fabricating disposable tips for concentration and purification of bimolecules prior to MS analysis. Based on the analysis of MALDI-TOF MS, the ion signals of tryptic digest of standard proteins could be enhanced by 5 times using the fabricated photopolymer tip with imbeded C18 beads. Moreover, the phosphopeptids of β-casein can be readily detected by the use of photopolymer tip with imbeded metal chelate beads, which had extracted and concentrated these phosphopeptides from a complicated digest mixture. This device appears to be promising since it exhibits several advantages over some commercial products, such as high performance, easy-to-use, cheap and versatile for the enrichment of post-translational modified peptides.
論文目次 目錄

誌謝………………………………………………………………………I
中文摘要…………………………………………………………………II
英文摘要…………………………………………………………………IV
目錄………………………………………………………………………VI
表目錄……………………………………………………………………X
圖目錄……………………………………………………………………XI


第一章 序論
1.1 前言……………………………………………………………………1
1.2 高分子聚合物應用於分析科學之簡介………………………………2
1.3 溶膠凝膠(sol-gel)
1.3.1 溶膠凝膠的發展歷史………………………………………………3
1.3.2 溶膠凝膠的反應……………………………………………………4
1.4 有機高分子之苯乙烯(styrene-based)材質
1.4.1 苯乙烯材質的發展歷史……………………………………………5
1.4.2 苯乙烯材質的反應…………………………………………………5
1.5 有機高分子之丙烯醯胺(acrylamide-based)材質
1.5.1 丙烯醯胺材質的發展歷史…………………………………………6
1.5.2 丙烯醯胺材質的反應………………………………………………6
1.6 有機高分子之丙烯酸(acrylate-based)與甲基丙烯酸(methacrylate-based)材質
1.6.1 丙烯酸與甲基丙烯酸材質的發展歷史……………………………7
1.6.2 丙烯酸與甲基丙烯酸材質的反應…………………………………8
1.7 光聚合高分子的應用(Photopolymer Application)………………8

第二章 光聚合高分子於電泳晶片上之應用
2.1 微系統晶片簡介………………………………………………………10
2.2 研究背景………………………………………………………………11
2.3 研究動機………………………………………………………………11
2.4 實驗之架設
2.4.1 晶片的設計…………………………………………………………12
2.4.2 進樣模式……………………………………………………………13
2.4.3 微流體晶片電泳系統………………………………………………14
2.5 實驗藥品準備…………………………………………………………16
2.6 利用光聚合高分子於晶片上製作阻擋閥(frit)實驗
2.6.1 鈉玻璃材質晶片部分………………………………………………17
2.6.2 PDMS材質晶片部分…………………………………………………23
2.7 結果與討論……………………………………………………………26

第三章 利用光聚合高分子製作毛細管式去鹽濃縮裝置與拋棄式生化分子濃縮純化吸管尖
3.1 拋棄式生化分子濃縮純化吸管尖之簡介與研究背景………………30
3.2 研究動機………………………………………………………………31
3.3 實驗使用儀器與方法
3.3.1 元素分析儀…………………………………………………………32
3.3.2 介質輔助雷射脫附離子源-飛行時間(MALDI-TOF)質譜儀……………………………………………………………………………33
3.3.3 金屬離子親和層析(IMAC)………………………………………36
3.4 實驗藥品準備…………………………………………………………37
3.5 以元素分析儀分析複合單體共聚合高分子之成分…………………38
3.6 毛細管式去鹽濃縮裝置
3.6.1 毛細管式去鹽濃縮裝置之製作……………………………………39
3.6.2 毛細管式去鹽濃縮裝置之應用……………………………………41
3.7 拋棄式生化分子濃縮純化吸管尖
3.7.1 拋棄式生化分子濃縮純化吸管尖之製作…………………………44
3.7.2 拋棄式生化分子濃縮純化吸管尖之應用…………………………46
3.8 結果與討論……………………………………………………………47

第四章 結論與未來展望
4.1 結論……………………………………………………………………51

參考文獻……………………………………………………………………53
附錄I (Peptide Mass Table)……………………………………………98
附錄II(掃描式電子顯微鏡照片,SEM)…………………………………103

表目錄
表 3-1 複合單體共聚合高分子元素之成分分析比較…………………56
表 3-2 複合式靜相於三種蛋白質消化物的胜肽序列符合統計(Peptide sequence coverage) 表………………………………………………………………57

圖目錄

圖 1-1 矽基質粒子(silica-basee particles)以溶膠凝膠的方法使其黏附在管壁上之示意圖……………………………………………………………………………58
圖 1-2 溶膠凝膠 (sol-gel)的基本合成原理示意圖…………………59
圖 1-3 聚苯乙烯-二乙烯基苯[poly(styrene-divinylbenzene)] 的反應示意圖……………………………………………………………………………60
圖 1-4 丙烯醯胺(acrylamide)的聚合反應示意圖……………………61
圖 1-5 甲基丙烯酸(methacrylate)的聚合反應示意圖………………62
圖 1-6 高分子材質製作整體性管柱的簡易流程示意圖………………63
圖 1-7 管壁利用MPTMS (methacryloxypropyl trimethoxysilane) 進行修飾示意圖……………………………………………………………………………64
圖 2-1 晶片之幾何圖形示意圖…………………………………………65
圖 2-2 連續進樣電泳式晶片操作模式示意圖…………………………66
圖 2-3 微流體晶片操作系統示意圖……………………………………68
圖 2-4 利用光聚合高分子製作阻擋閥(frit)流程示意圖……………69
圖 2-5 微流體晶片製作阻擋閥(frit)與填充碳十八小珠靜相完成之晶片示意圖……………………………………………………………………………70
圖 2-6 Cy5-BSA之進樣(Loading)、清洗(Wash)、沖堤(Elution)之示意圖……………………………………………………………………………71
圖 2-7 實驗晶片裝置比較示意圖………………………………………72
圖 2-8 Free-Cy5與Cy5-BSA通過卡匣(cartridge)線上(On-line)偵測之電泳圖……………………………………………………………………………73
圖 2-9 微流體晶片上填充碳十八小珠之顯微鏡照相及通入Cy5-BSA之照片圖……………………………………………………………………………74
圖 2-10 Free-Cy5與Cy5-BSA通過填充有碳十八小珠於微流體管道晶片之線上(On-line)偵測之電泳圖……………………………………………………………………75
圖 2-11 PDMS [poly(dimethyl siloxane)]晶片製作示意圖…………76
圖 2-12 PDMS晶片上光聚合高分子形成阻擋閥(frit)的顯微鏡照相圖……………………………………………………………………………77
圖 2-13 PDMS晶片填充碳十八小珠完成後於分流管道的位置照片示意圖……………………………………………………………………………78
圖 3-1 介質輔助雷射脫附離子源 (MALDI)原理示意圖………………79
圖 3-2 介質輔助雷射脫附離子源-飛行時間(MALDI-TOF0質譜儀簡示圖……………………………………………………………………………80
圖 3-3 金屬離子親和層析(IMAC)原理示意圖………………………81
圖 3-4 毛細管式去鹽濃縮裝置結構圖…………………………………82
圖 3-5 具碳十八官能基高分子的毛細管式去鹽濃縮裝置之質譜分析圖(m/z 1000-3000)………………………………………………………………………………83
圖 3-6 具碳十八官能基高分子之毛細管式去鹽濃縮裝置之質譜分析圖(m/z 1500-3000)………………………………………………………………………………84
圖 3-7 具碳十八小珠與EDMA混合的毛細管式去鹽濃縮裝置之質譜分析圖(m/z 1000-3000)………………………………………………………………………………85
圖 3-8 具碳十八小珠與EDMA混合的毛細管式去鹽濃縮裝置之質譜分析圖(m/z 1500-3000)………………………………………………………………………………86
圖 3-9 不同靜相材質於毛細管式去鹽濃縮裝置中的質譜分析比較圖(m/z 1000-3000)………………………………………………………………………………87
圖 3-10 不同靜相材質於毛細管式去鹽濃縮裝置中的質譜分析比較圖(m/z 1500-3000)………………………………………………………………………………88
圖 3-11 利用具碳十八小珠與EDMA混合之毛細管式去鹽濃縮裝置比較實驗過程有無酸化步驟之質譜分析比較圖…………………………………………………………89
圖 3-12 複合式靜相應用之效果比較圖(m/z 800-3000)………………90
圖 3-13 複合式靜相應用之效果比較圖 (m/z 1700-2550)……………91
圖 3-14 光聚合高分子之拋棄式生化分子濃縮純化吸管尖製作流程示意圖……………………………………………………………………………92
圖 3-15 光聚合高分子之拋棄式生化分子濃縮純化吸管尖結構示意圖……………………………………………………………………………93
圖 3-16 500 femtomole的血紅素消化物與2M氯化鈉混合的樣品於吸管尖處理前後的質譜分析圖…………………………………………………………………………94
圖 3-17 200 femtomole的血紅素消化物與2M氯化鈉混合的樣品於吸管尖處理前後的質譜分析圖…………………………………………………………………………95
圖 3-18 100 femtomole的血紅素消化物與2M氯化鈉混合的樣品於吸管尖處理前後的質譜分析圖…………………………………………………………………………96
圖 3-19 以金屬離子親和層析(IMAC)吸管尖處理前後進行之質譜分析圖……………………………………………………………………………97
參考文獻 [1] Yu, C., Davey, M. H., Svec, F., Fréchet, J. M. J., Anal. Chem., 2001, 73, 5088-5096.

[2] Quirino, J. P., Dulay, M. T., Zare, R. N., Anal. Chem., 2001, 73, 5557-5563.

[3] Schulte, M., Dingenen, J., J. Chromatogr. A, 2001, 923, 17-25.

[4] Zhang, J., Zhang, S. H., Horvath, C., J. Chromatogr. A, 2002, 953, 239-249.

[5] Minakuchi, H., Nakanishi, K., Soga, N., Ishizuka, N., Tanaka, N., Anal. Chem., 1996, 68, 3498-3501.

[6] Lee, S. K., Okura, I., Anal. Chim. Acta, 1997, 342, 181-188

[7] Kim, W., Chung, S., Park, S. B., Lee, S. C., Kim, C., Sung, D. D., Anal. Chem., 1997, 69, 95-98.

[8] Wang, Q. C., Svec, F., Fréchet, J. M. J., Anal. Chem., 1993, 65, 2243-2248.

[9] Hjertén, S., Liao, J. L., Zhang, R., J. Chromatogr., 1989, 473, 273-275.

[10] Liao, J. L., Chen, N., Ericson, C., Hjertén, S., Anal. Chem., 1996, 68, 3468-3472.

[11] Lukas, J., Svec, F., Kalal, J., J. Chromatogr., 1978, 153, 15-22.

[12] Svec, F., Fréchet, J. M. J., J. Chromatogr. A, 1995, 702, 89-95.

[13] Seiler, K., Harrison, D. J., Manz, A., Anal. Chem., 1993, 65, 1481-1488.

[14] Ovick, G., Tang, T., Harrison, D. J., Analyst, 1998, 123, 1429-1434.

[15] Chiem, N. H., Harrison, D. J., Anal. Chem., 1997, 69, 373-378.

[16] Chiem, N. H., Harrison, D. J., Electrophoresis, 1998, 19, 3040-3044.

[17] Cohen, C. B., Chin-Dioxon, E., Jeong, S., Nikiforov, T. T., Anal. Biochem., 1999, 273, 89-97.

[18] Zhang, S., Xu, Q., Zhang, L., Jin, J. Y., Anal. Chim. Acta, 2001, 427, 45-53.

[19] Oleschuk, R. D., Shultz-Lockyear L., Ning, Y., Harrison, D. J., Anal. Chem., 2000, 72, 585-590.

[20] 王蘭玉,國立成功大學化學研究所碩士論文,2002.

[21] Lin, Y. H., Lee, G. B., Li, C. W., Hung, G. R., Chen, S. H., J. Chromatogr. A, 2001, 937, 115-125.

[22] Peterson, D. S., Rohr, T., Svec, F., Fréchet, J. M. J., Anal. Chem., 2002, 74, 4081-4088.

[23] Dulay, M. T., Quirino, J. P., Bennett, B. D., Kato, M., Zare, R. N., Anal. Chem., 2001, 73, 3921-3926.

[24] Erdjument-Bromage, H., Lui, M., Lacomis, L., Grewal, A., Annan, R. S., McNulty, D. E., Carr, S. A., Tempst, P., J. Chromatogr. A, 1998, 826, 167-181.

[25] Larsen, M. R., Cordwell, S. J., Roepstorff, P., Proteomics, 2002, 2, 1277-1287.

[26] Rappsilber, J., Ishihama, Y., Mann, M., Anal. Chem., 2003, 75, 663-670.

[27] Stewart, I. I., Thomson, T., Figeys, D., Rapid Commun. Mass Spectrom., 2001, 15, 2456-2465.

[28] Karas, M., Buchmann, D., Hillenkamp, F. H., Anal. Chem., 1985, 57, 2935-2939.

[29] Karas, M., Hillenkamp, F. H., Anal. Chem., 1988, 60, 2299-2301.

[30] 蕭凱云,國立成功大學化學研究所碩士論文,2000.

[31] Baltussen, E., Sandra, P., David, F., Janssen, H. G., Cramers, C., Anal. Chem., 1999, 71, 5213-5216.

------------------------------------------------------------------------ 第 3 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911042576
論文名稱(中文) 反射式全像體積之研究
論文名稱(英文) Reserach on Reflective Volume Holography
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 92
學期 1
出版年 93
研究生(中文) 吳德樓
學號 p4689102
學位類別 碩士
語文別 中文
口試日期 2004-01-12
論文頁數 64頁
口試委員 口試委員-尤芳忞
口試委員-劉中堅
指導教授-丁勝懋
關鍵字(中) 全像術
光聚合體
關鍵字(英) holography
photopolymer
學科別分類
中文摘要 本研究論文的目的是要發展體積反射式全像的白光再現的技術。其主要原理在於三維光柵的布拉格效應的濾波過程。本研究已經成功發展出拍攝出白光再現的全像片的技術拍攝,並成功研製出用於拍攝這種全像片的光聚合體感光材料,製成繞射效果可達99%,曝光時間可少於1 sec. 以內,並可長時間保存圖像的感光底片。

本研究在再現過程中,以再現光入射全像片,一部分的光就會繞射,產生虛像或實像,從而形成與原物體相似的三維立體影像。當再現時,要達到原物光的最亮再現,在相同波長的情況下,必須用和原來的參考光相同方向的再現光。成功拍攝白光再現全像,可見於圖(7)、(8)為拍攝前所用的實體物像,本工作是利用自製全像底板,成功拍攝在白光下再現全像的全像片如圖(9) 、(10)。
本研究在第四章的最後,本論文也為感光材料研製技術作了討論:1、溶劑與樹脂比例混合要適度;2、溶劑本身的混合比例問題;3、增加增塑劑可提高感光單體之流動性;4、關於感光膜片;5關於Onium salts引發劑都有詳細的討論。

本論因此總結了白光再現再現全像技術的拍攝條件,相位光柵的特性及形成,及感光材料配製方法,感光片的製作技術及尋求最佳化的折射率調製。
英文摘要 The purpose of this research is to apply white light reconstruction techniques on the volume reflection holograms. The main principle of volume reflection hologram is using the Bragg effect of three-dimensional gratings to filter light process. This research already succeeded develops photographs the white light reconstruction technology on the holography. And the success develops uses in to photograph this kind of holography of the photopolymer material. The diffraction efficiency up to 99% and sensitivity is less than one second. Further the image is equal stability in the long time.

This research in the reconstructive process, reconstructs the light incidence holographic plate, part of light can diffraction, have the virtual image or the real image, thus forms with the original object similar three dimensional three-dimensional image. When reconstructs, must achieve the brightest reconstruction OG, in the same wave length situation, must use with the original reference light same direction reconstruction light. This work is using the self-made holographic plate. The success photography white light reconstructs holography, show to the chart (9), (10).

This research in fourth chapter final, the present paper has also made the discussion for the photosensitive material development technology: 1st, the solvent and resin proportion mix must be moderate; 2nd, solvent itself proportion of mixture question; 3rd, the increase plasticizer may enhance fluidity of the photosensitive monomer; 4th, about photosensitive film; 5th, initiator has the detailed discussion about Onium salts.

The present paper summarized the holography of photographed condition of white light reconstruction, the phase diffraction grating characteristic and the formation, the configuration method of photosensitive material, the photographic plate manufacture technology.
論文目次 中文摘要……………………………….i-ii
英文摘要………………………………..iii-iv
誌謝………………………..…………..v
目錄………………………………..…vi-vii
圖目錄……………………………..…viii-ix
表目錄…………………………………x
第一章 導論………………………….…...1
§1-1 研究背景………………………....…..1-2
§1-2 研究動機與目的……………………......2-3

第二章 實驗原理……………………………4
§2-1 白光再現的全像術……………………..4-6
§2-2 光聚合體全像感光材料的主要工作原理………......6-8

第三章 實驗研究……………………………9
§3-1 反射式體積全像術光路之建立……………......9-10
§3-2 感光材料各感光底板的研製…………...….......10-14
§3-3 全像片拍攝工作條件的研究……………........14-15
§3-4 感光底板繞射效率的測試………………........15-17

第四章 結果與討論…………………………..18
§4-1 實驗數據結果與分析…………………........18-26
§4-2 成功拍攝白光再現全像………...…………...27
§4-3 研製成功高品質感光底板………………......27
§4-4 討論…………………...…………...28
§4-4-1 拍攝技術之討論………..………..........28-30
§4-4-2 感光材料研製技術之討論……….…...........…31-35

第五章 結論…………………….…...…...36-38

參考文獻…………….…………………....39-40
參考文獻 參考文獻
1. D. Gabor, “A new Microscopic principle,” Nature 161, 777 (1948).
2. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman, J. J. Lecinstein, and K. Nassau, “Optical-induced refractive index inhomogeneity in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72 (1966).
3.丁勝懋著,《雷射工程導論》第13章,頁503,中央圖書出版社,第四版,2001年。
4. H. Kogelnik “ Coupled Wave Theory for Thick Hologram Gratings”, Bell Syst. Tech. J . , 48, 2909-2947, 1969.
5. William J. Gambogi, William A. Gerstadt, Steven R. Mackara and Andrew M. Weber “Holographic transmission elements using improved photopolymer films”SPIE Vol. 1555 Computer and Optically Generated Holographic Optics﹙Fourth in a Series﹚,256-267, 1991.
6. United States Patent, Patent Number 5698345.
7. C.R.Fernandez-Pousa, R.Mallavia, S.Blaya “Holographic determination of the irradiance dependence of linear-chain polymerization rate in Photopolymer dry films” Appl. Phys. B 70,537-542,2000.
8. C.Garcia, A. Fimia, I. Pascual “Holographic behavior of a photopolymer at
high thicknesses and high monomer concentrations: mechanism of
photopolymerization” Appl. Phys. B 72, 311-316, 2001.
9.Sabino piazzolla and B.keith Jenkins “Holographic grating formation in photopolymers” optics letters, vol. 21, No. 14, 1996.
10. 于美文,張存林,楊永源,“全息記錄材料及其應用”高等教育出版社,1997。
11. J. V. Crivello, J. H. W. Lam, J. E. Moore and S. H. Schroeter
“TRIARLSULFONIUM SALTS: A NEW CLASS OF PHOTO-
INITIATORS FOR CATIONIC POLYMERIZATION, J.Radiat. Curing 5(1) January,pp.2-17, 1978.
12. Guoheng Zhao, Pantazis Mouroulis “Diffusion model of hologram formation in dry photopolymer materials” Journal of modern optics,Vol.41,1929-1939,1994.

------------------------------------------------------------------------ 第 4 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911074315
論文名稱(中文) 光聚合性膽固醇型液晶元件之製備及光學特性研究
論文名稱(英文) Preparation and Optical Behavior of Photopolymerized Cholesteric Liquid Crystal Cells
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 92
學期 2
出版年 93
研究生(中文) 許惠晴
學號 n3691438
學位類別 碩士
語文別 中文
口試日期 2004-06-25
論文頁數 112頁
口試委員 指導教授-劉瑞祥
口試委員-王春山
口試委員-王盈錦
口試委員-傅永貴
口試委員-廖德章
關鍵字(中) 膽固醇液晶
光聚合
關鍵字(英) cholesteric liquid crystal
photopolymerized
學科別分類
中文摘要   本實驗合成不同碳鏈長度的單官能性液晶單體4-butoxyphenyl- 4’-(6-acryloyloxyhexyloxy)benzoate、4-butoxyphenyl-4’-(3-acryloyloxy- propyloxy)benzoate、4-butoxyphenyl-4’-(11-acryloyloxyundecyloxy) benzoate、兩種雙官能性單體1,4-di-〔4-(6-acryloyloxyhexyloxy) benzoyloxy〕benzene與4,4’-bis(6-(acryloyloxy)hexyloxy)biphenyl,及含甲氧烷基之偶氮苯衍生物4-hexyloxy-4’-methoxy-azobenzene。所合成之化合物均使用FTIR、1H-NMR、EA、DSC等儀器來加以鑑定。實驗過程中,將液晶ZLI-2293與光學活性摻混物S811混和均勻,製作成膽固醇液晶薄膜,可調配出在可見光區域有選擇性光反射的光學薄膜;再分別添加入不同配方及比例的官能性單體,探討照光聚合後對膽固醇液晶主體選擇性光反射波段(△λ)移轉之影響。另外,亦於系統中添加不同的偶氮苯衍生物,其一具有旋光性,另一個則無;探討此二種偶氮苯衍生物在照光聚合前、後對系統選擇性光反射波段的影響。藉由照射紫外光與可見光之間的轉換,可得到不同的選擇性光反射波段。
英文摘要   A series of monofunctional liquid crystalline monomers of 4-butoxyphenyl-4’-(6-acryloyloxyhexyloxy)benzoate, 4-butoxyphenyl-4’ -(3-acryloyloxy-propyloxy)benzoate, 4-butoxyphenyl-4’-(11-acryloyloxy undecyloxy)benzoate with various spacer lengths, two kinds of difunctional monomers of 1,4-di-〔4-(6-acryloyloxyhexyloxy) benzoyloxy〕benzene and 4,4’-bis(6-(acryloyloxy)hexyloxy)biphenyl, and photoisomerizable 4-hexyloxy-4’-methoxy-azobenzene were synthesized. Compounds synthesized in this investigation were confirmed using FTIR, 1H-NMR, DSC, and EA. Cholesteric liquid crystal cells were fabricated using commercially available ZLI-2293/S811 cholesteric liquid crystals and synthesized functional monomers. Effects of chiral and achiral monomers on the reflected band, light transmittance, stability, and reliability of the cholesteric liquid crystal cells were investigated in detail. Azobenzene derivatives were found to affect the optical properties of the cholesteric liquid crystal cells. Optical textures of the prepared cholesteric liquid crystals and morphologies of polymer matrixes were all investigated.
論文目次 第一章 緒論-------------------------------------------------------------- 1
第二章 原理及文獻回顧-------------------------------------------------- 4
第三章 實驗部分---------------------------------------------------------- 36
第四章 結果與討論-------------------------------------------------------- 50
第五章 結論-------------------------------------------------------------- 109
參考文獻----------------------------------------------------------------- 110
參考文獻 1. 松本正一、角田市良合著,劉瑞祥譯,“液晶之基礎與應用”國立編譯館出版。
2. F. Reinitzer, Monatsh. Chem., Vol. 9, 421 (1888).
3. O. Z. Lehmann, Phys. Chem., 4, 4621 (1889).
4. 蔡宗岳,“含光學活性單體PSCT液晶顯示元件之光電特性研究”國立成功大學化工研究所碩士論文,(1999)。
5. 蔡月娥, “雙官能機單體間隙長度對PSCT液晶顯示器光電特性效應之研究” 國立成功大學化工研究所碩士論文,(2000)。
6. D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, V. Vill, ”Handbook of Liquid crystals”, Vol. 2a, 2b, Wiley-VCH, (1998).
7. 黃啟炎, ”液晶-聚合物混合薄膜之光學二倍頻現象之研究” 國立成功大學物理研究所博士論文,(1997)。
8. 林志勤,“鐵電性液晶對聚合物穩定膽固醇液晶薄膜光電特性影響之研究”,國立成功大學物理研究所碩士論文,(1998)。
9. 湯宏東,“含環氧基鐵電性液晶體的合成及性質研究”國立成功大學化工研究所碩士論文,(1998)。
10. M. Irie, Chem. Rev., vol. 100, 1683 (2000).
11. H. Bouas-Laurent, H. Dürr, Pure Appl. Chem., Vol. 73, 639 (2001).
12. 邱顯堂,“化工技術”第八卷第六期,150.
13. I. Shimizu, H. Kokado, E. Inoue, Bull. Chem. Soc. Jpn., Vol. 42, 1730 (1969).
14. 楊博智, “含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討” 國立成功大學化工研究所碩士論文,(2003)。
15. H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, Chem. Mater., Vol. 10,
1402 (1998).
16. H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem.B, Vol. 104, 7023 (2000).
17. T. Ikeda, O. Tsutsumi, Science, Vol. 268, 1873 (1995).
18. P. Rechon, J. Gosselin, A. Natansohn, S. Xie, Appl Phys Lett , Vol. 60, 4 (1992).
19. Y. Wu, A. Kanazawa, T. Shiono, T. Ikeda, Q. Zhang, Polymer, Vol. 40, 4787 (1999).
20. K. Amundson, M. Srinivasarao, Liquid crystals for advanced techenologies, 269 (1996).
21. H. K. Lee, K. Doi, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, Polymer, Vol. 41, 1757 (2000).
22. N. Tamaoki, A. V. Parfenov, A. Masaki, H. Matsuda, Adv. Mater., Vol. 9, 1102 (1997).
23. M. Brehmer, J. Lub, P. van de Witte, Adv. Mater., Vol. 10, 1438 (1998).
24. E. Sackmann, J. Am. Chem. Soc. Vol. 93, 7088 (1971).
25. H. K. Lee, K. Doi, Hisako, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem. B, Vol. 104, 7023 (2000).
26. R. A. M. Hikmet, H. Kemperman, Liquid Crystals, Vol. 26, 1645 (1999).
27. H. Guillard, P. Sixou, L. Reboul, A. Perichaud, Polymer, Vol. 42, 9753 (2001).
28. V. Shibaev, A. Bobrovsky, N. Boiko, Journal of Photochemistry and Photobiology A: Chemistry. Vol. 155, 3 (2003).
29. J. H. Liu, H.U. Wang, Journal of Applied Polymer Science, Vol. 91, 789 (2004).
30. M. Portugall, H. Ringsdorf, R. Zentel, Makromol. Chem.,Vol. 183, 2311 (1982).
31. X. Meng, A. Natansohn, C.Barrett, P, Rochon, Macromolecules, Vol. 29, 946 (1996).
32. K. Kürschner, P. Strohriegl, Liquid Crystals, Vol. 27, 1595 (2000).
33. M. C. Artal, M. B. Ros, J. L. Serrano, Chem. Mater., Vol. 13, 2056 (2001).
34. I. Dierking, L. L. kosbar, A. Afzali-Ardakani, A.C. Lowe, J. Appl. Phys., Vol. 81, 3007 (1997).
35. C.B McARDLE, “Side chain liquid crystal polymers”, (1989).
36. F. Simoni, “Nonlinear optical properties of liquid crystals”, Vol. 2 (1997).
37. M. O’neill, S. M. Kelly, J. Phys. D: Appl. Phys., 33 R67 (2000).
38. K. Ichimura, Chem. Rev., 1847 (2000).
39. O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, T. Ikeda, Macromolecules, Vol. 31, 355 (1998).
40. Z. Liang, H. Ming, Q. Zhang, J. Appl. Phys. Vol. 90, 5866 (2001).
41. T. Yoshioka, T. Ogata, A. M. Zahangir, T. Nonaka, S. Kulihara, Liquid Crystals, Vol. 31, 15 (2004).
42. G. Wang, M. Li, M. Yu, C. Guo, X. Chen, Liquid Crystals, Vol. 27, 867 (2000).
43. D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, J. Lub, Adv. Mater., Vol. 11, 573 (1999).
44. R. A. M. Hikmet, H. Kemperman, Nature, Vol. 392, 476 (1998).

------------------------------------------------------------------------ 第 5 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200911153683
論文名稱(中文) 光聚合高分子在微流體管道上的設計與製作
論文名稱(英文) Design and Fabrication of Photopolymers on Microfluidic Channels
校院名稱 成功大學
系所名稱(中) 化學系碩博士班
系所名稱(英) Department of Chemistry
學年度 92
學期 2
出版年 93
研究生(中文) 劉光耀
學號 l3691108
學位類別 碩士
語文別 中文
口試日期 2004-07-23
論文頁數 143頁
口試委員 指導教授-陳淑慧
口試委員-周禮君
口試委員-李國賓
口試委員-桂椿雄
關鍵字(中) 光聚合高分子
微流體管道
關鍵字(英) microfluidic channel
photopolymer
學科別分類
中文摘要   本研究的主要目的是將光聚合高分子材料製作於細微管柱上,而達到結構最佳化的調整與控制。由於光聚合高分子材料具有聚合快速、成形位置與形狀的選擇性高、多孔性表面具有極大表面積可增加與樣品的接觸,以及高分子表面可依不同需求而進行衍生化修飾等優點,所以可應用於分析化學方面的研究,提升分析工作的效果。
  本研究藉由調整單體溶液的成分與比例,以及改變光聚合反應的條件,而針對所生成的光聚合高分子整體性管柱靜相材質在其內部多孔性質與外在結構狀態的變化趨勢進行觀察。實驗結果證明,單體溶液之中所含交聯劑與溶劑彼此之間的比例消長,確實是控制高分子結構的主要因素,而共溶劑的使用也能改變多孔洞性質的表現;另外,光線照射時間與光罩的型式對所形成高分子管柱靜相結構的影響也十分顯著。
  用光聚合高分子對分析工作的多項優勢,我們將光聚合高分子材質製作在毛細管柱或微流體管道之中,而能達到許多不同的運用。本研究將強陽離子交換顆粒(SCX beads)混合在光聚合高分子的單體溶液之中,藉由光聚合反應而在毛細管上製作出具有陽離子交換功能的毛細管柱;另一方面,利用特殊的化學修飾反應,也可將常用於蛋白質消化水解的胰蛋白酵素(trypsin)固定於毛細管柱內的光聚合高分子多孔性表面上,形成能對蛋白質樣品進行消化水解反應的整體性管柱靜相結構。藉由光聚合高分子與微型管柱的結合,我們成功製做出具有初步分離能力的微型陽離子交換管柱,以及具有蛋白質消化水解能力的微型酵素反應管柱。

英文摘要   This study aims achieving the best composition and adjustment through the synthesis of photopolymers on micro-channels. Advantages of photopolymers include its ability for fast polymerization, high section of the location and shape in which it forms. Its porous surface enables it to have a large surface area to allow for the maximum contact with the sample. Furthermore, the polymer surface can be modified to meet different needs. These advantages combine to aid in elevating the results in chemical analysis.
  By adjusting the contents and proportions of the monomer solution and changing the conditions of photopolyermization, we are able to observe any pattern changes to the inner porous surface and outer structure in the polymers synthesized in the polymeric stationary phase. Results show that polymer synthesis is indeed controlled by changes of portion between the cross-linker and porogenic solvent in the monomer solution. It is also found that the use of co-solvent alters the nature of the porous surface. In addition, the irradiation time and the form of the photo-mask both have an obvious effect to the structure of the polymeric stationary phase.
  Due to its many advantages, we are able to synthesize photopolymers inside of capillaries and micro-channels and apply it for many uses. The study mixed SCX beads with the photopolymer monomer solution and through polymerization, constructing capillary micro-columns that are capable of cation exchange. Also, using special chemical modification effects, we are able to attach trypsin on the surface of photopolymers inside of the capillary micro-columns. By doing so, the polymeric stationary phase structure is then able to perform enzyme digestion on the protein samples. By putting photopolymers and capillary micro-columns together, we successfully constructed micro-cation exchange columns capable of preliminary separation ability as well as micro-enzymatic reacting columns that are able to perform protein digestion.

論文目次 目錄

中文摘要………………………………………………………………I
英文摘要………………………………………………………………III
目錄……………………………………………………………………IV
圖表目錄………………………………………………………………VII



第一章 序論
1.1 前言…………………………………………………………………1
1.2 微流體分析晶片的發展……………………………………………3
1.3 溶膠凝膠(Sol-gel)技術與有機高分子聚合物………………4
1.4 光聚合高分子(Photopolymer)與微流體管道(microfluidic
channel)的結合與應用………………………………………………6

第二章 微流體晶片的製備
2.1 微流體生醫晶片簡介…………………………………………………8
2.2 微流體晶片設計………………………………………………………10
2.2.1光罩設計與製作………………………………………………10
2.2.2微流體晶片的型式……………………………………………12
2.3 微流體晶片製作………………………………………………………12
2.3.1 表面前處理……………………………………………………13
2.3.2 微影程序(Photolithography)……………………………13
2.3.3 蝕刻程序(Etching)………………………………………15
2.3.4 鑽孔與熔融接合………………………………………………16

第三章 光聚合高分子的控制與形成
3.1 光聚合反應的特性…………………………………………………18
3.2 光聚合高分子整體性管柱材料的研究背景與動機………………20
3.3 光聚合高分子整體性管柱材料的反應與形成……………………22
3.3.1 溶膠凝膠反應與管壁表面修飾步驟………………………23
3.3.2 甲基丙烯酸類(methacrylate-based)有機高分子簡介26
3.4 實驗架設……………………………………………………………28
3.4.1 實驗材料與藥品的準備……………………………………29
3.4.2 光聚合高分子的固化成形…………………………………31
3.5 內含成分對光聚合高分子性質與結構的影響……………………32
3.5.1 高分子表面化學性質的控制-功能性單體的選擇………32
3.5.2 高分子內部結構的控制-單體與溶劑的調控……………33
3.6 聚合反應條件對光聚合高分子成形的影響………………………42
3.6.1 紫外光源照射時間的影響…………………………………43
3.6.2 光罩型式與透光範圍的影響………………………………45

第四章 光聚合高分子整體性管柱材料的應用
4.1 光聚合高分子材料的用途…………………………………………55
4.2 微型強陽離子交換管柱的製備與使用……………………………56
4.2.1 陽離子交換技術簡介…………………………………………57
4.2.2 微型強陽離子交換管柱的製備方式…………………………59
4.2.3 微型強陽離子交換管柱的使用程序…………………………60
4.2.4 測試結果與討論………………………………………………63
4.3 微型胰蛋白酶酵素消化反應管柱的製備與使用…………………65
4.3.1 胰蛋白酶酵素消化反應簡介…………………………………67
4.3.2 微型胰蛋白酶酵素消化反應管柱的製備方式………………68
4.3.3 微型胰蛋白酶酵素消化反應管柱的使用程序………………72
4.3.4 測試結果與討論………………………………………………78

第五章 結論與未來展望
5.1 結論…………………………………………………………………83
5.2 未來展望……………………………………………………………84

參考資料…………………………………………………………………86
參考文獻 參考資料

1. D.J. Throckmorton, T.J. Shepodd, A.K. Singh, Anal. Chem. 2002, 74, pp 784-789

2. C. Yu, M.H. Davey, F. Svec, J.M.J. Frchet, Anal. Chem. 2001, 73, pp 5088-5096

3. J.P. Quirino, M.T. Dulay, R.N. Zare, Anal. Chem. 2001, 73, pp 5557-5563

4. D.S. Peterson, T. Rohr, F. Svec, J.M.J. Frchet, Anal. Chem. 2002, 74, pp 4081-4088

5. A. Manzs, N. Graber, H.M. Widmer, Sens. Actuators. 1990, B1, pp 244-248

6. H. Minakuchi, K. Nakanishi, N. Soga, N. Ishizuka, N. Tanaka, Anal. Chem. 1996, 68, pp 3498-3501

7. B.E. Slentz, N.A. Penner, F.E. Regnier, J. Chromatogr. A. 2003, 984, pp 97-107

8. 黃冠瑞,「高效能微流體晶片之設計製作與其在生物醫學之應用」,國立成功大學工程科學系,中華民國九十年六月。

9. 徐玄修,「整合型微透析電泳晶片之研發」,國立成功大學化學系,中華民國九十二年六月。

10. M. Kato, M.T. Dulay, B.D. Bennett, J.P. Quirino and R.N. Zare, J. Chromatogr. A 2001, 924, pp 187-195


11. E.C. Peters, M. Petro, F. Svec, J.M.J. Frchet, Anal. Chem. 1997, 69, pp 3646-3649

12. E.C. Peters, M. Petro, F. Svec, J.M.J. Frchet, Anal. Chem. 1998, 70, pp 2288-2295

13. C. Yu, M. Xu, F. Svec, J.M.J. Frchet, J. Polym Sci. A 2002, 40, pp 755-769

14. M. Merhar, A. Podgornik, M. Barut, M. Žigon, A. Štrancar, J. Sep. Sci. 2003, 26, pp 322-330

15. T. Rohr, E. F. Hilder, J. J. Donovan, F. Svec, J.M.J. Frchet, Macromolecules 2003, 36, pp1677-1684

16. J. Lukas, F. Svec, J. Kalal, J. Chromatogr. 1978, 153, pp 15-22

17. F. Svec, J.M.J. Frchet, J. Chromatogr. A 1995, 702, pp 89-95

18. 周孟寬,「光聚合高分子在蛋白質分析上的應用」,國立成功大學化學系,中華民國九十二年六月。

19. R. Hahn, E. Berger, K. Pflegerl, A. Jungbauer, Anal. Chem. 2003, 75, pp 543-548

20. W. Li, D. Fries, A. Alli, A. Malik, Anal. Chem. 2004, 76, pp 218-227

21. J.P. Quirino, M.T. Dulay, B.D. Bennett, R.N. Zare, Anal. Chem. 2001, 73, pp 5539-5543

22. S. Oguri, H. Tanagaki, M. Hamaya, M. Kato, T. Toyo’oka, Anal. Chem. 2003, 75, pp 5240-5245

23. M.T. Dulay, J.P. Quirino, B.D. Bennett, R.N. Zare, J. Sep. Sci. 2002, 25, pp 3-9

24. D. Bandilla, C.D. Skinner, J. Chromatogr. A 2003, 1004, pp 167-179

25. D.S. Peterson, T. Rohr, F. Svec, J.M.J. Frchet, J. Proteome research 2002, 1, pp 563-568

26. M. Kato, K. Sakai-Kato, H.M. Jin, K. Kubota, H. Miyano, T. Toyo’oka, M.T. Dulay, R.N. Zare, Anal. Chem. 2004, 76, pp 1896-1902

27. R.K. Scopes, Protein Purification-Principles and Practice, third edition, Springer-Verlag

28. Grace Vydac co., http://www.vydac.com

29. D. Dogruel, P. Williams, R.W. Nelson, Anal. Chem. 1995, 67, pp4343-4348

30. R.M. Whittal, B.O. Keller, L. Li, Anal. Chem. 1998, 70, pp 5344-5347

31. S. Ekström, P. Önnerfjord, J. Nilsson, M. Bentsson, T. Laurell, G. Marko-Varga, Anal. Chem. 2000, 72, pp 286-293

32. J. Gao, J. Ju, L.E. Locascio, C.S. Lee, Anal. Chem. 2001, 73, pp 2648-2655

33. K. Sakai-Kato, M. Kato, T. Toyo’oka, Anal. Chem. 2003, 75, pp 388-393

34. D. Sehgal, I.K. Vijay, Anal. Biochem. 1994, 218, pp 87-91

35. L. Richert, F. Boulmedais, P. Lavalle, J. Mutterer, E. Ferreux, G. Decher, P. Schaaf, J.C. Voegel, C. Picart, Biomacromolecules 2004, 5, pp 284-294

36. Millipore co., http://www.millipore.com/

37. Swiss Institute of Bioinformatics(SIB) ExPASy Proteomics Server, http://tw.expasy.org/

------------------------------------------------------------------------ 第 6 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200913344719
論文名稱(中文) 光聚合高分子網狀結構對於液晶盒配向性質之研究
論文名稱(英文) Studies of Photocurable Polymer-network Effects on Liquid Crystal Alignment of Cells
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 95
學期 1
出版年 96
研究生(中文) 蔡榮正
學號 v1693109
學位類別 碩士
語文別 中文
口試日期 2006-12-25
論文頁數 102頁
口試委員 指導教授-許家榮
口試委員-陳丁振
口試委員-丁兆民
關鍵字(中) 高分子聚合物網狀結構
光聚合單體
液晶配向
關鍵字(英) polymer-network
liquid crystal molecules alignment
photocurable monomer
學科別分類
中文摘要 本論文研究目的是針對光聚合單體(photocurable monomer)與液晶混合製成液晶盒(liquid crystal cells)樣品,進行紫外光聚合反應以觀察所形成高分子聚合物網狀結構(polymer-network)對液晶分子配向之影響。在實驗液晶盒中光聚合單體之濃度比例為1至8 wt.%範圍的變化條件;而在光聚合的實驗條件,我們進行曝照固定紫外光強度與改變時間參數的變化,觀察實驗條件對液晶配向之影響。
實驗製程中所使用量測儀器,包括橢圓儀(ellipsometer)、原子力顯微鏡(atomic force microscope, AFM)、偏光顯微鏡(polarized optical microscope, POM)、掃描式電子顯微鏡(scanning electron microscope, SEM)及光穿透率-外加電壓系統量測光電的特性。
實驗結果發現,當NOA-65濃度比例提高時光穿透率呈現降低,當含量5 wt.%以上時,容易形成高分子聚合物的薄膜而且薄膜上纖維狀的高分子聚合物是無序性的方向與液晶分子之間引力後,致於液晶分子失去整齊性之配向目的。
英文摘要 In this thesis, we studied the influence of liquid crystal alignment effected by photocured polymer-network in the monomer mixed liquid crystal cells. The monomer concentration of liquid crystal cells were various in range of 1~8 wt.%. For ultraviolet light exposure processes, we variously controlled the exposure time in condition of same exposure intensity for all experimental cells in order to observe the correlation between polymer-network and liquid crystal molecules alignment.

We used many instruments to measure and observe the experimental results including ellipsometer, atomic force microscope (AFM), polarized optical microscope (POM), scanning electron microscope (SEM) and the laboratory setup for electro-optical measurement.

Meanwhile, rising the NOA-65 concentration induces lower light transmission. When the concentration is higher than 5 wt.%, photocured
monomer forms a composite film and disorder direction morphology of polymer-network. It’s disadvantageous to improve the liquid crystal molecules alignment .
論文目次 第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的  2
1-3 研究方法 3
第二章 材料特性介紹 6
2-1 液晶的物性與光電特性 6
2-1-1 常用液晶之三種型態 6
2-1-2 液晶分子的方位秩序參數 6
2-1-3 液晶的雙折射性 8
2-1-4 液晶盒之臨界電壓 11
2-1-5 液晶盒之反應時間 16
2-2 聚亞醯胺高分子的特性 18
2-3 光聚合高分子的特性 19
第三章 實驗方法及量測設備 21
3-1 液晶盒製作步驟與方法 21
3-1-1 ITO玻璃基板清洗 22
3-1-2 塗佈配向膜層 23
3-1-3 摩擦配向製程(rubbing alignment process) 25
3-1-4 液晶混合物注入與組合及封膠 27
3-1-5 紫外光曝照液晶盒 29
3-2 樣品的微觀量測設備 31
3-2-1 橢圓儀(ellipsometer) 31
3-2-2 原子力顯微鏡(atomic force microscope, AFM) 35
3-2-3 偏光顯微鏡(polarized optical microscope, POM) 36
3-2-4 光穿透率-外加電壓的量測系統 37
3-2-5 掃描式電子顯微鏡(scanning electron microscope, SEM) 38
第四章 實驗結果與分析 39
4-1 橢圓儀的量測結果與分析 39
4-2 原子力顯微鏡的量測結果與分析 46
4-3 偏光顯微鏡的量測結果與分析 52
4-4 光穿透率-外加電壓的量測結果與分析 64
4-5 掃描式電子顯微鏡的量測結果與分析 70
第五章 總結與展望 95
5-1 總結 95
5-2 展望 98
參考文獻 99
參考文獻 [1] D. S. Seo, “Odd-even effects of the surface anchoring strength in NLC on polyimide Langmuir-Blodgett surfaces with alkyl chain lengths”, J. Kor. Phys. Soc. 43. 359 (1999).
[2] J. J. Ge, C. Y. Li, G. Xue, I. K. Mann, D. Zhang, S.Y. Wang, F. W. Harris, S. Z. D. Cheng, S. C. Hong, X. Zhuang and Y. R. Shen, “Rubbing-induced molecular reorientation on an alignment surface of an aromatic polyimide containing cyanobiphenyl side chains”, J. Am. Chem. Soc. 123, 5678 (2001).
[3] T. Ito, K. Nakanishi, M Nishikawa, Y Yokoyama, and Y Takeuchi, “Regularity and narrowness of the intervals of the microgrooves on the rubbed polymer surfaces for liquid crystal alignment”, J. Poly. 27, 240 (1995).
[4] J. A. Castellano, “Surface anchoring of liquid crystal molecules on various substrates”, Mol. Cryst. Liq. Cryst. 94, 33 (1983).
[5] J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, “The mechanism of polymer
alignment of liquid-crystal materials”, J. Appl. Phys. 62, 4100 (1987).
[6] H. Kikuchi, J.A. Logan, and D.Y. Yoon, “Study of local stress, morphology, and liquid-
crystal alignment on buffed polyimide surfaces”, J. Appl. Phys. 79, 6811 (1996).
[7] I. Dierking, “Polymer network-stabilized liquid crystal”, Adv. Mater. 12, 167 (2000).
[8] T. Murashige, H. Fujikake, S. Ikehata, and F. Sato, “ Anchoring strength of thin aligned
-polymer films formed by liquid crystalline monomer”, Jpn. J. Appl. Phys. 42. 1614 (2003).
[9] V. Vorflusev, J. H. Kim, and S. Kumar, “Phase separated composite films of liquid crystals”, Pramana – J. Phys. 53, 121 (1999).
[10]V. V. Krongauz, E. R. Schmelzer, and R. M.Yohannan, “kinetics of anisotropic
photopolymerization in polymer matrix”, Polymer. 32, 1654 (1991).
[11]V. vorflusev, and S. Kumar, “Phase-separated composite films for liquid crystal displays”, Science. 283, 1903 (1999).
[12]P. A. Kossyrev, J. Qi, N. V. Priezjev, R. A. Pelcovits, “Virtual surfaces,director
domains,and the Freedericksz transition in polymer-stabilized nematic liquid crystals, Appl. Phys. Lett. 81, 2986 (2002).
[13]G. P. Crawford and S. Zumer, eds., “Liquid crystal in complex Geometries Formed by Polymer and Porous Networks”, Taylor & Francis (1996).
[14]Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators”, Appl. Phys. Lett. 84, 1233 (2004).
[15]R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels”, J. Appl. Phys. 68,4406 (1990).
[16]R. A. M. Hikmet, and H. M. J. Boots, “Domain structure and switching behavior of anisotropic gels”, Phys. Rev. E. 51, 5824 (1995).
[17]Y. H. Fan, H. Ren, and S. T. Wu, “Normal-mode anisotropic liquid-crystal gels”, Appl. Phys. Lett. 82, 2945 (2003).
[18]Y. H. Fan, H. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time”, Appl. Phys. Lett. 85, 2451 (2004).
[19]B. Li, T. He, M. Ding, “A comparative study of insoluble and soluble polyimide thin films”, Polymer, 40, 789 (1999).
[20]吳欣璁,“奈米液晶聚合物的研究與應用”, 國立成功大學, 物理研究所博士論
文 (2005).
[21]顧鴻壽,“光電液晶平面顯示器技術基礎及應用”, 新文京開發 (2004).
[22]G. R. Fowles, 2nd et., “Introduction to Modern Optics”, University of Utah, New York (1975).
[23]A. Yariv, “Optical Electronics in Modern Communications”, 5th et., Oxford, New York (1997).
[24]陳郁壬, “向列型液晶中光弧子交互作用的研究”, 國立中山大學, 物理研究所碩士論文 (2003).
[25]F. C. Frank. “On the theory of liquid crystals”, Discuss Faraday Soc. 25.19 (1958).
[26]P. J. Collings and M. Hird, “Introduction to Liquid Crystals Chemistry and Physics”,
Taylor & Francis (1997).
[27]高迦翔, “含奈米雜質之水平排列液晶元件的光電特性”, 私立中原大學, 應用物理研究所碩士論文 (2005).
[28]H. Wang, T. X. Wu, X. Zhu, and S. T. Wu, “Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell”, J. Appl. Phys. 95, 5502 (2004).
[29]M. L. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L.A. Laius, “Polyimides : Thermally Stable polymers”, Consultants Bureau, New York and London (1987).
[30]M. K. Ghosh and K. L. Mittal, “Polyimides”, Marcel Dekker, New York (1996).
[31]D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother, “Polyimides”, Chapman and Hall, New York (1990).
[32]劉光耀,“光聚合高分子在微流體管道上的設計與製作”, 國立成功大學, 化學所碩士論文 (2004).
[33]D. Nwabunma, T. Kyu, “Phase behavior, photopolymerization, and morphology development in mixtures of eutectic nematic liquid crystal and photocurable monomer”, Polymer. 42, 801 (2001).
[34]Y. Sato, K Sato, and T Uchida, “Relationship between rubbing strength and surface
anchoring of nematic liquid crystal”, Jpn. J. Appl. Phys. 31, 579 (1992).
[35]陳人豪,“類鑽薄膜在液晶配向層上的應用”, 國立成功大學, 光電工程與科學研究所碩士論文 (2004).
[36]S. Kuniyasu, H. Fukuro, S. Maeda, K. Nakaya, M. Nitta, N. Ozaki, “The strength of rubbing worked on polyimide films for aligning nematic and chiral smectic liquid crystal: controlling pretilt angles and some electrooptic performances of LCDs”, Jpn. J. Appl. Phys. 27. 827 (1999).
[37]N. Kawatsuki, H. Ono, H. Takatsuka,T. Yamamoto, and O Sangen, “Liquid crystal alignment on photoreactive side-chain liquid rystalline polymer generated by linearly polarized UV light”, Macromolecules. 30, 6680 (1997).
[38]I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals”, Appl. Phys. Lett. 71, 2454 (1997).
[39]Y. Zhao, and Y. Chenard, “Liquid crystalline anisotropic gels prepared from optical alignment : polymer network formed in the isotropic phase”, Macromolecules. 33, 5891 (2000).
[40]S. H. Kim, “Fast switching polymer stabilized liquid crystal devices: morphology and
electro-optical properties”, Kent State University, Doctor of Philosophy (2004).

------------------------------------------------------------------------ 第 7 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200913414865
論文名稱(中文) 光聚合體雷射全像紀錄材料之研究-添加二苯硫對繞射效率及折射率的影響
論文名稱(英文) Investigation on Laser Holographic Photopolymer Recording Material-Effect of DS on Diffraction efficiency and refractive Index
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 95
學期 2
出版年 96
研究生(中文) 邱皇彬
學號 p4694105
學位類別 碩士
語文別 中文
口試日期 2007-07-03
論文頁數 79頁
口試委員 口試委員-劉中堅
口試委員-劉瑞祥
指導教授-丁勝懋
關鍵字(中) 光柵
光聚合體
全像術
關鍵字(英) grating
photopolymer
holography
學科別分類
中文摘要 全像片是能儲存立體的影像,與一般的照片儲存的平面影像不同,全像片可儲存大量的資訊,而且可分多次單獨、不互相干擾的情況呈現,在信息存貯技術之中,全像存貯的潛力是最大的。而本研究主要是利用光聚合體感光材料來研製良好的全像片。光聚合體感光紀錄材料,擁有高繞射效率、高解析度、高光敏度、光譜響應寬、曝光後處理方便(加熱即可)及圖像儲存穩定等優點。所以藉由光聚合體感光材料來製作在白光底下即能重現之全像片,但目前市場上不容易買到相關產品,所以本研究將自行研製光聚合體感光底片。感光紀錄材料除了由學長之前所用的溶劑、樹脂、單體、光增感劑、和光引發劑五種化學成分所組成外,另外加入了DS,DS為不具雙鍵之非反應型試藥,折射率為1.63,加入此種化學成分後能提高實驗所用的環氧樹脂的折射率(約1.54)且不會與其他的化學產品產生反應,可用來當作良好的增塑劑,實驗後發現其全像片的繞射效率及折射率均較以前提高。本論文重點將包括 1. 全像片的製作;2. 加入DS的改變;3. 配方組成;4. 各種配方的比較;5. 繞射效率的量測;6. 加熱的時間對△n 的影響。藉此尋求光聚合體感光材料最佳化的折射率調製(△n )值。最後製成繞射效率為89.4%,△n 為0.0232的全像片,並成功拍攝出反射式體積全像圖。
英文摘要 The hologram can store the three-dimensional images, and different from the general photo that just can store two-dimensionalimages,the hologram can store a large amount of information, and can divid many times alone, the situation not interfering each other appears, in the technology of information to store that the hologram is all the greatest of the potentiality. And this research was mainly tomake use of photopolymer materials to develop the good hologram. Photopolymer is one of the holography recording materials.It have high diffraction efficiency, high resolution, high photosensitivity, wide spectrum response, treatment convenient (heating) after exposure, and such advantages as the picture was stored steadily. So make use of the photopolymer to manufacture hologram that can reconstruct by white light, but not apt to buy relevant products on the market at present, so this research will develop the photopolymer by oneself. The photopolymer recording material except solvent, resin, monomer, photo-sensitizer and photo-initiator, 5 kinds of chemical composition make up. We add the DS, that refracting rate is 1.63.It can improve the epoxy resin (about 1.54) that the experiment uses after adding this kind of chemical composition and will not produce and react with other chemical products, diffraction efficiency and refracting rate find improvement after the experiment. This research focal point including: 1.Making of the hologram 2.Effect of adding DS 3.Different chemical composition 4.Comparison of different chemical composition 5.Measure diffraction efficiency 6.Influence of △n of time to heating. Finally, diffraction efficiency is 89% and △n is 0.0232, and got the reflection volume hologram.
論文目次 中文摘要--------------------------------------------------I
英文摘要------------------------------------------------III
目錄------------------------------------------------------V
圖目錄-------------------------------------------------VIII
表目錄---------------------------------------------------XI
符號說明------------------------------------------------XII
第一章 緒論----------------------------------------------1
1-1 前言--------------------------------------------------1
1-2 研究動機與目的----------------------------------------3
1-3 本文概述----------------------------------------------4
第二章 全像術原理及感光紀錄材料--------------------------5
2-1 全像術與全像光柵--------------------------------------5
2-1-1全像術原理-------------------------------------------5
2-1-2雷射誘發光柵-----------------------------------------8
2-2 全像光柵的分類特性-----------------------------------11
2-3 白光再現基本原理-------------------------------------16
2-4 全像感光記錄材料------------------------------------21

2-4-1 鹵化銀感光劑---------------------------------------22
2-4-2 重鉻酸鹽明膠---------------------------------------22
2-4-3 鹵化銀敏化明膠-------------------------------------23
2-5-4 光聚合物-------------------------------------------23
2-5 光聚合原理------------------------------------------24
第三章 實驗研究-----------------------------------------26
3-1 實驗設備-------------------------------------------26

3-1-1 紀錄材料及全像片-----------------------------------26
3-1-2 白光再現全像術拍攝之實驗設備-----------------------26
3-1-3 布拉格射效率量測之實驗設備-------------------------27
3-2 反射式體積全像術光路之建立---------------------------27
3-3 全像片之研製-----------------------------------------28
3-3-1感光紀錄材料成份------------------------------------28
3-3-2感光紀錄材料成份的功用------------------------------31
3-3-3 全像片的製作---------------------------------------32
3-4實驗程序----------------------------------------------32
3-4-1 繞射效率的量測-------------------------------------32
3-4-2 白光再現全像拍-------------------------------------34
第四章 結果討論與分析-----------------------------------36
4-1 實驗數據結果與分析-----------------------------------36
4-1-1自由基聚合反應--------------------------------------36
4-1-2實驗結果--------------------------------------------40
4-2 繞射效率及折射率的變化-------------------------------42
4-2-1引發劑的影響----------------------------------------42
4-2-2 DS的影響-------------------------------------------43
4-2-3 加熱的影響-----------------------------------------45
4-3白光再現拍攝成果--------------------------------------46
第五章 結論---------------------------------------------47
參考文獻-------------------------------------------------50
參考文獻 [1] D. Gabor, “A new microscopic principle, ” Nature ,
161(1948) 777-778
[2] E. N. Leith and J. Upatnieks, “Reconstructes wavefronts and communication theory, ”J. Opt. Soc. Amer. 52, 1123(1962)
[3] E. N. Leith and J. Upatnieks, “Reconstructes wavefronts with duffused illuminaion and three dimensional objescts, ”J. Opt. Soc. Amer. 54, 1295(1964)
[4] S. A. Benton, “Hologram reconstructions with extended light sources, ”J. Opt. Soc. Amer. 59, 1545(1969)
[5] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman, J. J. Lecinstein, and K. Nassau, “Optical-induced refractive index inhomogeneity in LiNbO3 and LiTaO3, ” Appl. Phys. Lett. 9, 72 (1966).
[6] 王源鈐,“光聚合體全像感光記錄材料之研究, ”碩士論文,國立成功大學,航空太空研究所,2004年
[7] P. Hariharan, “ Optical Holography-Principles, ” Technique and plications, Cambridge University Press, Cambridge(1984).
[8] H. J. Eicher, P. Gunter and D.W. Pohl, “Laser-Induced
Dynamics Gratings , ”Springer-Verlag, Berlin(1986).
[9] P. C. Mehta and V. V. Rampal , Laser and Holography, World Scientific, Singapore(1993).
[10] O. Werner, B. Fisher and A. Lewis, Opt. Lett., 17, 241
(1992).
[11] R. W. Boyd, Nonlinear Optics, Academic Press, London
(1992).
[12] Y. Ohe, H. Ito, M. Yasuike, Y. Toba, M. Shikano, “Photosensitive recording material photosensitive recording medium and process for producing hologram using this photosensitive recording medium, ” United States Patent Number 5, 698, 345, 1997
[13] C .R. Fernandez-Pousa, R. Mallavia, S. Blaya, “Holographic determination of the irradiance dependence of linear-chain polymerization rates in Photopolymer dry films, ”Appl. Phys. B 70, 537-542, 2000.
[14] C. Garcia, A. Fimia, I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization, ”Appl. Phys. B 72, 311-316, 2001.
[15] S. Piazzolla and B. k. Jenkins, “Holographic grating
formation in photopolymers, ” optics letters, vol. 21, No. 14, 1996.
[16] A1. G. Odian, P.234-249, “聚合反應原理 (上) 第二版,
莊和達、李明哲編譯, ” 復文書局
[17] S. Blaya, L. Carretero, R. Mallavia, A. Filmia, R. madrigal: Appl. Opt. 38, 955(1999)
[18] S. Piazolla, B. K. Jenkins: Opt. Lett. 21, 1075(1996)
[19] G. Zhao, P. Mouroulis: J. Mod. Opt. 41 1929(1994)
[20] 于美文,張存林,楊永源,“全息記錄材料及其應用”高等教育出版社,1997。
[21] J. V. Crivello, J. H. W. Lam, J. E. Moore and S. H. Schroeter“TRIARLSULFONIUM SALTS: A NEW CLASS OF PHOTO-INITIATORS FOR CATIONIC POLYMERIZATION, ” J.Radiat. Curing 5(1) January, pp.2-17, 1978.

------------------------------------------------------------------------ 第 8 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200913534042
論文名稱(中文) 影響牙科樹脂填補聚合收縮應力之生物力學探討
論文名稱(英文) Biomechanical Considerations of Factors Contributing to the Contraction Stress in Dental Composite Restorations
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 95
學期 2
出版年 96
研究生(中文) 莊淑芬
學號 P88911018
學位類別 博士
語文別 英文
口試日期 2007-07-17
論文頁數 110頁
口試委員 口試委員-陳文斌
口試委員-廖保鑫
口試委員-陳元方
召集委員-李士元
口試委員-張冠諒
指導教授-張志涵
關鍵字(中) 二級MOD窩洞
光聚合
複合樹脂
聚合
收縮應力
襯底材
關鍵字(英) Class II MOD cavity
incremental technique
polymerization shrinkage
finite element analysis
lining material
resin composite
學科別分類
中文摘要 以光聚合複合樹脂進行牙科窩洞修復,已蔚為復形材料主流。在光照(photo-activation)後,樹脂單體產生聚合反應,產生體積聚合收縮、填補介面間的收縮應力(contraction stress)等現象。這些變化會造成牙體結構的變形可能導致急遽斷裂;殘應力也可能累積而造成黏著界面破壞。一般認為改變窩洞外型、改變聚合時間、應用低彈性模數襯底材(lining material)等方式,可有效減少樹脂聚合收縮及咬合時之種種應力。這些假說有待驗證。
樹脂聚合收縮所造成的種種術後問題,於臨床上始終無法有效改善。因此本研究以複合樹脂進行臼齒二級窩洞復形治療為樣本。研究目的為探討不同幾何型態窩洞中的複合樹脂填補,於樹脂聚合收縮過程所導致的生物力學影響,並探討使用襯底材(lining material)於各種洞中,以降低收縮應力的可能性。研究將以材料性質量測、牙齒樣本實驗、有限元素模擬三方面進行。
研究第一部份探討樹脂於光聚合後的材料性質測定。光聚合樹脂機械性質如彈性模數、不同深度之聚合程度等為測量目標。由於牙科樹脂填補時,光源於上方照射,因此於不同的照射深度也會有不同的聚合程度(degree of conversion)。一般文獻中,決定樹脂於填補內部的機械性質,通常以微小硬度對應聚合程度以計算出彈性模數。本研究以奈米硬度測試儀測量樹脂於不同聚合深度的彈性模數。這兩項測量值比較後,驗證以硬度計算彈性模數的可靠性,並用於後續的有限元素分析材料性質設定上。結果顯示,40秒照射時間所得的微小與奈米硬度、聚合深度都大於20秒照射;而兩段式聚合與標準聚合所得的聚合程度相近。於本實驗中,微小硬度與彈性模數的結果於測量範圍內相近,因此可被應用於後續有限元素分析材料性質的決定。
實驗部分,以真實的臼齒為樣本,探討不同填補技術對於填補邊緣品質與復形牙齒的影響。在不同襯底材料的影響方面,研究結果顯示加上流動性樹脂襯底並無法有效降低齒頸部邊緣微滲漏的改善;使用玻璃離子黏著劑則可改善較深窩洞於牙本質邊緣的密封性。進一步的探討則發現使用較厚的流動性樹脂襯底,於冷熱循環後,邊緣品質受影響更為顯著。本研究並利用數位影像相關變形量測方式測試樹脂填補時之齒質形變,並以此為有限元素模擬觀測之依據。以數位影像相關法所測得的結果,樹脂填補在不同窩洞外型條件中,形變的大小與形式均不同。相較於以往文獻中單純以C-factor定義樹脂所受的限制條件,結果中顯示,樹脂充填量、殘留齒質的韌度均影響牙齒與樹脂的變形量。
而有限元素模擬,是以真實臼齒建立幾何外型,以探討不同窩洞外型中收縮應力的分佈。模擬是利用量測之樹脂收縮性質,建立對等的有限元素模組,並以數位影像相關法實驗所得結果進行比對與修正。研究首先探討如何調整不同變數以符合實驗中所得的牙齒變形量,在包括材料性質與網格化等條件確立後,最終針對窩洞型態、襯底材料等不同影響因子分析,進行在不同二級近遠心窩洞模組的模擬。結果顯示窩洞內部的底部為高主應力承受區。評估以低彈性模數材料襯底之模組,則發現填補與襯底材料的收縮率,對於聚合收縮應力有極大影響。而這些分析結果所得窩洞底部變形率,與數位影像相關法所得有一致性。
本研究透過生物力學的分析研究,探討複合樹脂填補聚合收縮與界面應力的產生之破壞機轉。經研究發現治療後所產生之剩餘齒質變形與微滲漏等問題,被樹脂充填量、樹脂收縮比率、窩洞幾何外型、剩餘齒質強度等多重因子所影響。本研究結合數值分析與實驗驗證,結果可提供臨床上探討複合樹脂或復形技術有利的參考資料。
英文摘要 The light cured resin composites have been widely used in the restorative dentistry. The composite materials polymerize through the photo-activation process, the subsequent polymerization shrinkage is one of the most critical defects that directs to some problems. In a restored cavity, this shrinkage and contraction stress may provoke contraction stress and result in the deflection of bonded tooth structures or the disruption of resin-tooth bonding. Some restorative techniques including modification of cavity configuration, changing curing time, use of materials with low elastic modulus under the composites, were believed to alleviate the contraction stress. These postulation need to be verified.
The clinical consequences of polymerization shrinkage constitute the main reasons for replacement of resin composite restorations. The objective of this study was to investigate the development and distribution of composite contraction stress in a Class II cavity, with specific aim to examine the roles of cavity configuration and lining materials in reducing this stress. By integrating experimental approaches and finite element analysis, the biomechanics of composite polymerization was explored.
The primary part was to collect the material properties including Young’s modulus and degree of conversion of a composite material, which are required in the following finite element (FE) models. The polymerized composite in the cavity is not homogeneous since the halogen lamp only irradiates on the top surface. This study attempted to determine the local Young’s modulus using nanoindentation tester. The obtained local Young’s modulus for different curing depth was compared with microhardness to verify the correlation of hardness and degree of conversion. Results showed that 40 sec curing resins exhibited greater micro- and nanohardness values for all the measured curing depths and also the effective curing depth than 20 sec curing. There was no significant difference between the standard and 2-step curing modes. The obtained microhardness values and Young’s modulus were generally consistent in the measured regions.
With laboratory experimental approaches, composite restorations in human molars were accomplished by different techniques and their polymerization consequences were inspected. With a study comparing the composite restorations with various lining materials, flowable composite lining did not showed reduce the cervical microleakage. Use of glass ionomer lining showed better marginal sealing especially in deep cavities. A subsequent study also showed that a thick flowable composite lining contributed to reduced marginal integrity after the thermocycling test. The cusp deformation generated from polymerization shrinkage was measured by digital-image-correlation (DIC) method. The displacement measurement showed that the composite shrinkage patterns were not solely determined by previously mentioned C-factor, but also the volume of composite materials and the stiffness of the remained cusps.
FE simulation corresponding to the real human molar was performed to analyze the stress distribution in different cavity geometries. After the primary results are verified with data from the experiment approaches, the FE model was adjusted to validate the contribution of multiple variables in a Class II cavity. Using the FE models, the models showed the stress distribution in cavities of different configurations. The stress analysis showed that the high stress was located inside the deep portion of the cavity surfaces. The assessment of models with lining materials showed that the shrinkage rate of restorative and lining materials cast a significant influence on the magnitude of contraction stress. The displacements in the cavity floor from the analytic results were partly in consistence with the DIC measurement.
In conclusion, the current study investigated the polymerization shrinkage and contraction stress provoked by composite restorations through the biomechanical experiments and analysis. The development of remained tooth deformation and microleakage was affected by multiple factors including the volume of resin composite, the polymerization shrinkage rate, the cavity configuration, and the remained cusp stiffness. This“hybrid numerical– experimental” approach provides valuable information to find the most favorable restorative technique in various clinical conditions.
論文目次 ABSTRACT .................................................I
中文摘要 ................................................IV
誌謝.....................................................VI
LIST OF CONTENTS .......................................VII
LIST OF TABLES ..........................................IX
LIST OF FIGURES...........................................X

CHAPTER 1. GENERAL INTRODUCTION
1.1 OVERVIEWS OF DENTAL COMPOSITE RESTORATION .....1
1.2 LITERATURE REVIEWS
1.2.1 The polymerization kinetic and the development of contraction stress......................................3
1.2.2 Factors regulating the contraction stress ......7
1.2.3 Approaches in investigating the polymerization kinetics ...............................................10
1.3 GENERAL HYPOTHESES AND OBJECTIVES..................13
CHAPTER 2. INVESTIGATION OF RESIN POLYMERIZATION KINETICS AND MATERIAL PROPERTY
2.1 INTRODUCTION ......................................16
2.2 METERIALS AND METHODS..............................19
2.2.1 Microhardness measurement in different curing depths .............................................19
2.2.2 Nanoindentation test for mechanical properties..21
2.3 RESULTS .............................................23
2.4 DISCUSSION ..........................................30
2.5 SUMMARY .............................................34
CHAPTER 3. INFLUENCE OF LINING MATERIALS ON COMPOSITE RESTORATIONS
3.1 INTRODUCTION ........................................35
3.2 METERIALS AND METHODS................................38
3.2.1 Influence of various lining materials...........38
3.2.2 Influence of lining thickness...................41
3.3 RESULTS .............................................44
3.3.1 Influence of various lining materials...........44
3.3.2 Influence of lining thickness...................46
3.4 DISCUSSION ..........................................50
3.5 SUMMARY .............................................54
CHAPTER 4. COMPOSITE SHRINKAGE MEASUREMENT USING DIGITAL IMAGE CORRELATION TECHNIQUE
4.1 INTRODUCTION ........................................55
4.2 METERIALS AND METHODS................................57
4.2.1 Experimental instrumentation and verification...57
4.2.2 Measurement on a simulated cavity and finite element analysis ........................................58
4.2.3 Composite shrinkage in a dental cavity..........60
4.3 RESULTS .............................................63
4.3.1 Shrinkage in a simulated cavity.................63
4.3.2 Composite shrinkage in a dental cavity..........65
4.4 DISCUSSION ..........................................67
4.5 SUMMARY .............................................71
CHAPTER 5. FINITE ELEMENT ANALYSIS OF CLASS II MOD COMPOSITE RESTORATION
5.1 INTRODUCTION ........................................72
5.2 METERIAL AND METHODS.................................75
5.2.1 Imaging processing and finite element model construction.............................................75
5.2.2 Material property, boundary condition, and loading condition........................................79
5.2.3 Convergence criteria and validation.............80
5.3 RESULTS .............................................82
5.4 DISCUSSION ..........................................90
5.5 SUMMARY..............................................93
CHAPTER 6. CONCLUSION AND FUTURE WORK ...................94
REFERENCE ...............................................96
APPENDIX
Appendix 1. Nanoindentation test......................104
Appendix 2. Rationale of digital image correlation method..................................................106
CURRICULUM VITAE........................................108
參考文獻 ADA (1998). Statement on posterior resin-based composites. ; ADA Council on Scientific Affairs: ADA Council on Dental Benefit Programs. J Am Dent Assoc 129(11):1627-8.

Alomari QD, Reinhardt JW, Boyer DB (2001). Effect of liners on cusp deflection and gap formation in composite restorations. Oper Dent 26(4):406-11.

Alster D, Feilzer AJ, De Gee AJ, Mol A, Davidson CL (1992). The dependence of shrinkage stress reduction on porosity concentration in thin resin layers. J Dent Res 71(9):1619-22.

Asmussen E (1982). Restorative resins: hardness and strength vs. quantity of remaining double bonds. Scand J Dent Res 90(6):484-9.

Asmussen E, Peutzfeldt A (2001). Influence of pulse-delay curing on softening of polymer structures. J Dent Res 80(6):1570-3.

Atai M, Nekoomanesh M, Hashemi SA, Amani S (2004). Physical and mechanical properties of an experimental dental composite based on a new monomer. Dent Mater 20(7):663-8.

Ausiello P, Apicella A, Davidson CL, Rengo S (2001). 3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites. J Biomech 34(10):1269-77.

Ausiello P, Apicella A, Davidson CL (2002). Effect of adhesive layer properties on stress distribution in composite restorations--a 3D finite element analysis. Dent Mater 18(4):295-303.

Barink M, Van der Mark PC, Fennis WM, Kuijs RH, Kreulen CM, Verdonschot N (2003). A three-dimensional finite element model of the polymerization process in dental restorations. Biomaterials 24(8):1427-35.

Bayne SC, Thompson JY, Swift EJ, Jr., Stamatiades P, Wilkerson M (1998). A characterization of first-generation flowable composites. J Am Dent Assoc 129(5):567-77.

Bedran-de-Castro AK, Cardoso PE, Ambrosano GM, Pimenta LA (2004). Thermal and mechanical load cycling on microleakage and shear bond strength to dentin. Oper Dent 29(1):42-8.

Bouillaguet S, Ciucchi B, Jacoby T, Wataha JC, Pashley D (2001). Bonding characteristics to dentin walls of class II cavities, in vitro. Dent Mater 17(4):316-21.

Bouillaguet S, Gamba J, Forchelet J, Krejci I, Wataha JC (2006). Dynamics of composite polymerization mediates the development of cuspal strain. Dent Mater 22(10):896-902.

Bowen RL (1956). Use of epoxy resins in restorative materials. J Dent Res 35(3):360-9.

Brackett WW, Browning WD, Ross JA, Brackett MG (2001). Two-year clinical performance of a polyacid-modified resin composite and a resin-modified glass-ionomer restorative material. Oper Dent 26(1):12-6.

Braga RR, Ferracane JL (2002). Contraction stress related to degree of conversion and reaction kinetics. J Dent Res 81(2):114-8.

Brannstrom M (1986). The cause of postrestorative sensitivity and its prevention. J Endod 12(10):475-81.

Briscoey BJ, Fiori L, Pelillo E (1998). Nano-indentation of polymeric surfaces. J Phys D: Appl Phys 31(2395-2405.

Bruck HA, McNeill SR, Sutton MA, Peters WHI (1989). Digital image correlation using Newton-Raphson method of partial differential correction
Exp Mech 29(3):261-267.

Carvalho RM, Santiago SL, Fernandes CA, Suh BI, Pashley DH (2000). Effects of prism orientation on tensile strength of enamel. J Adhes Dent 2(4):251-7.

Chabrier F, Lloyd CH, Scrimgeour SN (1999). Measurement at low strain rates of the elastic properties of dental polymeric materials. Dent Mater 15(1):33-8.

Chen HY, Manhart J, Hickel R, Kunzelmann KH (2001). Polymerization contraction stress in light-cured packable composite resins. Dent Mater 17(3):253-9.

Christensen GJ (1989). Alternatives for the restoration of posterior teeth. Int Dent J 39(3):155-61.

Chuang SF, Liu JK, Chao CC, Liao FP, Chen YH (2001). Effects of flowable composite lining and operator experience on microleakage and internal voids in class II composite restorations. J Prosthet Dent 85(2):177-83.

Chuang SF, Jin YT, Lin TS, Chang CH, Garcia-Godoy F (2003). Effects of lining materials on microleakage and internal voids of Class II resin-based composite restorations. Am J Dent 16(2):84-90.

Chung K, Greener EH (1988). Degree of conversion of seven visible light-cured posterior composites. J Oral Rehabil 15(6):555-60.

Cook WD (1982). Spectral distributions of dental photopolymerization sources. J Dent Res 61(12):1436-8.

Craig RG, Peyton FA (1958). Elastic and mechanical properties of human dentin. J Dent Res 37(4):710-8.

Dauvillier BS, Feilzer AJ, De Gee AJ, Davidson CL (2000). Visco-elastic parameters of dental restorative materials during setting. J Dent Res 79(3):818-23.

Davidson CL, de Gee AJ (1984). Relaxation of polymerization contraction stresses by flow in dental composites. J Dent Res 63(2):146-8.

Davidson CL, Feilzer AJ (1997). Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent 25(6):435-40.

de Gee AF, Feilzer AJ, Davidson CL (1993). True linear polymerization shrinkage of unfilled resins and composites determined with a linometer. Dent Mater 9(1):11-4.

Dietschi D, De Siebenthal G, Neveu-Rosenstand L, Holz J (1995). Influence of the restorative technique and new adhesives on the dentin marginal seal and adaptation of resin composite Class II restorations: an in vitro evaluation. Quintessence Int 26(10):717-27.

Eldiwany M, Powers JM, George LA (1993). Mechanical properties of direct and post-cured composites. Am J Dent 6(5):222-4.

Eliades GC, Vougiouklakis GJ, Caputo AA (1987). Degree of double bond conversion in light-cured composites. Dent Mater 3(1):19-25.

Feilzer AJ, De Gee AJ, Davidson CL (1987). Setting stress in composite resin in relation to configuration of the restoration. J Dent Res 66(11):1636-9.

Ferracane JL, Greener EH (1986). The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J Biomed Mater Res 20(1):121-31.

Ferracane JL, Condon JR (1992). Post-cure heat treatments for composites: properties and fractography. Dent Mater 8(5):290-5.

Figueiredo Reis A, Giannini M, Ambrosano GM, Chan DC (2003). The effects of filling techniques and a low-viscosity composite liner on bond strength to class II cavities. J Dent 31(1):59-66.

Fleming GJ, Khan S, Afzal O, Palin WM, Burke FJ (2006). Investigation of polymerisation shrinkage strain, associated cuspal movement and microleakage of MOD cavities restored incrementally with resin-based composite using an LED light curing unit. J Dent.

Gilchrist CL, Xia JQ, Setton LA, Hsu EW (2004). High-resolution determination of soft tissue deformations using MRI and first-order texture correlation
IEEE Trans. Med. Imaging 23(5 ):546-553.

Gladys S, Van Meerbeek B, Braem M, Lambrechts P, Vanherle G (1997). Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. J Dent Res 76(4):883-94.

Haines DJ (1968). Physical properties of human tooth enamel and enamel sheath material under load. J Biomech 1(2):117-25.

Hannig M, Friedrichs C (2001). Comparative in vivo and in vitro investigation of interfacial bond variability. Oper Dent 26(1):3-11.

Hansen EK (1982). Visible light-cured composite resins: polymerization contraction, contraction pattern and hygroscopic expansion. Scand J Dent Res 90(4):329-35.

Hembree JH, Jr. (1989). Microleakage at the gingival margin of class II composite restorations with glass-ionomer liner. J Prosthet Dent 61(1):28-30.

Hofmann N, Just N, Haller B, Hugo B, Klaiber B (1998). The effect of glass ionomer cement or composite resin bases on restoration of cuspal stiffness of endodontically treated premolars in vitro. Clin Oral Investig 2(2):77-83.

Hofmann N, Denner W, Hugo B, Klaiber B (2003). The influence of plasma arc vs. halogen standard or soft-start irradiation on polymerization shrinkage kinetics of polymer matrix composites. J Dent 31(6):383-93.

Hood JA (1991). Biomechanics of the intact, prepared and restored tooth: some clinical implications. Int Dent J 41(1):25-32.

Huang YH, Quan C, Tay CJ, Chen LJ (2005). Shape measurement by the use of digital image correlation. Optical Engineering 44 (8):087011.

Imazato S, Tarumi H, Kobayashi K, Hiraguri H, Oda K, Tsuchitani Y (1995). Relationship between the degree of conversion and internal discoloration of light-activated composite. Dent Mater J 14(1):23-30.

Imazato S, McCabe JF, Tarumi H, Ehara A, Ebisu S (2001). Degree of conversion of composites measured by DTA and FTIR. Dent Mater 17(2):178-83.

Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ (2004). Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater 20(1):12-20.

Jackson RD, Morgan M (2000). The new posterior resins and a simplified placement technique. J Am Dent Assoc 131(3):375-83.

Jantarat J, Panitvisai P, Palamara JE, Messer HH (2001). Comparison of methods for measuring cuspal deformation in teeth. J Dent 29(1):75-82.

Kanca J, 3rd, Suh BI (1999). Pulse activation: reducing resin-based composite contraction stresses at the enamel cavosurface margins. Am J Dent 12(3):107-12.

Katona TR, Winkler MM (1994). Stress analysis of a bulk-filled Class V light-cured composite restoration. J Dent Res 73(8):1470-7.

Katona TR, Winkler MM, Huang J (1996). Stress analysis of a bulk-filled Class-V chemical-cured dental composite restoration. J Biomed Mater Res 31(4):445-9.

Kemp-Scholte CM, Davidson CL (1990). Complete marginal seal of Class V resin composite restorations effected by increased flexibility. J Dent Res 69(6):1240-3.

Kidd EA (1976). Microleakage: a review. J Dent 4(5):199-206.

Knobloch LA, Kerby RE, Clelland N, Lee J (2004). Hardness and degree of conversion of posterior packable composites. Oper Dent 29(6):642-9.

Koenigsberg S, Fuks A, Grajower R (1989). The effect of three filling techniques on marginal leakage around Class II composite resin restorations in vitro. Quintessence Int 20(2):117-21.

Krejci I, Lutz F, Krejci D (1988). The influence of different base materials on marginal adaptation and wear of conventional Class II composite resin restorations. Quintessence Int 19(3):191-8.

Kwon YH, Jeon GH, Jang CM, Seol HJ, Kim HI (2006). Evaluation of polymerization of light-curing hybrid composite resins. J Biomed Mater Res B Appl Biomater 76(1):106-13.

Labella R, Lambrechts P, Van Meerbeek B, Vanherle G (1999). Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent Mater 15(2):128-37.

Lang H, Rampado M, Mullejans R, Raab WH (2004). Determination of the dynamics of restored teeth by 3D electronic speckle pattern interferometry. Lasers Surg Med 34(4):300-9.

Latorre-Garcia M, Alvarez-Gayosso C, Barcelo-Santana F, Vera-Graziano R (2006). Study of shrinkage-strain and contraction rates of commercial and experimental compomers. Dent Mater 22(11):1063-70.

Lee MR, Cho BH, Son HH, Um CM, Lee IB (2006). Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dent Mater.

Lee SY, Greener EH (1994). Effect of excitation energy on dentine bond strength and composite properties. J Dent 22(3):175-81.

Leevailoj C, Cochran MA, Matis BA, Moore BK, Platt JA (2001). Microleakage of posterior packable resin composites with and without flowable liners. Oper Dent 26(3):302-7.

Lim BS, Ferracane JL, Sakaguchi RL, Condon JR (2002). Reduction of polymerization contraction stress for dental composites by two-step light-activation. Dent Mater 18(6):436-44.

Loguercio AD, Reis A, Schroeder M, Balducci I, Versluis A, Ballester RY (2004). Polymerization shrinkage: effects of boundary conditions and filling technique of resin composite restorations. J Dent 32(6):459-70.

Lovell LG, Lu H, Elliott JE, Stansbury JW, Bowman CN (2001). The effect of cure rate on the mechanical properties of dental resins. Dent Mater 17(6):504-11.

Magne P, Perakis N, Belser UC, Krejci I (2002). Stress distribution of inlay-anchored adhesive fixed partial dentures: a finite element analysis of the influence of restorative materials and abutment preparation design. J Prosthet Dent 87(5):516-27.

McLean JW, Wilson AD (1977). The clinical development of the glass-ionomer cement. II. Some clinical applications. Aust Dent J 22(2):120-7.

Mehl A, Hickel R, Kunzelmann KH (1997). Physical properties and gap formation of light-cured composites with and without 'softstart-polymerization'. J Dent 25(3-4):321-30.

Meredith N (1999). Determination of the elastic modulus of resin based materials as a function of resonance frequency during polymerisation. Dent Mater 15(2):98-104.

Meyer JM, Cattani-Lorente MA, Dupuis V (1998). Compomers: between glass-ionomer cements and composites. Biomaterials 19(6):529-39.

Mongkolnam P, Tyas MJ (1994). Light-cured lining materials: a laboratory study. Dent Mater 10(3):196-202.

Munksgaard EC, Hansen EK, Kato H (1987). Wall-to-wall polymerization contraction of composite resins versus filler content. Scand J Dent Res 95(6):526-31.

Neves AD, Discacciati JA, Orefice RL, Yoshida MI (2005). Influence of the power density on the kinetics of photopolymerization and properties of dental composites. J Biomed Mater Res B Appl Biomater 72(2):393-400.

Nicolella DP, Moravits DE, Gale AM, Bonewald LF, Lankford J (2006). Osteocyte lacunae tissue strain in cortical bone. J Biomech 39(9):1735-43.

Nie J, Linden LA, Rabek JF, Ekstrand J (1999). Highly cross-linked networks for dental applications obtained by photocuring of tris[2-(acryloyloxy)ethyl]isocyanurate, 2-ethyl-2-(hydroxymethyl)-1,3-propanediol triacrylate, and pentaerythritol triacrylate. Acta Odontol Scand 57(1):1-8.

Oliver WC, Pharr GM (1992). A new improved technique for determining hardness and elastic modulus using load and sensing indentation experiments. J Mater Res 7(6):1564-1582.

Peutzfeldt A (1997). Resin composites in dentistry: the monomer systems. Eur J Oral Sci 105(2):97-116.

Reeh ES, Douglas WH, Messer HH (1989). Stiffness of endodontically-treated teeth related to restoration technique. J Dent Res 68(11):1540-4.

Rueggeberg F, Tamareselvy K (1995). Resin cure determination by polymerization shrinkage. Dent Mater 11(4):265-8.

Rueggeberg FA, Craig RG (1988). Correlation of parameters used to estimate monomer conversion in a light-cured composite. J Dent Res 67(6):932-7.

Sakaguchi RL, Ferracane JL (1998). Stress transfer from polymerization shrinkage of a chemical-cured composite bonded to a pre-cast composite substrate. Dent Mater 14(2):106-11.

Sakaguchi RL, Wiltbank BD, Shah NC (2004). Critical configuration analysis of four methods for measuring polymerization shrinkage strain of composites. Dent Mater 20(4):388-96.

Sano H, Ciucchi B, Matthews WG, Pashley DH (1994). Tensile properties of mineralized and demineralized human and bovine dentin. J Dent Res 73(6):1205-11.

Shobha HK, Sankarapandian M, Sun Y, Kalachandra S, McGrath JE, Taylor DF (1997). Effect of dilution on the kinetics of cross-linking thermal polymerization of dental composite matrix resins. J Mater Sci Mater Med 8(10):583-6.

Sutton MA, Turner JL, Bruck HA, Chae TA (1991). Full-field representation of discretely sampled surface deformation for displacement and strain analysis. . Exp Mech 31( 2 ):168-77.

Tantbirojn D, Versluis A, Pintado MR, DeLong R, Douglas WH (2004). Tooth deformation patterns in molars after composite restoration. Dent Mater 20(6):535-42.

Teshima W, Nomura Y, Tanaka N, Urabe H, Okazaki M, Nahara Y (2003). ESR study of camphorquinone/amine photoinitiator systems using blue light-emitting diodes. Biomaterials 24(12):2097-103.

Thompson MS, Schell H, Lienau J, Duda GN (2006). Digital image correlation: A technique for determining local mechanical conditions within early bone callus. Med Eng Phys in press).

Uno S, Finger WJ, Fritz U (1996). Long-term mechanical characteristics of resin-modified glass ionomer restorative materials. Dent Mater 12(1):64-9.

van Dijken JW, Kieri C, Carlen M (1999). Longevity of extensive class II open-sandwich restorations with a resin-modified glass-ionomer cement. J Dent Res 78(7):1319-25.

Van Meerbeek B, Willems G, Celis JP, Roos JR, Braem M, Lambrechts P, Vanherle G (1993). Assessment by nano-indentation of the hardness and elasticity of the resin-dentin bonding area. J Dent Res 72(10):1434-42.

Versluis A, Douglas WH, Cross M, Sakaguchi RL (1996). Does an incremental filling technique reduce polymerization shrinkage stresses? J Dent Res 75(3):871-8.

Versluis A, Tantbirojn D, Douglas WH (1998). Do dental composites always shrink toward the light? J Dent Res 77(6):1435-45.

Versluis A, Tantbirojn D, Douglas WH (2004). Distribution of transient properties during polymerization of a light-initiated restorative composite. Dent Mater 20(6):543-53.

Wahab FK, Shaini FJ, Morgano SM (2003). The effect of thermocycling on microleakage of several commercially available composite Class V restorations in vitro. J Prosthet Dent 90(2):168-74.

Watts DC, al Hindi A (1999). Intrinsic 'soft-start' polymerisation shrinkage-kinetics in an acrylate-based resin-composite. Dent Mater 15(1):39-45.

Watts DC, Kisumbi BK, Toworfe GK (2000). Dimensional changes of resin/ionomer restoratives in aqueous and neutral media. Dent Mater 16(2):89-96.

Willems G, Celis JP, Lambrechts P, Braem M, Vanherle G (1993). Hardness and Young's modulus determined by nanoindentation technique of filler particles of dental restorative materials compared with human enamel. J Biomed Mater Res 27(6):747-55.

Wilson J (1993). Effects of design features and restorative techniques on marginal leakage of MO composites: an in vitro study. Oper Dent 18(4):155-9.

Witzel MF, Ballester RY, Meira JB, Lima RG, Braga RR (2007). Composite shrinkage stress as a function of specimen dimensions and compliance of the testing system. Dent Mater 23(2):204-10.

Yamamoto M, Takahashi H (1995). Tensile fatigue strength of light cure composite resins for posterior teeth. Dent Mater J 14(2):175-84.

Yoshikawa T, Sano H, Burrow MF, Tagami J, Pashley DH (1999). Effects of dentin depth and cavity configuration on bond strength. J Dent Res 78(4):898-905.

Young KC, Cummings A, Main C, Gillespie FC, Stephen KW (1978). Microhardness studies on the setting characteristics of fissure sealants. J Oral Rehabil 5(2):187-95.

Zhang TY, Xu WH (2002). Surface effects on nanoindentation. J Mater Res 17(1715-1720.

------------------------------------------------------------------------ 第 9 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200914131564
論文名稱(中文) 雷射投影成像法之光聚合反應研究
論文名稱(英文) Study of photo-polymerization in laser projection imaging method
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 96
學期 2
出版年 97
研究生(中文) 施宇晉
學號 n1695178
學位類別 碩士
語文別 中文
口試日期 2008-06-18
論文頁數 154頁
口試委員 口試委員-蘇演良
口試委員-陳鐵城
指導教授-林震銘
關鍵字(中) 雷射投影成像
光聚合
硬化
關鍵字(英) Laser projection imaging
Photo-polymerization
Curing
學科別分類
中文摘要 本文之研究目的是以雷射引發之光聚合反應造成液態高分子硬化現象及探討不同雷射條件作用下對感光性高分子之硬化影響。在實驗方面,第一部份是以連續式紫外光源照射光硬化樹脂進行巨觀之光聚合成形,探討不同照射能量和照射時間對光硬化樹脂硬化成形之影響。第二部分利用Nd-YAG雷射配合掃瞄振鏡系統進行光罩之製作,並在石英玻璃上旋轉塗佈UV 膠,利用準分子雷射配合自製光罩對UV膠進行投影曝光,針對不同雷射脈衝條件進行微觀光聚合成形,並使用光學及立體顯微鏡觀察其硬化結果。
在數值分析方面使用計算流體力學軟體進行連續式熱源之暫態光聚合反應分析,並利用自行撰寫之 FORTRAN 程式分析脈衝式熱源之光聚合反應所造成物理的現象及特性,經由計算結果和實驗所測得的結果具有一致性。本研究證明了使用雷射投影成像技術結合光聚合反應進行硬化成形之可行性,所得之實驗及理論分析結果可作為後續研究之基礎。
英文摘要 The laser assisted photo-polymerization technique and the heat transfer analysis of the laser projection imaging process for manufacturing high-aspect-ratio micro-parts have been investigated in this research. Numerical analysis and experimental observation have been applied to study the photo-polymerization with various laser powers and radiation times. In the experiment, a UV lamp (wavelength of 365 nm) has been used to exposure UV resin to form macro photo-polymerization parts. Furthermore a scanning Nd-YAG laser has been applied to build acrylic (PMMA) masks and a pulsed UV excimer laser, through the mask, has been focused on the UV resin to form the micro photo-polymerization parts.
In the theoretical analysis, a computational fluid dynamics software has been used to solve the unsteady photo-polymerization model for a continuous curing process. Alternatively a program with FORTRAN code has been developed to analysis the process for the short pulse laser radiation. The results show a good agreement between the numerical analysis and the experiments of the curing dimensions. This research confirms the feasibility of the laser projection imaging technique with the photo-polymerization on UV resin in micro-part formation.
論文目次 目 錄

中文摘要………………………………………………………… I
英文摘要………………………………………………………… II
誌謝……………………………………………………………… III
目錄……………………………………………………………… IV
表目錄…………………………………………………………… IX
圖目錄…………………………………………………………… XII
符號說明………………………………………………………… XX

第一章 緒論……………………………………………………… 1
1-1 研究目的…………………………………………………… 1
1-2 文獻回顧…………………………………………………… 3
1-2.1 雷射光聚合成形………………………………………… 3
1-2.2 雷射光聚合成形之數值分析…………………………… 6
1-2.3 雷射直接成像…………………………………………… 7
1-3 本文架構…………………………………………………… 10

第二章 製程原理簡介…………………………………………… 11
2-1 光硬化樹脂的組成成份…………………………………… 11
2-2 感光性高分子光聚合原理………………………………… 13
2-3 自由基連鎖聚合反應機制………………………………… 16
2-4 光學成形製程介紹………………………………………… 17
2-4.1 光阻形式與塗佈方法…………………………………… 17
2-4.1.1 光阻形式……………………………………………… 17
2-4.1.2 光阻塗佈方法………………………………………… 19
2-4.2 曝光技術………………………………………………… 20
2-4.2.1 曝光光源種類………………………………………… 21
2-4.2.2 曝光型式……………………………………………… 23
2-4.3 光罩製作………………………………………………… 26

第三章 數值分析………………………………………………… 28
3-1 雷射光聚合數值模擬理論簡介…………………………… 28
3-2 數值計算軟體 FLUENT 及計算流程簡介………………… 35
3-3 雷射光聚合數值模擬分析………………………………… 36
3-3.1 溫度場數值分析之假設………………………………… 36
3-3.2 FLUENT 數值模擬之光聚合模型可靠度驗證………… 36
3-3.2.1 模型之建立…………………………………………… 37
3-3.2.2 邊界條件之設定……………………………………… 38
3-3.2.3 感光性高分子材料性質與參數之設定……………… 40
3-3.2.4 數值分析與文獻結果比較…………………………… 41
3-4 結果與討論………………………………………………… 52

第四章 實驗……………………………………………………… 53
4-1 連續式紫外光源聚合實驗………………………………… 53
4-1.1 實驗設備及配置………………………………………… 53
4-1.2 實驗條件及方法………………………………………… 55
4-1.3 結果觀察………………………………………………… 56
4-1.4 連續式熱源之光聚合數值分析………………………… 60
4-1.4.1 模型建立與邊界設定………………………………… 60
4-1.4.2 光硬化樹脂之材料性質與參數之設定……………… 62
4-1.4.3 模擬計算結果………………………………………… 62
4-1.5 數值分析與實驗結果之比較…………………………… 73
4-2 旋轉塗佈UV膠實驗及光學性質之檢測…………………… 76
4-2.1 實驗設備及配置………………………………………… 76
4-2.2 實驗條件及方法………………………………………… 77
4-2.3 結果觀察………………………………………………… 79
4-3 雷射掃瞄直寫光罩實驗……………………………………… 81
4-3.1 實驗設備及配置………………………………………… 81
4-3.2 實驗條件及方法………………………………………… 83
4-3.3 結果觀察………………………………………………… 84
4-4 脈衝式準分子雷射光聚合成形實驗……………………… 88
4-4.1 實驗設備及配置……………………………… …………88
4-4.2 實驗條件及方法………………………………………… 89
4-4.3 結果觀察………………………………………………… 91
4-4.3.1 UV膠於石英玻璃上方之光聚合成形實驗結果……… 91
4-4.3.2 UV膠於石英玻璃下方之光聚合成形實驗結果……… 106
4-4.4 脈衝式熱源之光聚合數值分析………………………… 109
4-4.4.1 模型建立與邊界設定………………………………… 109
4-4.4.2 模擬參數與無因次化………………………………… 110
4-4.4.3 模擬計算之結果……………………………………… 113
4-4.5 數值分析與實驗結果之比較…………………………… 117
4-5 結果與討論………………………………………………… 119

第五章 綜合討論與建議…………………………………………… 121
5-1 綜合討論……………………………………………………… 121
5-2 未來發展與建議……………………………………………… 125

參考文獻…………………………………………………………… 126
附錄A 連續式熱源之無因次解…………………………………… 131
附錄B UV膠於石英玻璃下方之成形硬化寬度結果……………… 151
自述………………………………………………………………… 154
參考文獻 參考文獻

[1] Decker, C., “UV-Curing Chemistry: Past, Present, and Future”, v 59,
No. 751, 1987.
[2]余福熙, “如何選擇及使用紫外線/可視光硬化型接著劑” , 化工商情, No. 27, 2001.
[3] Decker, C. , “Photoinitiated crosslinking polymerization“ , Progress in Polymer Science, v 21, No. 4, pp. 593-650, 1996.
[4] Jacobs, R. F., “Rapid Prototyping and Manufacturing: Fundamentals of Stereo-lithography”, 1st ed., Society of manufacturing engineers in cooperation with the computer and automated system association of SME, Dearborn, 1992.
[5] Tachihara, S., Shimizu S., “Development of laser direct imager”, Proceedings of SPIE v 4902, 2002.
[6]Hull, C., “Apparatus for production of three-dimensional objects by stereolithography”, U.S. Patent, No. 4, 1986.
[7] Maruo, S., Ikuta, K., ” Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization”, Sensors and Actuators, A: Physical, v 100, No. 1, pp. 70-76, 2002.
[8] Hirowatari K., Ikuta K., “Real three dimensional micro fabrication using stereolithography and metal molding”, IEEE Micro Electro Mechanical Systems, pp. 42-47, 1993.
[9] Ikuta, K., Ogota, T., Tsubio, M., Kojima, S., “Development of mass productive micro stereolithography”, in proceedings of the 8th IEEE Workshop on Micro Electro Mechanical System, pp. 301-306,1996.
[10] Zhang, X., Jiang, X.N., Sun, C., “Micro-stereolithography of polymeric and ceramic microstructures”, Sensors and Actuators, A: Physical, v 77, No. 2, pp. 149-156, 1999.
[11]Bertsch, A., Bernhard P., Vogt, C., Renaud, P., “Rapid prototyping of small size objects”, Rapid Prototyping Journal, v 6, No. 4, pp. 259-266, 2000.
[12] Flach, L.; Chartoff, R.P. ”Process model for nonisothermal photopolymerization with a laser light source. I : Basic model development.”, Polymer Engineering and Science, v 35,No. 6,
pp. 483- 492, 1995.
[13] Nakamoto, T., Yamaguchi, K.i, Abraha, P. A., Mishima, K., “Manufacturing of three-dimensional micro-parts by UV laser induced polymerization”, Journal of micromechanics and microengineering, v 6, No.2, pp. 240-253, 1996.
[14]Hur, S. S., Youn, J. R., “Thermal deformation of a photo-cured polymer for the analysis of stereolithography”, Polymer-plastics technology and engineering, v 39, No. 4, pp. 651-666, 2000.
[15] Hong, W., Lee, Y.T., Gong, H., ”Thermal Analysis of Layer Formation in A stepless rapid prototyping process”, Applied thermal engineering,
v 24, pp.255-268, 2004.
[16] Barbucha, R., Kocik, M., Mizeraczyk, J., Koziol, G., Borecki, J. “Laser direct imaging of high-density interconnect patterns on PCB”, Proceedings of SPIE - The International Society for Optical Engineering, v 6157, pp. 61570L, 2005.
[17] Barbucha, R., Kocik, M., Mizeraczyk, J., Koziol, G., Borecki, J., “Laser direct imaging of high density patterns on PCB covered by photoresist”, Proceedings of SPIE - The International Society for Optical Engineering, v 6604, 14th International School on Quantum Electronics: Laser Physics and Applications, pp. 660411, 2007.
[18] Barbucha, R. ,Kocik, M.; Mizeraczyk, J.; Koziol, G.; Borecki, J., “Comparison between conventional and laser method of imaging tracks on PCB”, Proceedings of SPIE - The International Society for Optical Engineering, v 6598, Laser Technology VIII: Applications of Lasers,
pp. 65980I, 2007.
[19]陳劉旺, “工業塗料與高分子化學” , 高立圖書有限公司, 1997.
[20]范啟明編譯, “現代聚合物化學” , 東華書局出版, 1981.
[21]張上鎮, “紫外光硬化塗料與塗裝(1)” , 塗料與塗裝技術, No.88, 2002.
[22]劉建良, ” UV Curing 發展簡介及應用” , 化工科技與商情, No.41, 2003.
[23]鶴田禎二著, 薛敬和譯, ”高分子合成反應” , 高立書局出版, 2001.
[24]Odian, G., ”Principles of polymerization” , 1991.
[25] Fang, N., Sun, C., Zhang, X.,” Diffusion-limited photopolymerization in scanning micro-stereolithography” , Applied Physics A: Materials Science and Processing, v 79, No. 8, pp. 1839-1842, 2004.
[26] McGlynn, S. P., Azumi, T., Kinoshita, M., “Molecular spectroscopy of the triplet state” , 1969.
[27] Narahara, H., Tanaka, F.,Kishinami, T., Igarashi, S.; Saito, K.,
” Reaction heat effects on initial linear shrinkage and deformation in stereo lithography”, Rapid Prototyping Journal, v 5, No. 3,pp. 120-128, 1999.
[28]葉明國編譯, “聚合物化學” , 新學識文教出版中心, 1994.
[29]羅文雄, 蔡榮輝, 鄭岫盈, “半導體製造技術” , 滄海書局出版, 2003.
[30]莊達人編著, “VLSI製造技術” , 高立出版, 2002.
[31]陳建人, “微機電系統技術與應用” , 行政院國家科學委員會精密儀器發展中心出版, 1994.
[32]施敏, “半導體元件物理與製作技術第二版” , 國立交通大學出版, 2002.
[33]丁勝懋編著, “雷射工程導論修訂第四版” , 中央圖書出版, 1995.
[34]高啟清, “HDI Image Transfer Technology and Trend” , 2004.
http://www.me.cycu.edu.tw/HDI040415.pdf
[35] Jain, K., Zemel, M., Wojcik, L., Nunes, C., Klosner, M., “Laser Projection Imaging”.
[36]吳昌崙, 張景學編著, “半導體製造技術” , 新文京開發出版, 2003.
[37]許坤明編撰, 高中職學生微機電製程實驗教材, 國立虎尾科技大學.
http://www.nsc.gov.tw/scicircus/public/Attachment/731214361471.pdf
[38]永松元太郎, 乾英夫, “感光性高分子” , 東京講談社, 1977.
[39] Corcione, C. E., Greco, A., Maffezzoli, A., “Temperature evolution during stereolithography building with a commercial epoxy resin” , Polymer Engineering and Science, v 46, No. 4,pp. 493-502, 2006.
[40] Michael F. P., Gerald W. Y., “A mathematical model for photopolymerization from a stationary laser light source.” , Macromolecular Theory and Simulations, v 14, No. 1, pp. 26-39, 2005.
[41] Lee, J. H., Prud'homme, R. K., Aksay, I. A., “Cure depth

in photopolymerization: Experiments and theory” , Journal of Materials Research, v 16, No. 12, pp. 3536-3544, 2001.
[42]Tryson, G. R., Shultz, A. R., “Calorimetric study of acrylate photopolymerization”., Journal of Polymer Science, Polymer Physics Edition, v17, No. 12, pp. 2059-2075, 1979.
[43]蘇青森著, “儀器學” , 五南圖書出版公司印行, 2002.
[44] Eckardt, R. C., Masuda, H., Fan, Y. X., Byer, R. L., ”Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation.”, IEEE Journal of Quantum Electronics, v 26, No. 5 ,
pp. 922-933, 1990.
[45]何清政, 計算流體力學筆記, 國立成功大學機械研究所, 2007.

------------------------------------------------------------------------ 第 10 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915123466
論文名稱(中文) 整體性層析材料與微裝置的製造與其在生化分析上的應用
論文名稱(英文) Fabrication and Application of Monolithic Chromatographic Materials and Microdevices for Bioanalysis
校院名稱 成功大學
系所名稱(中) 化學系碩博士班
系所名稱(英) Department of Chemistry
學年度 97
學期 2
出版年 98
研究生(中文) 梁世欣
學號 l3893117
學位類別 博士
語文別 英文
口試日期 2009-06-23
論文頁數 123頁
口試委員 口試委員-吳耀庭
口試委員-桂椿雄
指導教授-陳淑慧
口試委員-周禮君
口試委員-劉春櫻
關鍵字(中) 光聚合高分子
層析材料
吸附金屬親和層析
固相微萃取
二氧化鈦
多孔性
乳化作用
關鍵字(英) immobilized metal ion affinity chromatography (I
titanium dioxide (TiO2)
Porogenic
photo-polymerization
chromatography material
emulsification
solid phase micro-extraction (SPME)
學科別分類
中文摘要 本論文的中心思想在於整體性材料,配合兩種方法形成多孔性結構,再進行生物分析的應用。
第一個方法:照光高分子的單體在多孔性溶劑的作用之下,形成多孔性膠體製成去鹽濃縮的吸管尖。在此方法中,照光高分的單體與多孔性溶劑混合,並包埋靜相粒子形成整體性連續床。在光聚合之後,高分子的多孔性結構被固定在吸管尖端,並進行微萃取。靜相粒子,如:碳十八或奈米尺寸的二氧化鈦,被包埋在微萃取吸管尖,再進行樣品去鹽或磷酸化胜肽濃度的提升。除此之外,消化酵素,諸如:胰蛋白酶,也可以固定其上以進行蛋白質體研究的消化動作,但是,此方法受限於過小的孔洞尺寸,其所造成操作流體時的背壓。
第二個方法:利用乳化反應(油/水)技術,形成多孔性結構。乳化現象整合層析材料與紫外光催化的照光高分子化,可以包覆多樣的萃取粒子。使用此方法,乳化吸管尖具有大於二十微米的孔洞尺寸,能夠形成易於操作的吸管尖。與市售吸管尖如EasyTips 大約0.4-2 毫克消化胜肽的吸附值相比,乳化吸管尖可以吸附約3-3.5 毫克。所增加的吸附值主因是因為在整體性材料中增加多條流通管道所致,除此之外,操作的平衡時間也由EasyTips 的六百秒,縮短為六十秒。乳化反應能夠發展為水/油/水與油/水/油的技術,並利用適當官能基共價鍵結酵素分子。進行線上分析是藉由整合兩種固定連續床—胰蛋白酶酵素與碳十八去鹽的連續床。
許多的應用,諸如:蛋白質鑑定、磷酸根胜肽的偵測與藥物分子的分子的演示,都是透過本論文提及的微萃取吸管尖進行,而滿意的結果則是未來發展的憑藉。
英文摘要 Monolithic material is the main theme in this research and two methods were developed to form porous structures for bioanalysis applications.
The first method is to apply porogenic solvent to form monolithic tips for sample desalting and concentration. In this method, the monomers of photo-polymer were mixed with porogenic solvent and encapsulating particles to form monolithic beds. After photo-polymerization, polymeric porous structure was formed and fixed on pipette tips for
micro-extraction. Reversed phase C18 and nano-scaled titanium dioxide particles were encapsulated to prepare extraction tips for sample desalting and phosphopeptide
enrichment. Alternatively, digestion enzyme, such as trypsin, was immobilized for sample digestion in proteomics research. This method, however, is limited by the back
pressure due to small pore sizes.
The second method is to apply emulsification technique for forming porous structure using water-in-oil (O/W) technique. Emulsification can be integrated with
chromatographic materials and photo-polymerization by UV light to encapsulate various extraction particles. Using this method, EmulsionTips with a pore size as large as
20 μmcan be formed and thus the flow can be easily manipulated by a pipetter. The loadingcapacity for commercial tips such as EasyTips, is around 0.4-2 micrograms of total protein degest, and the loading capacity is around 3-3.5 micrograms of total protein digest for EmulsionTips. The increased loading capacity was due to the increased number of assessable flow-paths within the monolithic material. Furthermore, the equilibration time
was also reduced due to multiple paths: 600 seconds for EasyTips and 60 seconds for EmulsionTips. Emulsification can also be extended to water/oil/water (W/O/W) and
oil/water/oil (O/W/O) technique for covalent enzyme immobilization by exposing proper functional groups. On-line processing by combining two immobilized beds such as
trypsin enzyme bed and C18 desalting bed was also demonstrated.
Several applications such as protein identification, phosphopeptide detection and drug analysis were demonstrated using the micro extraction tips reported here and all showed satisfactory results, which warrant future developments.
論文目次 Abstract--------------------------------------------------Ⅰ
Chinese Abstract------------------------------------------Ⅲ
Acknowledgement-------------------------------------------Ⅳ
Content---------------------------------------------------Ⅵ
List of Tables--------------------------------------------Ⅸ
List of Figures-------------------------------------------Ⅹ
Chapter One: Background: Bioanalysis, Pretreatment, and
Miniaturization
1.1 Bioanalysis-------------------------------------------01
1.2 Sample pretreatment-----------------------------------02
1.3 Miniaturization---------------------------------------03
Chapter Two: Monolithic Materials by Porogen-assisted
Polymerization
2.1 Introduction------------------------------------------05
2.2 Fabrication methods-----------------------------------11
2.3 Characterizations-------------------------------------15
2.4 Application for protein/peptide desalting-------------20
2.5 Application for phosphopeptide enrichment-------------20
2.6 Application for proteomics analysis of cAMP related
protein phosphorylation in cytosolic breast cancer cells--22
Chapter Three: Monolithic Materials by Emulsion-assisted
Polymerization
3.1 Introduction------------------------------------------34
3.2 Fabrication methods-----------------------------------34
3.3 Characterizations-------------------------------------41
3.4 Application for small molecule detection--------------42
3.5 Application for protein/peptide desalting-------------44
3.6 Application for phosphopeptide enrichment-------------45
Chapter Four: Integrated Beds for On-line Digestion and
Concentration
4.1 Introduction------------------------------------------48
4.2 Fabrication of digestion bed--------------------------49
4.3 Fabrication of concentrating bed----------------------52
4.4 On-line protein digestion and concentration-----------53
Chapter Five: Conclusion and perspective
5.1 Conclusion--------------------------------------------59
5.2 Perspective-------------------------------------------61
Reference------------------------------------------------113
參考文獻 1. Kawasaki, H.; Takeda, Y.; Arakawa, R., Mass spectrometric analysis for high molecular weight synthetic polymers using ultrasonic degradation and the mechanism of degradation. Anal Chem 2007, 79, (11), 4182-4187.
2. Wilkins, J. A.; Xiang, R.; Horvath, C., Selective enrichment of low-abundance peptides in complex mixtures by elution-modified displacement chromatography and their identification by electrospray ionization mass spectrometry. Anal Chem 2002, 74, (16), 3933-3941.
3. Anari, M. R.; Sanchez, R. I.; Bakhtiar, R.; Franklin, R. B.; Baillie, T. A., Integration of knowledge-based metabolic predictions with liquid chromatography data-dependent tandem mass spectrometry for drug metabolism studies: application to studies on the biotransformation of indinavir. Anal Chem 2004, 76, (3), 823-832.
4. Kertesz, V.; Van Berkel, G. J.; Vavrek, M.; Koeplinger, K. A.; Schneider, B. B.; Covey, T. R., Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ionization tandem mass spectrometry and autoradiography. Anal Chem 2008, 80, (13), 5168-5177.
5. Matta, A.; DeSouza, L. V.; Shukla, N. K.; Gupta, S. D.; Ralhan, R.; Siu, K. W., Prognostic significance of head-and-neck cancer biomarkers previously discovered and identified using iTRAQ-labeling and multidimensional liquid chromatography-tandem mass spectrometry. J Proteome Res 2008, 7, (5), 2078-2087.
6. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, (4926), 64-71.
7. Hillenkamp, F.; Karas, M., Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. Methods Enzymol 1990, 193, 280-295.
8. McLachlin, D. T.; Chait, B. T., Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr Opin Chem Biol 2001, 5, (5), 591-602.
9. Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishizuka, N.; Tanaka, N., Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Analytical Chemistry 1996, 68, (19), 3498-3501.
10. Yu, C.; Davey, M. H.; Svec, F.; Frechet, J. M., Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal Chem 2001, 73, (21), 5088-5096.
11. Quirino, J. P.; Dulay, M. T.; Zare, R. N., On-line preconcentration in capillary electrochromatography using a porous monolith together with solvent gradient and sample stacking. Anal Chem 2001, 73, (22), 5557-5563.
12. Peterson, D. S.; Rohr, T.; Svec, F.; Frechet, J. M., Enzymatic microreactor-on-a-chip: protein mapping using trypsin immobilized on porous polymer monoliths molded in channels of microfluidic devices. Anal Chem 2002, 74, (16), 4081-4088.
13. Wilm, M.; Mann, M., Analytical properties of the nanoelectrospray ion source. Anal Chem 1996, 68, (1), 1-8.
14. Neubauer, G.; Mann, M., Mapping of phosphorylation sites of gel-isolated proteins by nanoelectrospray tandem mass spectrometry: potentials and limitations. Anal Chem 1999, 71, (1), 235-242.
15. Erdjument-Bromage, H.; Lui, M.; Lacomis, L.; Grewal, A.; Annan, R. S.; McNulty, D. E.; Carr, S. A.; Tempst, P., Examination of micro-tip reversed-phase liquid chromatographic extraction of peptide pools for mass spectrometric analysis. J Chromatogr A 1998, 826, (2), 167-181.
16. Larsen, M. R.; Cordwell, S. J.; Roepstorff, P., Graphite powder as an alternative or supplement to reversed-phase material for desalting and concentration of peptide mixtures prior to matrix-assisted laser desorption/ionization-mass spectrometry. Proteomics 2002, 2, (9), 1277-1287.
17. Rappsilber, J.; Ishihama, Y.; Mann, M., Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 2003, 75, (3), 663-670.
18. Hsu, J. L.; Chou, M. K.; Liang, S. S.; Huang, S. Y.; Wu, C. J.; Shi, F. K.; Chen, S. H., Photopolymerized microtips for sample preparation in proteomic analysis. Electrophoresis 2004, 25, (21-22), 3840-3847.
19. Hsieh, H. C.; Sheu, C.; Shi, F. K.; Li, D. T., Development of a titanium dioxide nanoparticle pipette-tip for the selective enrichment of phosphorylated peptides. J Chromatogr A 2007, 1165, (1-2), 128-135.
20. Li, S.; Dass, C., Iron(III)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal Biochem 1999, 270, (1), 9-14.
21. Posewitz, M. C.; Tempst, P., Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 1999, 71, (14), 2883-2892.
22. Stensballe, A.; Andersen, S.; Jensen, O. N., Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. Proteomics 2001, 1, (2), 207-222.
23. Ficarro, S. B.; McCleland, M. L.; Stukenberg, P. T.; Burke, D. J.; Ross, M. M.; Shabanowitz, J.; Hunt, D. F.; White, F. M., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 2002, 20, (3), 301-305.
24. Kinoshita, E.; Yamada, A.; Takeda, H.; Kinoshita-Kikuta, E.; Koike, T., Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins. J Sep Sci 2005, 28, (2), 155-162.
25. Kokubu, M.; Ishihama, Y.; Sato, T.; Nagasu, T.; Oda, Y., Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal Chem 2005, 77, (16), 5144-5154.
26. Pinkse, M. W.; Uitto, P. M.; Hilhorst, M. J.; Ooms, B.; Heck, A. J., Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 2004, 76, (14), 3935-3943.
27. Larsen, M. R.; Thingholm, T. E.; Jensen, O. N.; Roepstorff, P.; Jorgensen, T. J., Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 2005, 4, (7), 873-886.
28. Wolschin, F.; Wienkoop, S.; Weckwerth, W., Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 2005, 5, (17), 4389-4397.
29. Kweon, H. K.; Hakansson, K., Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem 2006, 78, (6), 1743-1749.
30. Goshe, M. B.; Conrads, T. P.; Panisko, E. A.; Angell, N. H.; Veenstra, T. D.; Smith, R. D., Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal Chem 2001, 73, (11), 2578-2586.
31. Oda, Y.; Nagasu, T.; Chait, B. T., Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol 2001, 19, (4), 379-382.
32. Zhou, H.; Watts, J. D.; Aebersold, R., A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol 2001, 19, (4), 375-378.
33. Knight, Z. A.; Schilling, B.; Row, R. H.; Kenski, D. M.; Gibson, B. W.; Shokat, K. M., Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nat Biotechnol 2003, 21, (9), 1047-54.
34. Thompson, A. J.; Hart, S. R.; Franz, C.; Barnouin, K.; Ridley, A.; Cramer, R., Characterization of protein phosphorylation by mass spectrometry using immobilized metal ion affinity chromatography with on-resin beta-elimination and Michael addition. Anal Chem 2003, 75, (13), 3232-43.
35. Ballif, B. A.; Villen, J.; Beausoleil, S. A.; Schwartz, D.; Gygi, S. P., Phosphoproteomic analysis of the developing mouse brain. Mol Cell Proteomics 2004, 3, (11), 1093-101.
36. Nuhse, T. S.; Stensballe, A.; Jensen, O. N.; Peck, S. C., Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2003, 2, (11), 1234-43.
37. Motoyama, A.; Xu, T.; Ruse, C. I.; Wohlschlegel, J. A.; Yates, J. R., 3rd, Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal Chem 2007, 79, (10), 3623-34.
38. Rush, J.; Moritz, A.; Lee, K. A.; Guo, A.; Goss, V. L.; Spek, E. J.; Zhang, H.; Zha, X. M.; Polakiewicz, R. D.; Comb, M. J., Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 2005, 23, (1), 94-101.
39. Thelemann, A.; Petti, F.; Griffin, G.; Iwata, K.; Hunt, T.; Settinari, T.; Fenyo, D.; Gibson, N.; Haley, J. D., Phosphotyrosine signaling networks in epidermal growth factor receptor overexpressing squamous carcinoma cells. Mol Cell Proteomics 2005, 4, (4), 356-76.
40. Zhang, Y.; Wolf-Yadlin, A.; Ross, P. L.; Pappin, D. J.; Rush, J.; Lauffenburger, D. A.; White, F. M., Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 2005, 4, (9), 1240-50.
41. Liang, S. S.; Makamba, H.; Huang, S. Y.; Chen, S. H., Nano-titanium dioxide composites for the enrichment of phosphopeptides. J Chromatogr A 2006, 1116, (1-2), 38-45.
42. Zhang, Y.; Wang, X.; Shan, W.; Wu, B.; Fan, H.; Yu, X.; Tang, Y.; Yang, P., Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis. Angew Chem Int Ed Engl 2005, 44, (4), 615-7.
43. Chen, C. T.; Chen, W. Y.; Tsai, P. J.; Chien, K. Y.; Yu, J. S.; Chen, Y. C., Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis. J Proteome Res 2007, 6, (1), 316-25.
44. Chen, C. T.; Chen, Y. C., Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 2005, 77, (18), 5912-9.
45. Zhang, X.; Ye, J.; Jensen, O. N.; Roepstorff, P., Highly Efficient Phosphopeptide Enrichment by Calcium Phosphate Precipitation Combined with Subsequent IMAC Enrichment. Mol Cell Proteomics 2007, 6, (11), 2032-42.
46. Koch, C. A.; Anderson, D.; Moran, M. F.; Ellis, C.; Pawson, T., SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 1991, 252, (5006), 668-74.
47. Hunter, T., 1001 protein kinases redux--towards 2000. Semin Cell Biol 1994, 5, (6), 367-76.
48. Pandey, A.; Podtelejnikov, A. V.; Blagoev, B.; Bustelo, X. R.; Mann, M.; Lodish, H. F., Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc Natl Acad Sci U S A 2000, 97, (1), 179-84.
49. He, X. D.; Ge, X. W.; Liu, H. R.; Wang, M. Z.; Zhang, Z. C., Synthesis of cagelike polymer microspheres with hollow core/porous shell structures by self-assembly of latex particles at the emulsion droplet interface. Chemistry of Materials 2005, 17, (24), 5891-5892.
50. Mamedov, A. A.; Kotov, N. A.; Prato, M.; Guldi, D. M.; Wicksted, J. P.; Hirsch, A., Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat Mater 2002, 1, (3), 190-4.
51. Ericson, L. M.; Fan, H.; Peng, H.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y.; Booker, R.; Vavro, J.; Guthy, C.; Parra-Vasquez, A. N.; Kim, M. J.; Ramesh, S.; Saini, R. K.; Kittrell, C.; Lavin, G.; Schmidt, H.; Adams, W. W.; Billups, W. E.; Pasquali, M.; Hwang, W. F.; Hauge, R. H.; Fischer, J. E.; Smalley, R. E., Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004, 305, (5689), 1447-50.
52. Gao, J.; Itkis, M. E.; Yu, A.; Bekyarova, E.; Zhao, B.; Haddon, R. C., Continuous spinning of a single-walled carbon nanotube-nylon composite fiber. J Am Chem Soc 2005, 127, (11), 3847-54.
53. Shi Kam, N. W.; Jessop, T. C.; Wender, P. A.; Dai, H., Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. J Am Chem Soc 2004, 126, (22), 6850-1.
54. Kam, N. W.; Dai, H., Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 2005, 127, (16), 6021-6.
55. Zhang, Y.; Yu, X.; Wang, X.; Shan, W.; Yang, P.; Tang, Y., Zeolite nanoparticles with immobilized metal ions: isolation and MALDI-TOF-MS/MS identification of phosphopeptides. Chem Commun (Camb) 2004, (24), 2882-3.
56. Kawahara, M.; Nakamura, H.; Nakajima, T., Group Separation of Ribonucleosides and Deoxyribonucleosides on a New Ceramic Titania Column. Analytical Sciences 1989, 5, (6), 763-764.
57. Matsuda, H.; Nakamura, H.; Nakajima, T., New Ceramic Titania - Selective Adsorbent for Organic-Phosphates. Analytical Sciences 1990, 6, (6), 911-912.
58. Ikeguchi, Y.; Nakamura, H., Determination of organic phosphates by column-switching high performance anion-exchange chromatography using on-line preconcentration on titania. Analytical Sciences 1997, 13, (3), 479-483.
59. Ikeguchi, Y.; Nakamura, H., Selective enrichment of phospholipids by titania. Analytical Sciences 2000, 16, (5), 541-543.
60. Xue, Y.; Wei, J.; Han, H.; Zhao, L.; Cao, D.; Wang, J.; Yang, X.; Zhang, Y.; Qian, X., Application of open tubular capillary columns coated with zirconium phosphonate for enrichment of phosphopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 2009, 877, (8-9), 757-764.
61. Sturm, M.; Leitner, A.; Smatt, J. H.; Mechtler, K.; Lindner, W., Tin Dioxide Microspheres as a Promising Material for Phosphopeptide Enrichment Prior to Liquid Chromatography-(Tandem) Mass Spectrometry Analysis. Adv Funct Mater 2008, 18, 2381-2389.
62. Leitner, A.; Sturm, M.; Smatt, J. H.; Jarn, M.; Linden, M.; Mechtler, K.; Lindner, W., Optimizing the performance of tin dioxide microspheres for phosphopeptide enrichment. Anal Chim Acta 2009, 638, (1), 51-7.
63. Zhou, H.; Tian, R.; Ye, M.; Xu, S.; Feng, S.; Pan, C.; Jiang, X.; Li, X.; Zou, H., Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis 2007, 28, (13), 2201-15.
64. Sugiyama, N.; Masuda, T.; Shinoda, K.; Nakamura, A.; Tomita, M.; Ishihama, Y., Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 2007, 6, (6), 1103-9.
65. Reynolds, E. C.; Riley, P. F.; Adamson, N. J., A selective precipitation purification procedure for multiple phosphoseryl-containing peptides and methods for their identification. Anal Biochem 1994, 217, (2), 277-84.
66. Ruse, C. I.; McClatchy, D. B.; Lu, B.; Cociorva, D.; Motoyama, A.; Park, S. K.; Yates, J. R., 3rd, Motif-specific sampling of phosphoproteomes. J Proteome Res 2008, 7, (5), 2140-50.
67. Wu, J.; Shakey, Q.; Liu, W.; Schuller, A.; Follettie, M. T., Global profiling of phosphopeptides by titania affinity enrichment. J Proteome Res 2007, 6, (12), 4684-9.
68. Hsu, J. L.; Huang, S. Y.; Chow, N. H.; Chen, S. H., Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 2003, 75, (24), 6843-52.
69. Huang, S. Y.; Hsu, J. L.; Morrice, N. A.; Wu, C. J.; Chen, S. H., A convenient method to extract matrix-assisted laser desorption/ionization mass spectrometry spectra from phosphate-containing peptide mixtures. Proteomics 2004, 4, (7), 1935-8.
70. Asara, J. M.; Allison, J., Enhanced detection of phosphopeptides in matrix-assisted laser desorption/ionization mass spectrometry using ammonium salts. J Am Soc Mass Spectrom 1999, 10, (1), 35-44.
71. Chirica, G. S.; Remcho, V. T., A simple procedure for the preparation of fritless columns by entrapping conventional high performance liquid chromatography sorbents. Electrophoresis 2000, 21, (15), 3093-3101.
72. Mock, K. K.; Sutton, C. W.; Cottrell, J. S., Sample immobilization protocols for matrix-assisted laser-desorption mass spectrometry. Rapid Commun Mass Spectrom 1992, 6, (4), 233-238.
73. Kalume, D. E.; Molina, H.; Pandey, A., Tackling the phosphoproteome: tools and strategies. Curr Opin Chem Biol 2003, 7, (1), 64-69.
74. Loste, E.; Fraile, J.; Fanovich, M. A.; Woerlee, G. E.; Domingo, C., Anhydrous supercritical carbon dioxide method for the controlled silanization of inorganic nanoparticles. Advanced Materials 2004, 16, (8), 739-744.
75. Yoshida, W.; Castro, R. P.; Jou, J. D.; Cohen, Y., Multilayer alkoxysilane silylation of oxide surfaces. Langmuir 2001, 17, (19), 5882-5888.
76. Rong, Y.; Chen, H. Z.; Wu, G.; Wang, M., Preparation and characterization of titanium dioxide nanoparticle/polystyrene composites via radical polymerization. Materials Chemistry and Physics 2005, 91, (2-3), 370-374.
77. Rajh, T.; Chen, L. X.; Lukas, K.; Liu, T.; Thurnauer, M. C.; Tiede, D. M., Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk. Journal of Physical Chemistry B 2002, 106, (41), 10543-10552.
78. Bezrodna, T.; Puchkovska, G.; Shimanovska, V.; Chashechnikova, I.; Khalyavka, T.; Baran, J., Pyridine-TiO2 surface interaction as a probe for surface active centers analysis. Applied Surface Science 2003, 214, (1-4), 222-231.
79. Li, G. S.; Li, L. P.; Boerio-Goates, J.; Woodfield, B. F., High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. Journal of the American Chemical Society 2005, 127, (24), 8659-8666.
80. Beamson, G.; Briggs, D., High resolution XPS of organic polymers : the Scienta ESCA300 database. Wiley: Chichester, 1992; pp. 295.
81. Huang, S. Y.; Tsai, M. L.; Wu, C. J.; Hsu, J. L.; Ho, S. H.; Chen, S. H., Quantitation of protein phosphorylation in pregnant rat uteri using stable isotope dimethyl labeling coupled with IMAC. Proteomics 2006, 6, (6), 1722-34.
82. Kim, T. K.; Yoon, J. J.; Lee, D. S.; Park, T. G., Gas foamed open porous biodegradable polymeric microspheres. Biomaterials 2006, 27, (2), 152-9.
83. Koh, H. D.; Kang, N. G.; Lee, J. S., Fabrication of an open Au/nanoporous film by water-in-oil emulsion-induced block copolymer micelles. Langmuir 2007, 23, (26), 12817-20.
84. Kovacic, S.; Stefanec, D.; Krajnc, P., Highly porous open-cellular monoliths from 2-hydroxyethyl methacrylate based high internal phase emulsions (HIPEs): Preparation and void size tuning. Macromolecules 2007, 40, (22), 8056-8060.
85. Dunlap, C. J.; Carr, P. W.; McCormick, A. V., Chromatographic comparison of the pore structures of zirconia high performance liquid chromatographic materials made by the polymerization induced colloidal aggregation and the oil emulsion methods. Chromatographia 1996, 42, (5-6), 273-282.
86. Robichaud, M. J.; Sathyagal, A. N.; Carr, P. W.; Flickinger, M. C., An improved oil emulsion synthesis method for large, porous zirconia particles for packed- or fluidized-bed protein chromatography. Separation Science and Technology 1997, 32, (15), 2547-2559.
87. Yi, H.; Song, H.; Chen, X., Carbon nanotube capsules self-assembled by w/o emulsion technique. Langmuir 2007, 23, (6), 3199-204.
88. Bozkir, A.; Hayta, G., Preparation and evaluation of multiple emulsions water-in-oil-in-water (w/o/w) as delivery system for influenza virus antigens. J Drug Target 2004, 12, (3), 157-64.
89. Hwang, Y. J.; Oh, C.; Oh, S. G., Controlled release of retinol from silica particles prepared in O/W/O emulsion: the effects of surfactants and polymers. J Control Release 2005, 106, (3), 339-49.
90. Lee, M. H.; Oh, S. G.; Moon, S. K.; Bae, S. Y., Preparation of Silica Particles Encapsulating Retinol Using O/W/O Multiple Emulsions. J Colloid Interface Sci 2001, 240, (1), 83-89.
91. Lee, E. S.; Kwon, M. J.; Lee, H.; Kim, J. J., Stabilization of protein encapsulated in poly(lactide-co-glycolide) microspheres by novel viscous S/W/O/W method. Int J Pharm 2007, 331, (1), 27-37.
92. Barbier, V.; Tatoulian, M.; Li, H.; Arefi-Khonsari, F.; Ajdari, A.; Tabeling, P., Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems. Langmuir 2006, 22, (12), 5230-2.
93. Dogruel, D.; Williams, P.; Nelson, R. W., Rapid tryptic mapping using enzymatically active mass spectrometer probe tips. Anal Chem 1995, 67, (23), 4343-8.
94. Zhang, G.; Lin, J.; Srinivasan, K.; Kavetskaia, O.; Duncan, J. N., Strategies for bioanalysis of an oligonucleotide class macromolecule from rat plasma using liquid chromatography-tandem mass spectrometry. Anal Chem 2007, 79, (9), 3416-24.
95. Peterson, D. S.; Rohr, T.; Svec, F.; Frechet, J. M., High-throughput peptide mass mapping using a microdevice containing trypsin immobilized on a porous polymer monolith coupled to MALDI TOF and ESI TOF mass spectrometers. J Proteome Res 2002, 1, (6), 563-8.
96. Geiser, L.; Eeltink, S.; Svec, F.; Frechet, J. M., In-line system containing porous polymer monoliths for protein digestion with immobilized pepsin, peptide preconcentration and nano-liquid chromatography separation coupled to electrospray ionization mass spectroscopy. J Chromatogr A 2008, 1188, (2), 88-96.
97. Sehgal, D.; Vijay, I. K., A method for the high efficiency of water-soluble carbodiimide-mediated amidation. Anal Biochem 1994, 218, (1), 87-91.
98. Richert, L.; Boulmedais, F.; Lavalle, P.; Mutterer, J.; Ferreux, E.; Decher, G.; Schaaf, P.; Voegel, J. C.; Picart, C., Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking. Biomacromolecules 2004, 5, (2), 284-94.
99. Sakai-Kato, K.; Kato, M.; Toyo'oka, T., On-line trypsin-encapsulated enzyme reactor by the sol-gel method integrated into capillary electrophoresis. Anal Chem 2002, 74, (13), 2943-9.
100. Sakai-Kato, K.; Kato, M.; Toyo'oka, T., Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip. Anal Chem 2003, 75, (3), 388-93.
101. Kato, M.; Sakai-Kato, K.; Jin, H.; Kubota, K.; Miyano, H.; Toyo'oka, T.; Dulay, M. T.; Zare, R. N., Integration of on-line protein digestion, peptide separation, and protein identification using pepsin-coated photopolymerized sol-gel columns and capillary electrophoresis/mass spectrometry. Anal Chem 2004, 76, (7), 1896-902.
102. Ma, J.; Liang, Z.; Qiao, X.; Deng, Q.; Tao, D.; Zhang, L.; Zhang, Y., Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity. Anal Chem 2008, 80, (8), 2949-56.
103. Whittal, R. M.; Keller, B. O.; Li, L., Nanoliter chemistry combined with mass spectrometry for peptide mapping of proteins from single mammalian cell lysates. Anal Chem 1998, 70, (24), 5344-7.
104. Feng, S.; Ye, M.; Jiang, X.; Jin, W.; Zou, H., Coupling the immobilized trypsin microreactor of monolithic capillary with muRPLC-MS/MS for shotgun proteome analysis. J Proteome Res 2006, 5, (2), 422-8.
105. Lim, L. W.; Tomatsu, M.; Takeuchi, T., Development of an on-line immobilized-enzyme reversed-phase HPLC method for protein digestion and peptide separation. Anal Bioanal Chem 2006, 386, (3), 614-20.
106. Bartolini, M.; Andrisano, V.; Wainer, I. W., Development and characterization of an immobilized enzyme reactor based on glyceraldehyde-3-phosphate dehydrogenase for on-line enzymatic studies. J Chromatogr A 2003, 987, (1-2), 331-40.
107. Eeltink, S.; Geiser, L.; Svec, F.; Frechet, J. M., Optimization of the porous structure and polarity of polymethacrylate-based monolithic capillary columns for the LC-MS separation of enzymatic digests. J Sep Sci 2007, 30, (17), 2814-20.
108. Krenkova, J.; Foret, F., Immobilized microfluidic enzymatic reactors. Electrophoresis 2004, 25, (21-22), 3550-63.
109. Svec, F., Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports. Electrophoresis 2006, 27, (5-6), 947-61.
110. Girelli, A. M.; Mattei, E., Application of immobilized enzyme reactor in on-line high performance liquid chromatography: a review. J Chromatogr B Analyt Technol Biomed Life Sci 2005, 819, (1), 3-16.
111. Mancini, F.; Naldi, M.; Cavrini, V.; Andrisano, V., Development and characterization of beta-secretase monolithic micro-immobilized enzyme reactor for on-line high-performance liquid chromatography studies. J Chromatogr A 2007, 1175, (2), 217-26.
112. Ekstrom, S.; Onnerfjord, P.; Nilsson, J.; Bengtsson, M.; Laurell, T.; Marko-Varga, G., Integrated microanalytical technology enabling rapid and automated protein identification. Anal Chem 2000, 72, (2), 286-93.
113. Gao, J.; Xu, J.; Locascio, L. E.; Lee, C. S., Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification. Anal Chem 2001, 73, (11), 2648-55.
114. Yu, L. R.; Zhu, Z.; Chan, K. C.; Issaq, H. J.; Dimitrov, D. S.; Veenstra, T. D., Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. J Proteome Res 2007, 6, (11), 4150-62.

------------------------------------------------------------------------ 第 11 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915214148
論文名稱(中文) 利用紫外光能量分布製造漸變折射率透鏡的新製程
論文名稱(英文) A newly developed UV-energy-controlled process for the fabrication of GRIN lenses
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 陳俊宏
學號 n3696105
學位類別 碩士
語文別 中文
口試日期 2009-06-26
論文頁數 62頁
口試委員 口試委員-許聯崇
口試委員-陳克紹
口試委員-楊博智
指導教授-劉瑞祥
口試委員-陳雲
關鍵字(中) 漸變折射率
紫外光能量控制法
透鏡
光聚合
關鍵字(英) photo-induced polymerization
UV-energy-controlled process
gradient refractive index
lens
學科別分類
中文摘要 本實驗研究出一種利用控制不同強度紫外光以製造漸變折射率透鏡
的製程。在反應管中使形成V 型的膠化區域,可阻止單體光聚合成高分子後收縮所形成的空洞;而且,利用高折射率非反應型單體diphenyl sulfide(DS)以及低折射率反應型單體methyl methacrylate(MMA),使用Ciba IRGACURE 184 (1-hydroxy-cyclohexyl-phenyl-ketone) 為光起始劑,使聚合反應進行中,由於光能量分佈,使聚合反應由底部往上端,由外圍往軸心進行,將DS 分散於聚合物中,使之形成漸變折射率塑膠棒。本研究針對高折射率單體比例、起始劑濃度、管徑等因素在柱狀透鏡的光學性質上所造成的影響進行探討,找出在此新製程下預型體的最佳製造條件。本研究中所得最佳製備條件為MMA/DS = 4/1、Ciba IRGACURE 184 = 0.3 wt.%、反應管內徑為0.8 cm,獲得 Dn = 0.036。實驗結果顯示利用傾斜紫外光燈管的紫外光能量控制法可用來製作漸變折射率透鏡,所獲得之透鏡可被應用於影像傳送。
英文摘要 A UV-energy-controlled exposure process for the fabrication of gradient refractive index lenses was developed. A V-shaped gel zone is formed in the reaction tube to prevent the formation of voids in the polymer matrix after
photo-induced polymerization. Diphenyl sulfide (DS) and methyl methacrylate (MMA) were used as the higher and the lower refractive index monomers in the process, respect ively. Ciba IRGACURE 184 (1-hydroxy-cyclohexyl-phenyl-ketone) was used as photo initiator. Due to UV energy distribution, polymerization occurred from bottom to top side and from periphery to the central part leading to the formation of DS distribution inside the gel rod. The effects of diphenyl sulfide ratio, photo initiator
concentration and reaction tube diameter on the optical properties of the fabricated rod lenses were investigated. The optimal conditions of MMA/DS = 4/1 ,Ciba IRGACURE 184 = 0.3 wt.% , 0.8 cm inner diameter reaction tube were evaluated. We have demonstrated a convenient method for the
fabrication of gradient refractive index (GRIN) lenses via an UV-energycontrolled process equipped with a sloped UV lamp. Real image transmission through the prepared GRIN lenses was also obtained.
論文目次 中文摘要-------------------------------------------------------------------------------Ⅰ
英文摘要-------------------------------------------------------------------------------Ⅱ
目錄-------------------------------------------------------------------------------------Ⅲ
表目錄----------------------------------------------------------------------------------Ⅵ
圖目錄----------------------------------------------------------------------------------Ⅶ
符號對照表----------------------------------------------------------------------------Ⅹ
第一章 緒論-----------------------------------------------------------------------1
1-1 光纖之簡介----------------------------------------------------------------1
1-2 光纖之構造----------------------------------------------------------------4
1-3 光纖之分類----------------------------------------------------------------5
1-3-1 以材料分類----------------------------------------------------------5
1-3-2 以折射率分佈分類-------------------------------------------------7
1-3-3 以光傳播模態分類-------------------------------------------------8
1-4 塑膠光纖之製程技術----------------------------------------------------9
1-5 集束性光纖棒-----------------------------------------------------------11
1-6 塑膠光纖的抽絲--------------------------------------------------------12
1-7 塑膠光纖之展望--------------------------------------------------------13
1-8 研究動機-----------------------------------------------------------------14
第二章 原理---------------------------------------------------------------------16
2-1 光傳導原理與特性-----------------------------------------------------16
2-1-1 光傳送特性---------------------------------------------------------16
2-1-2 光纖導波原理------------------------------------------------------17
2-2 GI 光纖原理--------------------------------------------------------------21
2-3 光纖的傳輸損失--------------------------------------------------------25
2-4 GI 型光纖之結像--------------------------------------------------------27
第三章 實驗---------------------------------------------------------------------29
3-1 實驗儀器與藥品--------------------------------------------------------29
3-1-1 實驗儀器------------------------------------------------------------29
3-1-2 實驗藥品------------------------------------------------------------30
3-1-3 藥品純化------------------------------------------------------------30
3-2 GI 型塑膠光纖預型體之製作----------------------------------------31
3-2-1 單體之選擇---------------------------------------------------------31
3-2-2 光纖預型體之製程------------------------------------------------33
3-2-3 漸變折射率分佈形成原理---------------------------------------34
3-2-4 截面處理------------------------------------------------------------35
3-2-5 影響光學特性之變因---------------------------------------------36
3-2-6 預型體折射率分佈的測定---------------------------------------37
3-3 結像圖之攝影-----------------------------------------------------------38
第四章 結果與討論------------------------------------------------------------39
4-1 光聚合製程之探討-----------------------------------------------------39
4-2 直立式紫外線燈管製程之探討--------------------------------------40
4-3 光聚合製程之改良-----------------------------------------------------41
4-4 預型體光學性質的測定-----------------------------------------------42
4-5 變因對預型體之影響--------------------------------------------------43
4-5-1 改變進料比例------------------------------------------------------43
4-5-2 改變光起始劑濃度------------------------------------------------48
4-5-3 改變反應管徑------------------------------------------------------52
4-6 結像圖--------------------------------------------------------------------55
第五章 結論---------------------------------------------------------------------59
參考文獻--------------------------------------------------------------------------60
參考文獻 1. 李炳耀, “光纖通訊在台灣的建設”, 光訊, 第29 期, 1991.
2. 廣磁資訊公司編著, “通訊寶典(六) 光纖通信”, 廣磁資訊公司,1994.
3. 何佳樺, “含奈米無機微粒塑膠光纖之製作及光學特性研究”, 國立成功大學碩士論文, 2002.
4. (a)李明淵編著, 光纖通信概論“,全華科技圖書公司, 1994.
(b)吳曜東編著, “ 光纖通訊系統原理與應用 ”, 全新資訊圖書公
司, 1994.
5. J. Zubia and J. Arrue, Optical Fiber Technology, 7, 101, 2001.
6. E. W. Marchard, “Gradient Index Optics”, Academic press, New York, 1978.
7. 陳永信, “光纖應用技術”, 定基科技, 1988.
8. 李明淵編著, “光纖通訊概論”, 全華科技圖書, 1992.
9. 王誌麟、呂明峰、鄧俊修編譯, “ 光纖通訊 ”,
高立圖書公司, 1998.
10. 王宏宇, “ 集束性光學元件之製作及特性探討“,國立成功大
學碩士論文, 1999.
11. 劉瑞祥編譯, “ 基礎光學纖維 ”, 復文書局, 1986.
12. R. W. Wood, “Phsyical Optics”, Academic press, New York,71-77,1985.
13. J. Zubia and J. Arrue, Optical Fiber Technology, 7, 101, 2001.
14. Y. Koike and Y. Kimoto, Y. Ohtsuka, Appl. Opt., 21 (6), 1057, 1982.
15. Y. Koike and Y. Kimoto, Appl. Opt., 23 (11), 1779, 1984.
16. 陳文章, “ 高分子在光學上的應用 ”,化工資訊, 6, 1993.
17. Y. Koike, Y. Takezawa and Y. Ohtsuka, Appl. Opt., 27 ( 3), 486,611988.
18. Y. Koike, N. Tanio, E. Nihei and Y. Ohtsuka, Polym. Eng. Sci. 17,1200, 1989.
19. A. Tagaya, S. Teramoto, E. Nihei, K. Sasaki and Y. Koike,Appl. Opt., 36 (3), 572, 1997.
20. 賴耿陽、蘇品書編撰, “塑膠光纖應用技術”, 復漢出版社, 1988.21. J. Zubia and J. Arrue, Optical Fiber Technology, 7, 101, 2001.22. T. Yamamoto, K. Fuji, A. Tagaya, E. Nihei, Y. Koike and K.Sasaki, Journal of Nonlinear Optical Physics and Materials, 5, 1,73-88,1996.
23. N. F. Borrelli, Microoptics Technology-Fabrication and
Application of Lens Arrays and Devices -Marcel Dekker, New
York, 1999.
24. 周遊, “光纖布拉格之工作原理與應用”, 光學工程, 79,2002.
25. M. Naritomi, Proc. Ninth International Conference on PlasticOptical Fibers and Applications-POF’00, Boston MA, pp. 8-11,2000.
26. 施明昌、黃智裕, “光纖在環境監測之應用”, 光訊, 95, 2002.
27. 黃胤年編著, “簡易光纖通信”, 五南圖書出版公司, 2002.
28. 何耀宗, “光通訊產業應用材料簡介”, 工業材料, 5, 2001.
29. C. Koeppen, R. F. Shi, W. D. Chen and A. F. Garito, J. Opt. Soc.Am B, 15, 727, 1998.
30. M. A. Losada, I. Garces, J. Mateo, I. Salinas, J. Lou and J. Zubia,Journal of Lightwave Technology, 20, 1160, 2002.31. I. J. Lin, J. P. Friend and Y. Z. Zimmels, Journal of Colloids and Interface Science, 45 (2), 378, 1973.
32. A. Harlin, H. Myllymaki and K. Grahn, AUTEX Research Journal,2 (3), 132, 2002.
33. M. Naritomi, POF Asia-Pacific, Forum-96, Tokyo Japan, 1996.
34. Z. Zhen, X. D. Li, X. Q. Wang, Y. Huang and X. H. Liu, Journal of Polymer Science: Part A: Polymer Chemistry, 41, 1813 , 2003.
35. D. Zhou, H. Teng, K. Koike, Y. Koike and Y. Okamoto, Journal of Polymer Science: Part A: Polymer Chemistry, 46, 4748, 2008.
36. J. S. Choi, S. H. Im, M. Y. Song ,O O. Park, H. Cho and J. Taek Hwang, Journal of Applied Polymer Science, 99, 2395, 2006.
37. M. Asai, R. Hirose, A. Kondo and Y. Koike, Journal of Lightwave Technology, 25, 10, 2007.
38. T. Ishigure, H. Endo, K. Ohdoko and Y. Koike , IEEE Photonics Technology Letters, 16, 9, 2004.
39. T. Ishigure, H. Endo, K. Ohdoko, K. Takahashi and Y. Koike,Journal of Lightwave Technology, 23, 4, 2005.
40. J. H. Liu, P. C. Yang and Y. H. Chiu, Journal of Polymer Science: Part A: Polymer Chemistry, 44, 5933, 2006.
41. J. H. Liu, D. S. Wu and K.Y. Tseng, Macromol. Chem. Phys., 205, 2205, 2004.

------------------------------------------------------------------------ 第 12 筆 ---------------------------------------------------------------------
系統識別號 U0026-0812200915282507
論文名稱(中文) 次世代奈米滾印技術之尺寸效益評估與機械公差、製程參數對傳輸品質及成型性分析
論文名稱(英文) Mechanical Evaluation on Pattern Formation and Web Transportation for Next Generation Roll-to-Roll(R2R)Nanoimprinting Process
校院名稱 成功大學
系所名稱(中) 奈米科技暨微系統工程研究所
系所名稱(英) Institute of Nanotechnology and Microsystems Engineering
學年度 97
學期 2
出版年 98
研究生(中文) 許哲豪
學號 q2696107
學位類別 碩士
語文別 中文
口試日期 2009-07-22
論文頁數 118頁
口試委員 口試委員-陳元方
指導教授-陳國聲
口試委員-陳鐵城
關鍵字(中) 捲對捲傳輸
奈米壓印
撓性基板
紫外光聚合膠
關鍵字(英) UV curable resin
Roll-to-Roll transportation
nanoimprinting
flexible substrate
學科別分類
中文摘要 R2R奈米滾印技術是軟性電子產品時代的關鍵製造技術之ㄧ, 其原理是以具微奈米尺度結構之滾筒模仁,在塗佈UV膠的可撓性基材上,以連續性滾壓與UV光固化的方式生產微奈米結構,可提供更快速、低廉的方式製造大面積之奈米產品。 然而,在整個滾印與傳輸的過程中,壓印品質與產率顯然與許多的因素息息相關,如: 軟基材之機械性質、幾何尺寸、傳輸張力、機械組件之公差、運轉速度與振動等。 本文以實驗針對V型溝槽的微奈米結構,針對張力,轉速,與V型溝槽尺寸大小等製程參數,探討其對成型性能之影響,並求取其最佳化之參數。 並以模擬探討UV膠黏滯性與溝槽幾何尺寸對成型性能之影響。 實驗與模擬結果將有利於製程參數最佳化以及提供後續設計之參考依據。
英文摘要 Roll-to-Roll (R2R) nanoimprinting technique has already demonstrated its potential in manufacturing of soft electronics related products. However, the filling and web transportation performances of R2R nanoimprinting depends on many mechanical parameters and their effects must be evaluated for system optimization and device integrity considerations. During a typical web transportation process, a pre-applied tensile stress is required for overcoming possible compressive buckling failure due to geometrical misalignments. As a result, the relationship between the minimum required pre-tensile, geometrical misalignments, and materical properties, must be clarified. In this dissertation, the filling and web transportation performances of R2R nanoimprinting are investigated by both experiment and finite element analysis for the V shape pattern and the preliminary results are demonstrated. In this work the main experiment parameters are web tension, transportation speed, and pattern size. On the other hand, in filling simulation, the studies are focused on viscosity of UV curable resin and pattern size. The results would be important for process optimization and the system re-design for next generation R2R nanoimprinting machines.
論文目次 中文摘要I
AbstractII
誌謝III
目錄IV
圖目錄VIII
表目錄XII
符號說明XIII

第一章序論
1.1前言1
1.2研究動機4
1.3本文架構5
第二章奈米滾印關鍵技術與發展
2.1轉印製程開發7
2.2滾印塗佈技術12
2.3機械公差之影響14
2.4模仁特徵尺寸製作18
2.5本章結論21
第三章材料機械性質檢測
3.1檢測計畫22
3.2典型單軸拉伸試驗23
3.3單軸拉伸測試結果25
3.4奈米壓痕技術與應用28
3.5奈米壓痕測試34
3.6本章結論42
第四章滾印參數最佳化之量測實驗
4.1滾印量測系統之建立43
4.2R2R滾印參數最佳化設計45
4.3實驗結果探討52
4.4實驗結果最佳化參數之建議62
4.5本章結論64
第五章滾子振動變形與塗佈技術對R2R成型之影響
5.1R2R系統振動之分析65
5.2滾印塗佈技術對殘留層之影響71
5.3轉子偏心距分析73
5.4滾筒自重的撓曲分析75
5.5本章結論77
第六章傳輸與成型性力學分析
6.1前言80
6.2張力與滾輪配置公差對成型後圖案之影響84
6.3料捲與傳遞輪接觸時之分析89
6.4成型性模擬95
6.5本章結論102
第七章結果與討論
7.1機台操作104
7.2影響R2R因子104
7.3傳輸因素106
7.4成型結果106
第八章結論與未來展望
8.1結論107
8.2本文貢獻109
8.3未來展望109
參考文獻111
參考文獻 [1] H. Ten, A. Gibertson and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol, B 16(6), 3926, (1998).
[2] S. Ahn, J. Cha, H. Myung, S. M. Kim and S. Kang, “Continuous ultraviolet roll nanoimprinting process for replicating large-scale nano- and micropatterns,” Appl. Phys. Lett. 89, 213101,( 2006).
[3] C. Y. Chang, S. Y. Yang, M. H. Chu, ”Rapid fabrication of ultraviolet cured polymer microlens arrays by soft roller stamping process,” Microelectron Eng 84:pp. 355-361 ,(2006).
[4] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10
nm imprint lithography and applications,” J. Vac. Sci Technol. B 15(6), pp. 2897-2904,Nov/Dec, (1997).
[5] Nanotechnology and MEMS: Commercializing Ultra-Small Objects Market, Opportunities and Technologies, Published by Takeda Pacific, May ,(2002).
[6] 陳守仁,“奈米轉印技術發展現況 “, 機械工業雜誌, 267 期, pp. 36-46,(2005)。
[7] S. Y. Chou, C. Keimel, J. Gu, “Ultrafast and direct imprint of nanostructures in silicon,” Nature, Vol. 417, pp. 835-837, (2002).
[8] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake,T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson, “Step and flash imprint lithography : a new approach to high-resolution patterning,” Proc. SPIE, 3676(I): 379, (1999).
[9] J. A. Rogers, K. E. Paul and G. M. Whitesides, "Imaging profiles of light intensity in the near field: applications to phase-shift photolithography," Appl. Optics ,37, 2145-2152,(1998).
[10] 蔡宏營 "奈米轉印技術介紹" 工研院機械所 中華民國力學學會會訊,104期,(2003)。
[11] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and Z. J. Lei . “Roller Nanoimprint Lithpgraphy,” Vac. Sci.Technol.B Vol.15(6),pp.2897-3001, (1997).
[12] Y. Xia, G. M. Whitesides, Angew. Chem.” Replica molding with a polysiloxane mold provides this patterned microstructure,” Int. Ed. 37 pp.550-575,(1998).
[13] R. Maboudian., W. R. Ashurst and C. Carraro, “Self Assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments”Sensors and Actuators,Vol.82, pp.219-223
,(2000).
[14] W. R. Ashurst., C. Yau., C. Carraro, C. Lkgf, G. J. Kluth., R T. How and R. Maboudian; “Alkene based monolayersmfilms as anti-stiction coatings for polysilicon MEMS”; Sensors and Actuators Vol. A 91, pp.239-248 ,(2001).
[15] J.N. Ding., P.L. Wong, J.C. Yang; “Friction and fracture properties of polysilicon coated with self-assembled monolayers. ”; Wear, Vol. 206 , pp.209-214 ,(2006).
[16] S. Zankovych, T. Hoffmann, J. Koeth, A. Forchel; “Nanoimprint Lithography: Challenges and Prospects.”; Nanotechnology 12, pp.91-95,(2001).
[17] D.J. Srkgfnivasan, S.V. Willson, C. Grant; ”Step & flash imprint lithography.” Materials Today Vol.8, pp.34-42, (2005).
[18] S. Ahn , J. S. Kim L. J. Guo ,“Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B Vol 25, Issue 6, pp.2388-2391 Nov,(2007).
[19] R. Wathen, “Characterizing the Influence of Paper Structure on Web Break,” Licentiate Thesis, Dept. Forest Product Technology, Helsinki University of Technology, (2003).
[20] Y. Lee and J. Wickert,”Stree Field in Finite Width Axisymmetric WoundRolls,”ASME J. Applied Mechanics, Vol.69, pp.130-138,
(2002).
[21] 林宏彝,微奈米滾筒模具製程與成型技術簡介,機械工業雜誌 pp. 53-56,(2006)。
[22] 蘇建彰,轉印模仁之奈米結構製作,機械工業雜誌,269期,pp.44-55,(2005)。
[23] 廖彥鳴,軟材料之機械性質測試與其在半導體製程、真空設備、生醫量測及軟板傳輸之應用,國立成功大學機械工程學系碩士論文,(2007)。
[24] J. Vernon, “Introduction to Engineering Materials (3rd Edition),” MacMillan press, (1993).
[25] J. M. Gere, “Mechanics of Materials (5th Edition),” Brooks/Cole, (2001).
[26] 許瑞峰,微小材料機械特性測試系統之設計製作與其在電子封裝與高分子材料上之應用,國立成功大學機械工程學系碩士論文,(2003)。
[27] G. M. Odegard, T. S. Gates and H. M. Herring, “Characterization of viscoelastic properties of polymeric materials through nanoindentation,” J. Exp. Mech., 45, pp. 130-136, (2005).
[28] G. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the generality of the relationship between contact stiffness, contact area, and elastic modulus during indentation,” J. Mater. Res., 7, pp. 613-617, (1992).
[29] I. N. Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile,” Int. J. Engng. Sci., 3, pp. 47-57, (1965).
[30] W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation Advances in understanding and refinements to methodology,” J. Mater. Res., 19,pp. 3-20, (2004).
[31] W. C. Oliver and G. M. Pharr,”An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments,” J.Mater. Res., 7, pp.1564-83, (1992).
[32] 張瑞慶“奈米壓痕技術與應用”,中華民國力學學會會訊,Vol.114(2006)。
[33] William T. Thmoson and Marie Dillon Dahlen “theory of vibration with applications fifth edition,” pp. 53-55(1993).
[34] A. David Daly “Factors Controlling Traction Between Webs and their Carrying Rolls,” Tappi J., vol 48,pp. 88-90, (1965).
[35] D. Roisum, “The Mechanics of Rollers,” TAPPI, (1996).
[36] Q. X. Pei, C Lu, Z. S. Liu and K. Y. Lam,” Molecular dynamics study on the nanoimprint of copper,” J. Phys. D: Appl. Phys. 40, 4928, (2007).
[37] Q. C. Hsu, C. D. Wu and T. H. Fang, “Deformation Mechanism and Punch Taper Effects on Nanoimprint Process by Molecular Dynamics,” JJAP, 43, 7665, (2004).
[38] Q. C. Hsu, C. D. Wu, and T. H. Fang, Comput. “Studies on nanoimprint process parameters of copper by molecular dynamics analysis,” Mater. Sci., 34 (4), 314, (2005).
[39] R. Wathen,” Characterizing the Influence of Paper Structure on Web Break,” Licentiate Thesis, Dept. Forest Product Technology, Helsinki University of Technology, (2003).
[40] S. Muftu, “Mechanics of Thin, Flexible, Translating Media and Their
Interactions with Surrounding Air,” JSME International Journal, Series C, Vol. 48, pp. 329-336, (2005).
[41] D. Roisum, “The Mechanics of Wrinkling,” TAPPI, (1996).
[42] 吳政達,多重粒子法與分子動力學應用於奈米轉印製程研究,國立成功大學機械工程學系博士論文(2008)。
[43] J. R. Assay and M. Shahipoor,” High-Pressure Shock Compression of Solids”. Springer-Verlag, New York, p. 8., (1992).
[44] ABAQUS, Analysis User’s Manual, Version 6.4 HKS Inc., Providence, Rhode Island., (2005).

 


如您有疑問,請聯絡圖書館
聯絡電話:(06)2757575#65773
聯絡E-mail:etds@email.ncku.edu.tw